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Reaching strong light-matter coupling in solid-state systems has long been pursued for the imple-
mentation of scalable quantum devices. Here, we put forward a system based on a magnetized epsilon-near-
zero (ENZ) medium, and we show that strong coupling between magnetic excitations (magnons) and light
can be achieved close to the ENZ frequency due to a drastic enhancement of the magneto-optical response.
We adopt a phenomenological approach to quantize the electromagnetic field inside a dispersive magnetic
medium in order to obtain the frequency-dependent coupling between magnons and photons. We predict
that, in the epsilon-near-zero regime, the single-magnon single-photon coupling can be comparable to the
magnon frequency for a small magnetic volume and perfect mode overlap. For state-of-the-art illustrative
values, this would correspond to achieving the single-magnon strong coupling regime, where the coupling
rate is larger than all the decay rates. Finally, we show that the nonlinear energy spectrum intrinsic to this
coupling regime can be probed via the characteristic multiple magnon sidebands in the photon power
spectrum.
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In the strong light-matter coupling regime, matter
excitations and photons are reversibly exchanged over
timescales shorter than the typical decay rates [1,2],
allowing the implementation of quantum information pro-
tocols, such as quantum state transfer [3]. Reaching strong
coupling in solid-state systems is particularly relevant for
the design of scalable quantum devices, with semiconduc-
tors a notable example of strong coupling between light and
solid-state excitations [4–6]. Among the different platforms
based on solid-state systems, magnetic dielectrics have
recently emerged as promising materials to incorporate into
hybrid quantum systems, in particular, for magnon-medi-
ated transduction [7,8]. Whereas strong magnon-photon
coupling in the microwave regime is by now routinely
achieved [7–10], state-of-the-art optomagnonic systems
have reached couplings of ∼50 Hz [11–13], which are
considerably smaller than the typical magnon and photon
decay rates, ∼MHz and ∼GHz, respectively. This severely
limits applications in the quantum regime [12,14].
In this Letter, we theoretically show that the long-sought,

single-particle strong coupling regime between magnons

and light can be reached in magnetized epsilon-near-zero
(ENZ) media, where the permittivity ε vanishes for a range
of frequencies, whereas absorption remains low. ENZ
media belong to the broader class of near-zero-index
(NZI) media, in which one or more of the constitutive
parameters approach zero [15–17] and can be realized in
homogeneous [18,19] or structured media [20–22]. In such
systems, nonlinear effects and secondary responses, such as
magneto-optical (MO) effects, can be greatly enhanced
[17,23,24]. ENZ systems have been proposed for designing
compact optical isolators [25], for engineering backscatter-
ing-protected propagation regimes for surface waves
[26,27], and for the enhancement of the transverse MO
Kerr effect [28,29].
In what follows, we develop a Hamiltonian description

for magneto-optical effects at the single-quanta level in
dispersive magnetic dielectrics. We obtain the frequency-
dependent magnon-photon optomagnonic (OM) coupling
Hamiltonian

ĤOM ¼ iℏg½ωc�â†þâ−ðm̂† þ m̂Þ þ H:c:; ð1Þ

between two degenerate optical modes with frequency ωc,

where âð†Þ� and m̂ð†Þ are the bosonic annihilation (creation)
photon and magnon operators, respectively, and show that,
for perfect overlap between the modes, at the epsilon-near-
zero frequency ωENZ
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g½ωENZ� ¼
MZPF

