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Lattice regularization of chiral fermions has been a long-standing problem in physics. In this Letter, we
present the density matrix renormalization group simulation of the 3-4-5-0 model of ð1þ 1ÞD chiral
fermions with an anomaly-free chiral U(1) symmetry, which contains two left-moving and two right-
moving fermions carrying U(1) charges 3,4 and 5,0, respectively. Following the Wang-Wen chiral fermion
model, we realize the chiral fermions and their mirror partners on the opposite boundaries of a thin strip of
ð2þ 1ÞD lattice model of multilayer Chern insulator, whose finite width implies the quantum system is
effectively ð1þ 1ÞD. By introducing two sets of carefully designed six-fermion local interactions to the
mirror sector only, we demonstrate that the mirror fermions can be gapped out by the interaction beyond a
critical strength without breaking the chiral U(1) symmetry, via the symmetric mass generation mechanism.
We show that the interaction-driven gapping transition is in the Berezinskii-Kosterlitz-Thouless
universality class. We determine the evolution of Luttinger parameters before the transition, which
confirms that the transition happens exactly at the point when the interaction term becomes marginal. As
the mirror sector is gapped after the transition, we check that the fermions in the light chiral fermion sector
remain gapless, which provides the desired lattice regularization of chiral fermions.
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Introduction.—It has been a long-standing issue to
regularize chiral gauge theories (e.g., the weak interaction
in the standard model) on the lattice due to the Nielsen-
Ninomiya no-go theorem [1], which asserts that any free
fermion lattice model in even-dimensional spacetime with
locally realized chiral symmetry will necessarily give rise
to equal numbers of left-handed and right-handed fermion
fields at low energy, hence rendering the theory vectorlike.
Over the past few decades, much effort [2–7] has been
devoted to circumventing the fermion doubling problem by
lifting different assumptions of the no-go theorem.
In particular, the no-go theorem assumes the fermion

theory to be infrared free, i.e., fermion interactions, if there
are any, must be perturbatively irrelevant under the
renormalization group (RG) flow. Lifting this assumption
by introducing nonperturbative (strong enough) fermion
interactions could potentially circumvent the problem.
Efforts along this line are generally referred to as the
mirror fermion approach, which dates back to Eichten and
Preskill [8]. The basic idea is to start with a vectorlike
theory containing both chiral fermions and their mirror
fermion partners, which can be put on a lattice without any
issue. Then one attempts to generate a mass gap in the
mirror sector by introducing interactions among mirror
fermions, such that the remaining light (chiral fermion)
sector survives in the low-energy spectrum, providing the
basis for lattice realizations of chiral gauge theories.

However, early numerical tests [9–18] appeared to invali-
date the mirror fermion approach, as strong fermion
interactions typically result in the condensation of fermion
bilinear mass at low energy, which spontaneously breaks
the chiral symmetry and gaps out the light sector together
with the mirror sector.
In recent years, a series of developments [19–34] in the

many-body quantum matter community have significantly
deepened our understanding. It is realized that in order to
gap out the mirror sector by interactions without breaking
the chiral symmetry, two conditions must be satisfied:
(i) the mirror fermions must be anomaly free under the full
spacetime-internal symmetry, (ii) the interaction must be
appropriately designed to satisfy certain consistent gapping
conditions [26,33]. Along this line, recent numerical
studies [35–51] have successfully demonstrated examples
of interaction-driven fermion mass generation without
spontaneous symmetry breaking in various spacetime
dimensions. The phenomenon is known as the symmetric
mass generation (SMG) [52–56]. Therefore, solving the
chiral fermion problem boils down to achieving the SMG
for mirror fermions in even spacetime dimensions.
Nevertheless, most numerical works realizing SMG in

even spacetime dimensions have been focused on vector-
like lattice models [39–41,44,45,48,49,51], which still have
some distance from the goal of regularizing chiral fermions.
Recently, Catterall [50] studied the SMG of a chiral
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fermion lattice model with a chiral discrete Z4 symmetry.
In this work, we demonstrate the SMG in the 3-4-5-0 model
of ð1þ 1ÞD chiral fermions that cancels the Z-class
perturbative local anomaly of the chiral continuous U(1)
symmetry, which is closer to the situation of perturbative
chiral anomaly cancellation in the 3þ 1D standard model
[such as the chiral Uð1ÞY electroweak hypercharge]. We
propose a lattice model of interacting fermions, and
investigate the model using the density matrix renorma-
lization group (DMRG) numerical method [57,58]. Our
numerical results provide clear evidence for the SMG in the
mirror sector, successfully achieving our goal of regula-
rizing chiral fermions in the 3-4-5-0 model on a lattice.
The 3-4-5-0 model.—The 3-4-5-0 model describes four

