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Using topology, we unveil the existence of new unidirectional modes in compressible rotating stratified
fluids. We relate their emergence to the breaking of time-reversal symmetry by rotation and vertical mirror
symmetry by stratification and gravity. We stress the role of the Coriolis force’s nontraditional part, induced
by a rotation field tangent to the surface. In contrast with horizontally trapped equatorial waves induced by
the traditional component of the Coriolis force perpendicular to the surface, we find vertically trapped
modes that propagate along interfaces between regions with distinct stratification properties. We show that
such modes are generalized atmospheric Lamb waves whose direction of propagation can be selected by
the nontraditional component of the Coriolis force.
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Introduction.—When breaking time-reversal symmetry,
two-dimensional systems may host unidirectional trapped
modes. This is the case in the quantum Hall effect [1],
plasmas [2,3], and certain photonic crystals [4], when a
magnetic field is applied. Such a symmetry breaking can
also be achieved by taking advantage of rotation effects,
either at a local level through self-propelled particles [5],
gyroscope arrays [6], or curved photonic waveguides [7], or
at a global scale by a background solid-body rotation
through the effect of the Coriolis force [8,9]. Over planetary
scales, atmospheres and oceans are rotating quasi-two-
dimensional fluids, and as such they support the propagation
of various trapped modes in the horizontal plane [10–12].
For such flows, it is customary to retain only the component
of the Coriolis force that involves the projection of the
rotationvector on the local vertical axis, perpendicular to the
fluid, which is encoded by the Coriolis parameter ft (see
Fig. 1). Neglecting the horizontal contribution fnt of the
planetary rotation is referred to as the traditional approxi-
mation [13]. While exact for a truly two-dimensional fluid,
this traditional approximation cannot be justified from first
principles in more comprehensive three-dimensional geo-
physical flows. Thereby, the consideration of nontraditional
effects has been subjected to a resurgence of interest for the
last years [14,15]. Here we report a striking effect due to the
nontraditional contribution of the Coriolis force: When
combined with compressibility and density stratification,
it induces previously unnoticed unidirectional trapped
waves in the fluid.
To reveal the existence of such waves, we apply the

machinery of topology. Topology offers an elegant theo-
retical framework to unveil the existence of robust trapped
waves along boundaries or interfaces, from quantum to
classical wave systems, without having to compute the
detailed spectrum of the inhomogeneous system for a
specific geometry and set of parameters. In the geophysical

realm, this approach sheds new light on various well-
known waves such as equatorial waves [8,16], coastal
Kelvin waves [17], and Lamb waves [18,19]. In the
equatorial case, the interface that traps unidirectional waves
is defined by the change of sign of the traditional
component of the Coriolis parameter ft at the equator.
In contrast, we focus here on a flow taking place in the
vertical plane at the equator (Fig. 1), where this contribu-
tion vanishes, so that the only effect of rotation occurs
through the nontraditional component fnt. This contribu-
tion being constant in that plane, an interface thus cannot be
obtained by rotation effects alone. Instead, we show that an
emergent interface defined by the change of sign of a
stratification parameter involving density gradients, grav-
ity, and nontraditional Coriolis force separates two regions
that behave as if they were topologically distinct, thus
hosting an unidirectional trapped mode.

FIG. 1. Geometry of the planar problem on a rotating planet.
The traditional component ft cancels at the equator, while the
nontraditional term fnt is maximal. Modes are trapped in the
direction z where S ¼ þfnt (or S ¼ −fnt) and propagate along
the zonal direction x.
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Flow model.—To describe the consequence of time-
reversal symmetry breaking by nontraditional Coriolis
effects, we introduce the dynamical equations for adiabatic
perturbations of a compressible fluid initially at rest in a
uniformly rotating frame at rotation rate Ω, say a planet’s
oceanic or atmospheric layer, or a stellar core. We consider
propagation phenomena of small length scales compared
with the typical radius of the planet or star, and define local
Cartesian coordinates (Fig. 1). The medium is assumed to
be inviscid and subjected to a constant gravity −gêz along
the local vertical direction.
The global equilibrium state in the rotating frame has a