MS
ωENZ; ð2Þ

where MZPF and MS are, respectively, the zero-point
magnetization fluctuations and the saturation magnetiza-
tion. In a cavity setup, this coupling can be comparable to
the magnon frequency, allowing us to reach the single-
magnon strong coupling regime, as we illustrate with a
minimal model for the dispersion. This regime can be
probed by the power spectrum of the light, which exhibits
resonances characteristic of a nonlinear energy spectrum
generated by the strong single-magnon coupling.
We consider the framework of Fig. 1, where light

propagates in a dielectric ferromagnet in the Voigt con-
figuration, perpendicular to the uniform magnetization M
of the medium. Our starting point for the quantization of
the magneto-optical coupling is the energy density for a
monochromatic field with a frequency ωc, Eðr; tÞ ¼
RefEðþÞðr; tÞg ¼ RefEðþÞðrÞe−iωctg, inside of a magnetic
dielectric, which we assume to be homogeneous and such
that absorption can be neglected in the frequency range of
interest. Taking into account the dispersion of the permit-
tivity of the medium, the energy density reads [30,31]

uωc
¼ ε0

4
Eð−Þðr; tÞ · ∂ωc

ðωc ε
↔½ωc;M�Þ · EðþÞðr; tÞ

þ 1

4μ0
Bð−Þðr; tÞ · BðþÞðr; tÞ; ð3Þ

where Bðr; tÞ is the magnetic induction field, and

ε
↔½ωc;M� is the magnetization-dependent permittivity
tensor. This expression for uωc

assumes that the frequency
of the electromagnetic waves is such that ωc ≫ ωm, where
ωm is the frequency of the magnetization oscillations
(∼GHz), which allows a rotating wave approximation
[31]. At these frequencies, we can consider the perme-
ability tensor as dispersionless.
The permittivity tensor has components εij½ω;M� ¼

ε½ω�δij þ iεijkF ½ω�Mk which describe the Faraday effect,
a first-order response in the magnetization, in its off-
diagonal components. The functions ε½ω� and F ½ω� depend
on the dispersion model. The Faraday rotation angle per
length Φ½ω� quantifies the rotation of the polarization of a
linearly polarized electromagnetic wave propagating along
ez and is given by

Φ½ω� ¼ −
ω

c
F ½ω�MS

2n̄½ω� ; ð4Þ

where 2n̄½ω� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε½ω� þ F ½ω�MS

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε½ω� − F ½ω�MS

p
is

the average refractive index.
We decompose the electric field as EðþÞðr; tÞ ¼P
l Clαle−iωctFlðrÞ, where l labels the modes and their

polarization, αl the corresponding mode amplitudes at
t ¼ 0, and Cl the field normalization. FlðrÞ are magneti-
zation-dependent mode functions satisfying

∇ ×∇ × FlðrÞ −
ω2
c

c2
ε
↔½ωc;M� · FlðrÞ ¼ 0; ð5Þ

and ∇ · FlðrÞ ¼ 0, plus appropriate boundary conditions.
For example, in a spherical cavity, those correspond to
nondegenerate whispering gallery modes [32,33]. After
integrating over space, the total energy Uωc

¼ R
d3ruωc

splits into diagonal (D) and nondiagonal (ND) terms in
mode space,

Uωc
¼ UðDÞ

ωc þ UðNDÞ
ωc ; ð6Þ

with UðDÞ
ωc ¼ 1

4

P
l jClj2jαlj2I ll½ωc;M� and UðNDÞ

ωc ¼
1
4

P
l≠l0 α

�
l αl0C

�
l Cl0I ll0 ½ωc;M�. While UðDÞ

ωc yields upon
quantization the usual harmonic oscillator Hamiltonian

for the photon modes, UðNDÞ
ωc results in coupling between

different modes mediated by the magnetization. The
functions I ll0 ½ωc;M� are given by