gapless complex fermions in ð1þ 1ÞD,

S ¼
Z

dt dx
X4
I¼1

ψ†
I ði∂t þ ivI∂xÞψ I; ð1Þ

with two left-moving modes ψ1, ψ2 (of v1 ¼ v2 ¼ þ1) and
two right-moving modes ψ3, ψ4 (of v3 ¼ v4 ¼ −1). The
fermions are charged under a chiral U(1) symmetry:
ψ I → eiqIθψ I , with the charge assignment ðq1; q2; q3; q4Þ ¼
ð3; 4; 5; 0Þ (hence the name “3-4-5-0”). This seemingly
peculiar charge assignment is designed to cancel the U(1)
symmetry’s ’t Hooft anomaly,which is aZ-class perturbative
local anomaly. The anomaly index is given by

P
I vIq

2
I ¼

32 þ 44 − 52 − 02 ¼ 0, which vanishes for the charge
assignment of the 3-4-5-0 model. The model is also free
of the gravitational anomaly. As the field theory is anomaly-
free, it should admit a lattice regularization in ð1þ 1ÞD
spacetime.
Following Wang-Wen’s chiral fermion model [26,33],

the ð1þ 1ÞD chiral fermions and their mirror partners can
be viewed as the chiral edge modes on the opposite
boundaries of a ð2þ 1ÞD multilayer Chern insulator
[59], each layer with a Chern number �1. To construct
the chiral fermions on a lattice, we start with four layers of
Chern insulators on a two-leg ladder as shown in Fig. 1(a).
On each lattice site i, we introduce four complex fermions,
described by the annihilation operators ψ i;I (with I ¼ 1, 2,
3, 4 being the layer or flavor index). The fermion hopping is
governed by the lattice Hamiltonian

Hfree ¼
X4
I¼1

X
i;j

ðtI;ijψ†
I;iψ I;j þ H:c:Þ; ð2Þ

where the hopping parameters tI;ij are nonzero only on the
nearest and next-nearest-neighbor links. For the first two
layers I ¼ 1, 2, the nearest neighbor hoppings are purely
imaginary with tI;ij ¼ eiπ=4t1 if j → i follows the link
direction, and the next-nearest neighbor hoppings are real
with tI;ij ¼ t2 (or −t2) on the solid (or dashed) links, as
shown in Fig. 1(a). We fix t1 ¼ 1 and t2 ¼ 0.5. This

hopping pattern ensures a π Berry flux through each square
plaquette, realizing a minimal model of Chern insulator in
each layer. For the last two layers I ¼ 3, 4, the hopping
parameters are complex conjugated, such that the band
Chern numbers in the last two layers are opposite to those
of the first two layers.
The lattice model has a four-site unit cell that repeats

along the ladder direction, hence the lattice momentum k
along the ladder direction is a good quantum number, and
the system is effectively ð1þ 1ÞD. In each layer, the single-
particle energy dispersion (band structure) is shown in
Fig. 1(b), which includes two gapped bulk bands together
and two gapless edge modes of opposite velocities (local-
ized separately on the two boundaries). Stacking all layers
together, the lattice model realizes four chiral fermions (as
two pairs of counterpropagating modes) on each edge, as
illustrated in Fig. 1(c). Since the four layers of fermions are
decoupled at the free fermion level, we are free to assign
them with the 3,4,5,0 chiral U(1) charges, respectively,
such that the low-energy edge modes realize the 3-4-5-0
chiral fermions and their mirror partners. We treat the edge
A as the light (chiral fermion) sector, and the edge B as the
mirror sector (to be gapped out). If we can generate a mass
gap for the edge B fermions only without breaking the
chiral U(1) symmetry, we will succeed in achieving a lattice
regularization of the 3-4-5-0 field theory Eq. (1) in this
ð1þ 1ÞD system in terms of the gapless edge A fermions.
The fact that the U(1) ’t Hooft anomaly vanishes for the

3-4-5-0 model indicates that it should be possible to gap out
the edge B fermions trivially without breaking the chiral
U(1) symmetry. However, the chiral U(1) symmetry is
restrictive enough to prevent the gapping to happen on the
free-fermion level, because any fermion bilinear term that
produces a gap must take the form of ψ†

IψJ (Dirac mass) or
ψ IψJ (Majorana mass), with I ∈ f1; 2g and J ∈ f3; 4g, that

(a) (b) (c)