vertical stratification of density (and temperature, pressure)
which is characterized by the buoyancy (or Brunt-Väisälä)
frequency NðzÞ [13], which is real and positive as we
assume a stably stratified medium. The local speed of
sound waves, denoted cs, is also assumed to be a function
of z only. To highlight the most salient features induced by
the nontraditional effect of the Coriolis force, we focus on
the dynamics taking place in the vertical equatorial plane
ðx; zÞ (Fig. 1), where the traditional component ft vanishes.
The dynamics is then restricted to a two-dimensional flow
in the ðx; zÞ plane.
We consider the wave dynamics governed by the

primitive equations—conservation of momentum, mass,
and entropy—linearized around the state of rest. By
performing a suitable rescaling of the dynamical fields
with the density profile, those equations can be recast in a
Schrödinger-like matricial form as i∂tψ ¼ Ĥ½z; ∂x; ∂z�ψ ,
with a four-component vector field ψ ¼ ðuwΘpÞt, where
uêx þ wêz is the rescaled perturbation’s velocity field in the
normalized basis ðêx; êzÞ, and Θ and p are the rescaled
perturbed potential temperature and pressure respectively
(see the Supplemental [20]). The wave operator reads as

Ĥ¼

0
BBB@

0 −ifnt 0 −ics∂x

ifnt 0 −iN iS− ic0s
2
− ics∂z

0 iN 0 0

−ics∂x −iS− ic0s
2
− ics∂z 0 0

1
CCCA;

ð1Þ

where c0s stands for the derivative of cs along the vertical
coordinate z, and the stratification parameter SðzÞ is defined
as [19]

SðzÞ ¼ cs
2g

�
N2 −

g2

c2s

�
−
c0s
2
: ð2Þ

This stratification parameter contains all the physical
ingredients breaking the system’s mirror symmetry in the
vertical direction z (gravity g, stratification of density
through N, and nonuniformity of cs), while time-reversal
symmetry is broken only by the constant nontraditional
Coriolis parameter fnt.

Topological properties of the bulk waves.—The physical
model of interest is inhomogeneous in the z direction,
through NðzÞ, SðzÞ, and csðzÞ. However, important spectral
properties of the operator (1), and in particular the existence
of unidirectional trapped modes, can be inferred from the
topology of the eigenmodes Ψn of the much simpler
eigenvalue problem ωnΨn ¼ HΨn with

H ¼

0
BBB@

0 −ifnt 0 cskx
ifnt 0 −iN iSþ cskz
0 iN 0 0

cskx −iSþ cskz 0 0

1
CCCA: ð3Þ

This dual “bulk” problem describes plane-wave solutions
ψðx; z; tÞ ¼ Ψneiðkxxþkzz−ωtÞ of Eq. (1), valid in the case of
an unbounded ðx; zÞ plane, with constant parameters N, S,
and cs. In mathematical terms, the matrix H is called the
symbol of the operator Ĥ, and is bijectively associated to it
through the Wigner-Weyl transform (see the Supplemental
Material [20] and [21,22]). In the general situation (where
the plane is bounded and the parameters are functions of z),
plane waves are not solutions of the problem; however, the
symbol matrix [Eq. (3)] can still be formally defined as a
function of z (through the parameters N, S, and cs) and the
wave vector k ¼ kxêx þ kzêz. For a given triplet ðz; kx; kzÞ,
the symbol matrix H admits four eigenvalues ωn, corre-
sponding to two low-frequency internal-gravity wavebands
(n ¼ �1) and two high-frequency acoustic wavebands
(n ¼ �2), both modified by rotation (see Fig. 2).
Because of the realness of the fields, each eigenvalue ω
of H at ðz; kx; kzÞ is associated with the eigenvalue −ω at
ðz;−kx;−kzÞ. Therefore, it is sufficient to consider positive
frequencies (n ¼ 1, 2) in the following.
Building upon previous topological analysis in geophys-