I ll0 ½ωc;M� ¼
Z

d3r

�
ε0F�

l · ∂ωc
ðωc ε

↔½ωc;M�Þ · Fl0

þ 1

μ0ω
2
c
ð∇ × F�

l Þ · ð∇ × Fl0 Þ
�
: ð7Þ

We work with plane wavelike modes, FlðrÞ ¼
eikl½ωc�·rf l=

ffiffiffiffi
V

p
, where V corresponds to magnetic volume

where the plane waves propagate. The wave equation yields

FIG. 1. (a) Setup: a monochromatic electromagnetic wave
propagates in a magnetized dielectric. The wave vector is
perpendicular to the magnetization (Voigt configuration), which
exhibits small fluctuations around its saturationvalue; (b)Minimal
microscopic model leading to the dispersion of the permittivity
tensor: light drives electric-dipole transitions responsible for the
Faraday effect and the material’s optical response; (c) Permittivity
(12) and (d) Faraday rotation angle (4) as functions of the
frequency for this model of dispersion. At the frequency ωENZ,
ε½ωENZ� ¼ 0, and the Faraday rotation angle is enhanced. Illus-
trative parameters corresponding to a resonance of yttrium iron
garnet with ionic transition frequency ω0 ¼ 2π × 600 THz.
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the Fresnel equation ½K
↔
·K
↔
þ ðω2=c2Þ ε↔ðωc;MÞ� · f l ¼ 0,

where Kij ¼ −ϵijkkl;k. Since we are interested in the
coupling between photons and magnetic excitations, we
consider small fluctuations of the magnetization around its
saturation value, assumed to be along the ez direction:
M ¼ Mzez þMxex þMyey, where Mx;y=Mz ≪ 1,
and we compute all required quantities for quantization,
up to linear order inMx;y=Mz. For simplicity, we consider
a uniformly precessing magnetization (the Kittel mode). In
the Voigt configuration, the wave vector is perpendicular to
the saturation magnetization klkex, and the wave vectors
obtained from the Fresnel equation are

k2þ½ωc� ¼
ω2
c

c2
ε½ωc�; k2−½ωc� ¼

ω2
c

c2

�
ε½ωc�−

F 2½ωc�M2
S

ε½ωc�
�
;

ð8Þ
with the magnetization-dependent mode vectors

fþ ¼ Mx

MS
ex þ

�
iε½ωc�Mx

F ½ωc�M2
S
þMy

MS

�
ey þ ez;

f− ¼ −i
F ½ωc�
ε½ωc�

MSex þ ey þ
�
iε½ωc�Mx

F ½ωc�M2
S
−
My

MS

�
ez; ð9Þ

where we used Mz ∼MS. These results are valid for
homogeneous and unbounded media, or for a Fabry-Pérot
cavity configuration, where the boundary conditions
impose discrete wave vectors k�½ωc� ¼ 2πn=L where L
is the cavity length.
In order to quantize Eq. (6), first, we fix Cl such that

UðDÞ
ωc ¼ 1

2

P
l jαlj2 and, then, promote the field amplitudes

to bosonic operators via αl →
ffiffiffiffiffiffiffiffiffiffiffi
2ℏωc

p
âl, yielding UðDÞ

ωc →
ĤðDÞ ¼ P

l ℏωcâ
†
l âl plus a zero-point energy term. The

normalization constants are functions of the saturation
magnetization Cm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=Imm½ωc;MS�
p

, given by

Cþ½ωc� ¼ ðε0f∂ωc
ðωcε½ωc�Þ þ ε½ωc�g=2Þ−1=2;

C−½ωc� ¼
�
ε0

��
1þ F 2½ωc�M2

S

ε2½ωc�
�
∂ωc

ðωcε½ωc�Þ

− 2
F ½ωc�
ε½ωc�

∂ωc
ðωcF ½ωc�ÞM2

S

þ jε½ωc� −
F 2½ωc�M2

S

ε½ωc�
j
�
=2

�
−1=2

: ð10Þ

This quantization procedure incorporates dispersion in a
Hamiltonian formulation [34] and reproduces results from
Lagrangian-based approaches [35,36] for frequencies far
away from any absorption resonance. It has been applied to
describe emission in negative index media [37] and
perturbative and nonperturbative dynamics in the NZI
regime [38,39].
The optomagnonic Hamiltonian is obtained from UðNDÞ

ωc .
For the optical modes, we use the aforementioned

quantization, while for the magnetic excitation, we consider
the Holstein-Primakoff transformation [40], up to first
order in the magnon operators: Mx → MZPFðm̂† þ m̂Þ,
where m̂ð†Þ is the magnon annihilation (creation) bosonic
operator and MZPF ¼ ðγℏMS=2VÞ1=2 describes the zero-
point fluctuations of the magnetization with γ the gyro-
magnetic ratio. The Hamiltonian obtained by this procedure