FIG. 1. (a) The fermion hopping pattern on the two-leg ladder
lattice for the first layer. Arrow link: t1eiπ=4 (along the arrow
direction); solid link: t2; dashed link: −t2. This ð2þ 1ÞD thin
strip is effectively the same as ð1þ 1ÞD by regarding the finite-
width dimension as internal degrees of freedom of the ð1þ 1ÞD
system. (b) Energy dispersion for t1 ¼ 1, t2 ¼ 0.5. Gapless edge
modes are strictly localized on the two boundaries of the ladder.
(c) Schematic diagram showing the configuration of the four
flavors of chiral fermions on the edges.
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mixes the left- and right-moving fermions. Since the four
layers of fermions all carry distinct chiral U(1) charges that do
not add or subtract to zero, any layer-mixing fermion bilinear
term necessarily breaks the chiral U(1) symmetry explicitly.
The symmetry breaking mass on the B edge will also induce
similar bilinear mass for the edgeA fermion by the proximity
effect, thereby gapping out all fermions together.
Therefore, we resort to the idea of gapping out the mirror

fermions by interactions, which has been previously
explored by Chen, Giedt, and Poppitz (CGP) [18] in the
3-4-5-0 lattice model, where all U(1) symmetry allowed
interactions are included. Unfortunately, the CGP result
shows a singular nonlocal behavior for the gauge field
polarization tensor in the mirror sector, which indicates
the mirror sector still has surviving gapless modes charged
under the gauge field. The reason could be that the CGP
approach introduces toomany interaction terms, and some of
them are harmful. In order to achieve the SMG, the fermion
interaction must be carefully selected to satisfy the gapping
condition (i.e., the interaction operators must be self-bosonic
and mutual-bosonic in terms of the operator braiding
statistics [60–63]), as elaborated in recent works [26,33].
It turns out that the lowest order interactions that satisfy the
gapping condition are the following six-fermion local
interactions [26],

Hint ¼
X
i∈B

g1ðψ1;iψ
†
2;iψ

†
2;iþ1ψ3;iψ4;iψ4;iþ1 þ H:c:Þ

þ g2ðψ1;iψ1;iþ1ψ2;iψ
†
3;iψ

†
3;iþ1ψ4;i þ H:c:Þ: ð3Þ

These are seemingly irrelevant dimension-five operators in
the perturbative RG around the gapless free fermion fixed
point. The interaction respects the chiral U(1) symmetry, and
is only applied to sites on theB edge (denoted as i ∈ B), with
iþ 1 being the next site of i along theB edge. The interaction
looks highly irrelevant in the free-fermion limit. However,
strong enough interaction (strong in the sense that the
interaction energy scale Eint is large but still in the same
order of magnitude as the kinetic energy Efree, thus
Eint=Efree ≃Oð1Þ is nonperturbative) may still generate
nonperturbative effect that gaps out the edge B fermions.
Our central goal is to numerically verify that the proposed
interaction Eq. (3) indeed drives the SMG in and only in the
mirror sector.
DMRG results.—We study the lattice model H ¼

Hfree þHint by the DMRG method [57] using the
ITensor software library [64]. For simplicity, we set g1 ¼
g2 ¼ g as the only interaction parameter. The simulation is
performed on a two-leg ladder of 20 unit cells, where three
different matrix product state bond dimensions D ¼ 6000,
7000, and 8000 are used [65]. Computed physical quan-
tities are then extrapolated to the D → ∞ limit assuming a
1=D scaling. Figure 2 shows the ground state energy EGS
(of the full HamiltonianH) per unit cell as a function of the
interaction strength g, where the inset shows its first-order

derivative ∂gEGS. The onset of a nonzero ∂gEGS ¼
g−1hHinti around gc ≈ 5.7 signifies the development of
the hHinti ≠ 0 condensation across the SMG transition. The
smooth kink of ∂gEGS indicates a (high-order) continuous
transition.
To further confirm the existence of the critical point gc,

we calculate the fermion correlation functions Cψ ðrÞ≡
hψ†

I;iþrψ I;ii on both edge A and edge B across the
transition. It turns out that the behavior of Cψ is the same
for all I ¼ 1, 2, 3, 4, such that it is sufficient to show one of
the four flavors. Figures 3(a), 3(c) and Figs. 3(b), 3(d) show

FIG. 2. Ground state (GS) energy per unit cell as a function of
interaction strength g. The inset shows the first-order derivative of
the GS energy with respect to g. The features around g ≈ 5.7
(indicated by the gray dashed line) signal a quantum phase
transition.