ics [8,17,19], we expect the existence of unidirectional
trapped modes in the inhomogeneous problem [Eq. (1)]
to be ruled by topological indices of the symbol’s eigenm-
odes Ψn. More specifically, these topological modes are
expected to arise around a typical wave number k⋆x , and to
be trapped around a height z⋆, provided wavebands of
the symbol cross at an isolated point ðz⋆; k⋆x ; k⋆z Þ in the
ðz; kx; kzÞ space. In that case, it is possible to assign
topological charges to such degeneracy points, given by
topological indices called the Chern numbers Cn, that
account for the twisting of the eigenmode bundles around
the band-crossing point in ðz; kx; kzÞ space (see the
Supplemental Material [20]). According to index theorems
[23], we expect a number of Cn trapped modes whose
frequency branches transit toward the waveband n of the
inhomogeneous problem when swapping kx.
The first step of our strategy then consists in identifying

the degeneracy points of the symbol’s eigenvalues. We find
such crossing points between the gravity (n ¼ 1) and the
acoustic (n ¼ 2) wavebands precisely when S ¼ þfnt and
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S ¼ −fnt (Fig. 2), respectively designated with the
� sign in the following paragraphs. Those are located at
ðz⋆; k⋆x ; k⋆z Þ, with k⋆z ¼ 0, k⋆x ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2nt þ Nðz⋆Þ2
p

=csðz⋆Þ
and z⋆ such that Sðz⋆Þ ¼ �fnt: their existence thus results
from the combination of mirror symmetry breaking (due
to S) and time-reversal symmetry breaking (due to fnt).
Since the degeneracy condition depends on z through S
only, one can consider the more convenient parameter
space of ðS; kx; kzÞ to compute the Chern numbers of the
symbol (see the Supplemental Material [20]).
Once the degeneracy points are found out, one needs to

compute the Chern numbers associated to the eigenstate
bundles involved in the waveband crossing. This is a

standard calculation that can always be performed at least
numerically, by means of the integration of a local quantity,
called the Berry curvature [24], over a closed surface
enclosing the degeneracy point in ðS; kx; kzÞ space (see
the Supplemental Material [20]). Actually, since this
degeneracy simply involves a generic conical two-band
crossing point, the possible values of the Chern numbers of
the two eigenstate bundles are known to be opposite and of
absolute value 1 (see, e.g., the appendix of [17]). Therefore,
one can directly infer the existence of one unidirectional
wave, trapped around the interface line z ¼ z⋆ in the
vertical ðx; zÞ plane, that is where the quantity SðzÞ ∓ fnt
changes sign.
Unidirectional modes induced by the nontraditional

Coriolis component.—We then check this prediction numeri-
cally by computing the frequency spectrumof Ĥ for solutions
of the form ψðx; z; tÞ ¼ (ũðzÞ w̃ðzÞ Θ̃ðzÞ p̃ðzÞ)teiðkxx−ωtÞ,
with varying parameters in the vertical direction z. We can
always consider fnt > 0, since the eastward (increasing x)
and westward (decreasing x) directions can be defined with
the direction of planetary rotation. For numerical conven-
ience, we also consider the profile of SðzÞ > 0 depicted in
Fig. 3, that is periodic in z and crosses the value fnt in both an
increasing and a decreasing fashion (the degeneracy point
involved in this numerical simulation is thus the one at
S ¼ þfnt, but a general conclusion is given in the next
paragraph, including for the case S ¼ −fnt), so that we can
discuss, in the same simulation, the two opposite slopes
S0ðz⋆Þ > 0 and< 0 at an interface where SðzÞ − fnt changes
sign. In the case where SðzÞ does not reach the value of the
nontraditional Coriolis parameter fnt, [Fig. 3(a)], there is no
mode that transits between the gravity and the acoustic
waveband, as expected from the topological analysis, since
there is no degeneracy point of the symbol and thereby no
topological charge. In contrast, if the profile of SðzÞ is such
that SðzÞ − fnt changes sign [Fig. 3(b)], a topological charge
arises in the symbol picture at ðz⋆; k⋆x ; 0Þ, and accordingly,

(((((((((((− 11111111111111111111, 11111111111111111))))))))))))))

(1, − 1)