UðNDÞ
ωc → ĤOM is given by Eq. (1) with the frequency-

dependent optomagnonic coupling constant

g½ωc� ¼
ωc

2
ε0MZPFΞCþ½ωc�C−½ωc�

×

�
F ½ωc�
ε½ωc�

∂ωc
ðωcε½ωc�Þ − ∂ωc

ðωcF ½ωc�Þ
�
; ð11Þ

where Ξ is a mode-overlap factor which also accounts for
momentum conservation. For the case of plane-wave
optical modes coupled to the Kittel mode, the overlap is
imperfect and, thus, reduces the coupling rate. Our for-
malism can be extended to describe the coupling with
nonuniform magnon modes, such as those studied in
[41,42], which yields improved mode overlap. For those
cases, a factor ∇ ×M needs to be included in Eq. (5). The
quantized Hamiltonian of Eq. (1) describes the usual
parametric coupling between two photon modes and the
magnon quadrature [43,44], but including dispersion. The
coupling Eq. (11) is valid for degenerate optical modes at
frequencies such that ε½ω� ≥ 0. Generalizations are dis-
cussed in [31]. For a frequency ωENZ at which ε → 0,
Eq. (11) yields Eq. (2), which is independent from the
model of the dispersion, as long as F 2½ωENZ� and
∂ωðF 2½ω�ÞjωENZ

do not diverge [31]. The specific dispersion
model defines the value of ωENZ and for large zero-point
fluctuations of the magnetization, g½ωENZ� can be of the
order of the magnon frequency, putting such ENZ opto-
magnonic systems in the single-magnon strong coupling
regime. Equations (11) and (2) are general and only assume
the plane wavelike modes for the waves in the Voigt
configuration. The Cotton-Mouton effect can be included,
taking into consideration quadratic magnetization terms in
the permittivity tensor. Those can generate interference
effects that modify the coupling [45].
In dielectrics, the Faraday effect is due to electric-dipole

transitions between a group of ground states and a group of
excited states with broken degeneracy due to perturbations
included in the microscopic Hamiltonian, e.g., spin-orbit
coupling, crystalline field and Zeeman interaction [46–48].
In this minimal model, the dispersion of the permittivity
tensor is given by a Lorentz-like model for which

ε½ω� ¼ 1þ ω2
0ðε̄ − 1Þ

ðω2
0 − ω2Þ − iηω

;

F ½ω� ¼ A3ωω0

ðω2
0 − ω2 − iηωÞ2 ; ð12Þ
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where ω0 is the resonance frequency for the ionic tran-
sitions in absence of perturbations, and ε̄ is the permittivity
for ω ≪ ω0. The factor η takes into account absorption and
is required by causality. Absorption and losses can hinder
NZI effects, a drawback prominent in metallic systems
[17,49] that is mitigated in dielectrics [50–52]. The quantity
A3 depends on products of elements of the electric dipole
transition matrix and on the spin-orbit coupling. The model
assumes that the ground states have zero orbital angular
momentum (such as S states). This corresponds, for
example, to Feþ3 ions in yttrium-iron garnet (YIG), in
which the off diagonal terms of the permittivity tensor have
their larger contribution due to spin-orbit coupling [46].
Otherwise, similar dispersion models for the permittivity
tensor describes the behavior of magnetized plasmas [53],
doped dielectrics [54], and gyrotropic layered structures
[55]. For a low-loss medium with η ≪ ω0, the permittivity
vanishes at ωENZ ¼ ω0

ffiffiffī
ε

p ð1 − η2=2ω2
0Þ.