FIG. 3. Correlations on both edges before and after transition.
Linear fit (red line) is performed for intermediate distances from
r ¼ 2 to r ¼ 6 in each case, in order to faithfully extract the low
energy physics while avoiding the artifacts due to the gap caused
by finite bond dimension in the matrix product state representa-
tion. (a) g ¼ 5.0 < gc for edge A. The log-log plot shows a
power-law decay for intermediate distances. (b) g ¼ 7.0 > gc for
edge A. The log-log plot again shows a power-law decay.
(c) g ¼ 5.0 < gc for edge B. The log-log plot shows a power-
law decay. (d) g ¼ 7.0 > gc for edge B. The semilog plot
indicates an exponential decay, i.e., edge B becomes gapped.

PHYSICAL REVIEW LETTERS 128, 185301 (2022)

185301-3



the correlation functions for each edge before and after the
transition, respectively. We observe that edge A is always
gapless with power-law correlations. In contrast, edge B is
gapless when g < gc but becomes gapped with an expo-
nential-decay correlation when g > gc. The two qualita-
tively different behaviors must be separated by a quantum
phase transition.
By fitting the power-law correlation function Cψ ðrÞ ∼

1=r2Δψ before the transition, we can extract the fermion
scaling dimensionΔψ on both edges. The result is shown in
Fig. 4(a). In the free-fermion limit (g ¼ 0), the fermion
scaling dimension is Δψ ¼ 1

2
on both edges. The finite-size

effect tends to reduce the scaling dimension slightly. A
finite-size scaling of the scaling dimension in the free
fermion limit is performed in Supplemental Material (SM),
Sec. I [66], confirming that our result converges to the long-
distance limit correctly. As g increases toward gc, the
fermion scaling dimension on the edge B increases con-
tinuously from 1

2
to about 0.67 (near gc), indicating that

fermion operators get renormalized by the interaction
significantly. For g > gc, the correlation on the edge B
becomes short-ranged, such that the fermion scaling
dimension is no longer defined (although the power-law
fitting on the finite-size data will continue give some
estimated exponent that extrapolates beyond the critical

point before the correlation length shrinks below the system
size). However, on the edge A, the fermion scaling
dimension, while experiencing some fluctuations near
the critical point, generally stays close to the free fermion
limit regardless of the interaction strength. The scaling
dimension remains stable even after g goes across the
transition point gc by a significant amount. This implies
that the edge A remains gapless and almost free, as the edge
B interaction can only induce a perturbative interaction on
the edge A through the proximity effect.
To verify that the chiral U(1) symmetry is not broken

spontaneously by the condensation of fermion bilinear
masses, we measure correlation functions of Dirac and
Majorana mass operators on the B edge, i.e., Cψ†

IψJ
ðrÞ≡

hψ†
J;iþrψ I;iþrψ

†
I;iψJ;ii andCψ IψJ

ðrÞ≡ hψ†
J;iþrψ

†
I;iþrψ I;iψJ;ii.

Figure 2 in SM, Sec. II [66] shows the correlations for all the
eight mass terms are short-ranged (exponential decay) along
the B edge in the strong coupling gapped phase (g > gc),
which confirms that the mirror fermions on the B edge are
gapped by the SMGmechanismwithout long-range ordering
of bilinear masses. Therefore, the remaining gapless fer-
mions on the A edge successfully realize the lattice regu-
larization of chiral fermions in the 3-4-5-0 model preserving
the chiral U(1) symmetry.
Luttinger liquid RG analysis.—To better understand the

nature of the SMG transition at gc, we perform the
Luttinger liquid RG analysis for the edge B fermions.
We first bosonize the mirror fermions by ψ I ∼ eiϕI. Then
the ð1þ 1ÞD interacting mirror fermions can be described
by the Luttinger liquid effective field theory in terms of the
ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4Þ⊺ fields