FIG. 2. Degeneracy points (in black) between the positive-
frequency bands (n ¼ þ1 andþ2) of the spectrum of Eq. (3), with
fnt > 0. The pairs of integers indicate the topological charges
ðC1; C2Þ of the two bands involved in a givendegeneracy point. The
insets on the left show their dispersion relations associated with
the green, red, and blue planes in parameter space. We also show
the degeneracy points (gray) between the negative-frequency
bands (not shown on the left), with ðC−2; C−1Þ.
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FIG. 3. Numerical solutions of the eigenvalue problem [Eq. (1)] projected on the Fourier basis—such that ð∂x; ∂tÞ → iðkx;−ωÞ—with
constant sound speed cs, obtained with Dedalus [25]. (a) Spectrum for fnt ¼ 0.1: S does not take the value fnt; no mode transits through
the gap. Nm ¼ minfNðzÞg. (b) fnt ¼ 2: S takes twice the value of fnt; a mode is localized at each interface S ¼ fnt and transits through
the gap around k⋆x . The pressure perturbations’s amplitude jp̃ðzÞj of the topological modes at kx ¼ k0 are plotted with the background
stratification S in green. (c) Plot of the velocity field of the topological modes with wave number k0, with pressure levels in background
(positive values in solid lines and negative in dashed lines).
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a new mode appears in the spectrum of Ĥ around kx ¼ k⋆x .
This mode transits from the internal-gravity waveband to the
acoustic one, so that the number of modes gained or lost by
the two wavebands when sweeping kx is correctly given by
the Chern numbers �1. Such a spectral flow from one
waveband to another implies the sign of the group velocity of
the corresponding wave to be fixed, hence its unidirection-
ality.Wehave also computed the spreadingof thismode in the
z direction and found that it is indeed localized where S − fnt
changes sign (in color in Fig. 3).
The numerical analysis reveals interesting differences

on the nature of the topological trapped modes depending
on the sign of the slope of SðzÞ at the interface where
SðzÞ − fnt changes sign. The corresponding rescaled
velocity fields are shown in Fig. 3(c), and their typical
vertical trapping length around the interface is L⋆ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csðz⋆Þ=jS0ðz⋆Þj

p
[19]: the steeper the slope of S at the

crossing point, the more localized the modes.
If S decreases, a first unidirectional mode appears (red in

Fig. 3). For an interface S ¼ þfnt this mode propagates
westward, lies around k⋆x ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2nt þ Nðz⋆Þ2

p
=csðz⋆Þ, and

transits from the acoustic waveband to the gravity wave-
band (as kx increases around the value k⋆x ) in the positive-
frequency spectrum. For S ¼ −fnt it propagates eastward,
lies around k⋆x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2nt þ Nðz⋆Þ2

p
=csðz⋆Þ, and transits from

the gravity waveband to the acoustic waveband in the
positive-frequency spectrum. In the case where cs is
constant (e.g., in an isothermal ideal gas) this mode is
longitudinal (w ¼ 0) and nondispersive, with dispersion
relation ω ¼ �cskx if Sðz⋆Þ ¼∓ fnt [Fig. 3(b)]. It thus
shares strong similarities with the Lamb-like wave dis-
cussed in Ref. [19] and the equatorial Kelvin wave [8].
However its nature is different: While it is unidirectional
and confined in the vertical direction, the equatorial Kelvin
wave is confined in the meridional direction due to the
gradient of ft, the traditional Coriolis parameter—which
vanishes here—and Lamb-like waves are not unidirectional
because their existence does not rely on time-reversal
symmetry breaking. Therefore this topological mode can
be seen as the rotating counterpart of the Lamb-like waves
in stratified compressible fluids. We have checked that this
wave still exists when cs varies with z, as expected from our
topological analysis, although it becomes dispersive.
If S increases, another unidirectional mode of opposite

spectral flow [i.e., transiting from the gravity waveband to
the acoustic wave band if Sðz⋆Þ ¼ fnt and the other way
round if Sðz⋆Þ ¼ −fnt] appears around k⋆x (blue in Fig. 3).
Contrary to the previous topological mode, this one has a
nonlongitudinal velocity field [Fig. 3(c)]. It is reminiscent
of a zero-group-velocity oscillation at frequency N, modi-
fied by rotation and varying buoyancy frequency NðzÞ.
As their group velocities have the same sign, both modes
propagate in the same direction, that is, westward if
Sðz⋆Þ ¼ þfnt and eastward if Sðz⋆Þ ¼ −fnt.