We take illustrative values of the relevant parameters
corresponding to absorption lines of YIG, which exhibits
several absorption lines for wavelengths between 400
and 900 nm [56]. The broad and strong absorption lines
around ∼500 nm are related to ionic transitions of the
octahedrally oriented Fe3þ ions, which gives the
stronger contribution to the Faraday effect. Thus, as
the resonance frequency, we take ω0 ¼ 2πc=ð500 nmÞ∼
2π × 600 THz. The other parameters for YIG are ε̄ ∼ 4.9
and AYIG

3 ∼ −2.25 × 1022 rad2 Hz2 m=A [46]. In our single-
resonance model, the coefficient η in Eq. (12) correspond-
ing to the absorption coefficient of YIG at 1.2 μm [56,57] is
η=ω0 ∼ 10−6. Therefore, close to the ENZ frequency, the
term ∝ η2=ω2

0 ∼ 10−12 can be safely discarded. Such a
value for η is very optimistic, typically in polar dielectrics
for ENZ applications η=ω0 ∼ 0.03–0.1 [58].
In Fig. 2, we show the wave vectors k� from Eq. (8) and

the optomagnonic coupling g½ωc� as a function of the
photon frequency for frequencies close to the ENZ fre-
quency. We assume a magnetic volume ∼ðμmÞ3 and, for
illustration purposes, perfect mode overlap Ξ ¼ 1. For
frequencies smaller than ωENZ, kþ is purely imaginary
for ε < 0 and, thus, does not propagate, while k− has a real
part near ωENZ. For ε > 0 and frequencies larger than the
ENZ frequency, there is a region where k− is purely
imaginary. This can be exploited for ENZ-based perfect
optical isolation [25]. We notice a divergence of k− at ωENZ

due to the term ∝ F 2=ε. For the illustrative values
considered in this work, Eq. (2) gives g½ωENZ�∼
2π × 10 GHz, a value 5 orders of magnitude larger than
the optimal theoretical coupling in the near infrared [43]
and 9 orders of magnitude larger than the state-of-the-art
optomagnonic systems g ∼ 50 Hz [11,13]. For a ∼ðμmÞ3
volume device operating at ω ¼ ð1þ 2 × 10−6ÞωENZ, we
estimate a reduction of 65% of the coupling due to
imperfect overlap.

The magnon-photon coupling close to ωENZ is compa-
rable to the magnon frequency g½ωENZ� ∼ ωm for the
dispersion model we consider, putting the system in the
single-magnon strong coupling regime. In general, for a
given medium, ðMZPF=MSÞωENZ > ωm imposes a con-
straint on the volume. Therefore, using a cavity to confine
the modes to small volumes serves to boost the value of the
coupling. Such effects can be probed in a driven cavity
system via the power spectrum of the light, which exhibit
resonance peaks and a frequency shift not present for weak
coupling [59,60]. To analyze such fingerprints, we consider
the Hamiltonian

Ĥ
ℏ
¼ ωcðâ†þâþ þ â†−â−Þ þ ωmm̂†m̂

þ ig½ωc�ðâ†þâ− − â†−âþÞðm̂† þ m̂Þ: ð13Þ

The eigenenergies of Eq. (13) are obtained by a change of
basis for the photon modes, defining the degenerate modes
â1;2, and a two-mode polaron transformation yields the
energy spectrum En1;n2;nm=ℏ ¼ ωðn1 þ n2Þ − ðg2=ωmÞ×
ðn1 − n2Þ2 þ ωmnm, where n1;2;m are positive integers [31].
We assume that mode â1 is coherently driven (DR) and

consider its spectrum S1½ω� ¼
R
dthâ1ðtÞâ†1ð0Þie−iωt. In the

single-magnon strong coupling regime, linearization of
the Hamiltonian Eq. (13) is not adequate to completely
describe the system. Thus, to obtain S1½ω�, we resort to