L¼ 1

4π
ð∂tϕ

⊺K∂xϕþ ∂xϕ
⊺V∂xϕÞþ

X
α¼1;2

gα cosðl⊺αϕÞ; ð4Þ

where K ¼ σ30 and V ¼ σ00 (in the uv limit) are 4 × 4
matrixes (where σμν ¼ σμ ⊗ σν denotes the tensor product
of Pauli matrices). The two interaction terms g1, g2 in
Eq. (3) correspond to the cosine terms in Eq. (4) specified
by the vectors l1 ¼ ð1;−2; 1; 2Þ⊺ and l2 ¼ ð2; 1;−2; 1Þ⊺,
respectively. The RG flow with respect to the log-energy-
scale l ¼ − lnΛ is given by [67]

dgα
dl

¼ ð2 − ΔlαÞgα −
1

2

X
lβ�lγ¼lα

gβgγ;

dV−1

dl
¼ 1

2

X
α

g2αðK−1lαl
⊺
αK−1 − V−1lαl

⊺
αV−1Þ; ð5Þ

where Δl ¼ 1
2
l⊺V−1l denotes the scaling dimension of the

vertex operator eil
⊺ϕ. Under the RG flow, the V matrix gets

renormalized to the general form

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21 þ y22

q
σ00 − y1σ10 − y2σ22; ð6Þ

FIG. 4. (a) The evolution of fermion scaling dimension Δψ on
both edges as the interaction strength g approaches the critical
point. The scaling dimension is obtained from the power-law
fitting as in Fig. 3. The horizontal dashed line indicates the free
fermion limit. The gray stripe shows the estimated critical
interaction strength gc with some uncertainty. (b) The solved
scaling dimension for the interaction terms on edge B based on
the scaling dimensions of multiple operators (refer to SM, Sec. III
[66] for details). The horizontal dashed line indicates the marginal
value 2 of Δint, across which the phase transition is expected to
happen.
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where y1, y2 are Luttinger parameters that depend on the
RG scale l. Table I concludes the scaling dimensions of the
fermion, Dirac mass, and Majorana mass operators. We
numerically determine the scaling dimensions of these
operators before the transition (g < gc), by fitting the
power-law exponents of their correlation functions (see
SM Sec. III [66] for details).
From the scaling dimensions, we infer the Luttinger

parameters y1, y2, and calculate the scaling dimen-
sion of the interaction operator Δint ≔ Δl1 ¼ Δl2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21 þ y22

p
− 3y1 − 4y2. The evolution of Δint is shown

in Fig. 4(b), which drops continuously from Δint ¼ 5 at the
free-fermion limit (g ¼ 0) to 2.17� 0.27 at the SMG
transition (g ¼ gc). Although the interaction is perturba-
tively irrelevant at the free-fermion fixed point, finite
strength of the interaction can renormalize the Luttinger
parameter, which reduces its own scaling dimension. Our
numerical result indicates that the SMG transition is
triggered exactly when the interaction scaling dimension
is reduced to marginal Δint ¼ 2, which matches the
mechanism of the Berezinskii-Kosterlitz-Thouless (BKT)
transition. This scenario was also proposed by Tong in a
recent theoretical study [55]. Our numerical study provides
more detailed RG analysis and more solid evidence in
support of the BKT transition scenario.
Conclusion and discussions.—We numerically demon-

strate the lattice regularization of ð1þ 1ÞD chiral fermions
in the 3-4-5-0 model. This is achieved by gapping out the
anomaly-free mirror sector using properly designed inter-
actions via the SMG mechanism, leaving the light sector
gapless. By simulating the lattice model with the DMRG
method, we identify the SMG transition point gc. In the
strong coupling phase (g > gc), we show that the mirror
fermions are gapped without breaking the chiral symmetry,
and the light fermions remain gapless. We numerically
determine the scaling dimension of the interaction operator
before the transition, which evolves continuously from
irrelevant to marginal. This behavior clearly indicates the
BKT nature of the SMG transition in our model. Once the
anomaly-free U(1) symmetry is dynamically gauged, we
expect to obtain a ð1þ 1ÞD lattice chiral gauge theory
coupled to chiral fermions, which could potentially be
simulated by the quantumMonte Carlo method [68], as our

proposed six-fermion interaction in Eq. (3) admits the
following Yukawa decomposition (with site indices omitted
for brevity)

HYuk ¼ ðϕ2
1ψ1ψ3 þ ϕ†

1ψ
†
2ψ4 þ H:c:Þ þ 1

g̃1
ϕ†
1ϕ1

þ ðϕ2
2ψ2ψ4 þ ϕ†

2ψ1ψ
†
3 þ H:c:Þ þ 1

g̃2
ϕ†
2ϕ2; ð7Þ

such that integrating out the Yukawa bosons ϕα reproduces
our interaction at the leading order of gα ∼ g̃2α. Based on the
equivalence between the U(1) anomaly-free and gapping
conditions in ð1þ 1ÞD [26,33], hopefully our work can
prompt future simulations on other ð1þ 1ÞD lattice chiral
fermion–gauge theory models.
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