According to this analysis, a topological transition
occurs when the number of crossings between the vertical
profile SðzÞ and the value �fnt changes, leading to the
appearance or disappearance of unidirectional interface
waves whose frequency branches transit between the
gravity and acoustic wavebands. These modes shall not
be confused with the ones described by Iga [10,11], whose
existence depend on the boundary conditions, nor with
those addressed by Godin [12] who describes an incom-
pressible wave motion solution of the compressible dynam-
ics with a free surface and traditional rotation, whereas
compressibility, nontraditional rotation, and internal inter-
faces are key ingredients of the modes studied in this Letter.
Discussion.—Figure 3 depicts an ideal situation where S

takes the value þfnt and not −fnt. Westward topological
modes are thus allowed to propagate whereas the eastward
ones are not. This shows that rotation selects the direction
of propagation of the Lamb-like waves studied in Ref. [19].
In realistic planetary fluids, fnt is however expected to be
much smaller. On Earth, fnt ≈ 10−4 s−1 remains negligible
compared with the typical values of S in the atmosphere
(≈ − 10−2 s−1), and the trapping length in the ocean is
higher than its typical depth (see the Supplemental Material
of Ref. [19]). Therefore the Earth’s atmosphere and the
oceans are not fit for potential observations of these
topological modes.
Nevertheless, if S changes sign at a given z0, then we

expect the topological modes’ location to be shifted even if
fnt > 0 is small: if S0ðz0Þ < 0, the eastward Lamb-like
mode should be located at z > z0, and the westward one at
z < z0, and conversely if S0ðz0Þ > 0. As far as applications
are concerned, this effect of splitting the topological
modes’ location in the weak rotational regime is a feature
that is more likely to be observed, especially in the
astrophysical context. In fact, possible observations of
Lamb-like waves in asteroseismology (the study of stellar
pulsations) have been previously argued, yet without
discussing the effect of rotation [19,26]. Indeed, using
the model of a polytropic star with constant adiabatic index,
S is a decreasing function of the radius r, that varies from
þ∞ at the center of the star to −∞ at the surface [26]. It
thus cancels at some radius r0 and generically takes both
values �fnt for any rotation rate. Therefore, in rotating
stellar interiors, one can expect a westward Lamb-like
mode closer to the core (r < r0) and an eastward one closer
to the surface (r > r0), thus improving the chance of a
possible direct observation of the latter. These modes are
well separated if fnt is high enough so that the topological
modes do not completely overlap, in other words if the
sum of their respective extension in the radial direction,
L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

cs=jS0j
p

S¼�fnt
, is not high compared with the dis-

tance d separating the interfaces. This could be achieved for
some young stars of the upper main sequence of the
Hertzprung-Russell diagram, which can reach high rotation
rates. For instance, Vega, in the Lyra constellation, has a
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rotation period of about 0.7 days [27], thus fnt ≈
2 10−4 s−1 at the equator, yielding a ratio of order 1
between d and the sum of the trapping lengths.
Conclusion.—Our study shows the essential role of the

nontraditional Coriolis force in the propagation proper-
ties of rotating stratified fluid waves. Thanks to topo-
logical arguments, we have found new unidirectional
waves transiting between the low-frequency gravity and
high-frequency acoustic wavebands, that are trapped
along lines determined by a balanced between rotation
and vertical stratification. The existence of these modes is
robust to perturbations in the stratification profile until
the interface constraint S ¼ �fnt is broken. All salient
features of the two-dimensional case presented in this
Letter can be extended to the three-dimensional case with
full Coriolis force, which will be explained in a
companion paper. The application of this work to aster-
oseismology provides a promising line of research for
future investigations of topological waves in natural
media, in particular in the presence of non-Hermitian
effects induced by dissipation, mean flows, and
convection.
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