FIG. 2. (a)Wavevectors of the planewavemodes k�½ω� given by
Eq. (8) as a function of the frequency close to ENZ point. Close to
the ENZ point, only one of the modes propagates; (b) Correspond-
ing optomagnonic coupling given by Eq. (11) as a function of the
frequency close to the ENZpoint. The inset depicts an enlargement
around ωENZ, showing the coupling enhancement. Illustrative
parameters for YIG as discussed in the text and in correspondence
with Fig. 1. Frequency in units of the ionic transition frequency
ω0 ¼ 2π × 600 THz, wave vectors in units of ω0=c, and coupling
in units of the magnon frequency ωm ¼ 2π × 10 GHz.
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numerical simulations of the Lindblad master equation for
the density matrix ρ of the system

_ρ ¼ i
ℏ
½ρ; Ĥ þ ĤDR� þ

X
i¼�

κiD½âi�ρþ γD½m̂�ρ; ð14Þ

where the dissipation superoperator is D½Ô�ρ ¼ ÔρÔ†−
fÔ†Ô; ρg=2. We have assumed that the photons and the
magnon baths are at zero temperature, and added the
coherent driving of mode 1: ĤDR ¼ iℏΩðâ1eiωDt−
â†1e

−iωDtÞ, where Ω is the driving amplitude and ωD is
the driving frequency, which we set to ωc (mode 1 is driven
at resonance). We focus our attention on a weakly driven
system, Ω ≪ ωm, to keep the size of the Hilbert space used
in the simulations tractable [61].
The power spectrum S1½ω� is depicted in Fig. 3 as a

function of the frequency ωc − ω, for an optical decay rate
κ1 ¼ 2π × 1 GHz. The peaks observed for ωc ∼ ωENZ, a
regime in which both g ∼ ωm and g > κ, are fingerprints of
the strong magnon–photon coupling not captured in a
linearized model. The first peak occurs at ω ¼ ωc − g2=ωm
and corresponds to a transition from 0 to 1 photon state with
frequency shifted by the strong optomagnonic coupling.
The other peaks are equally spaced by about ∼ωm and
correspond to processes creating magnons. Such behavior
for S1½ω� at zero temperature is exclusively due to quantum
effects of the single magnon strong coupling regime. At
finite temperature, peaks at frequencies < ωc − g2=ωm

would appear, indicating a finite probability for the
absorption of a magnon by a photon.
The features displayed by the power spectrum depend on

the cavity quality factor. The peaks displayed by S1 would
be suppressed by the cavity linewidth if κ1 > g½ωc�. Such a
decay rate includes both radiative decay and intrinsic decay,
related to absorption. As discussed above, in our model and
for our illustrative parameters, absorption is small close to
the ENZ frequency and was disregarded in the quantization
procedure. For bulk media, the additional resonances
related to other ionic transitions introduce more losses,
which can hinder the ENZ behavior [49]. Therefore, such
systems require design and optimization, for example, in
combination with plasmon-polariton systems and with
structured media to minimize absorption. For our param-
eters, the condition κ1 < g½ωENZ� requires quality factors
> 106 for an optomagnonic device operating at the ENZ
frequency. The cavity power spectrum can be measured in a
homodyne experiment with the output light field from the
cavity. Such a measurement would also require the magnon
mode to be close to its ground state to minimize thermal
noise, requiring temperatures of ∼70 mK for magnons
with frequency of 10 GHz, which can be achieved with a
dilution fridge.
To summarize, we have obtained the frequency-

dependent optomagnonic coupling, which includes
dispersion of the permittivity of the dielectric, and we
have shown that the optomagnonic coupling close to the
ENZ frequency is greatly enhanced, becoming comparable
to the frequency of the magnon. Optomagnonic strong
coupling effects are prominent in systems with a high
quality factor, and can be measured via the light power
spectrum. Alternative measurements of the strong coupling
include modifications of the magnon induced transparency
[44,62] and the counting statistics of the optical field [59].
Strong magnon-photon coupling can allow applications
such as efficient optical cooling of magnons [63] and all-
optical generation of quantum states of the magnetization
[64]. Furthermore, the bulk medium dispersion considered
in this work can be combined with geometrical dispersion
or with structured media to tailor the ENZ response [15,17].
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