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The transition frequency of ðn;lÞ ¼ ð17; 16Þ → ð16; 15Þ in pionic helium-4 is calculated to an accuracy
of 4 ppb (parts per billion), including relativistic and quantum electrodynamic corrections up to OðR∞α

5Þ.
Our calculations significantly improve the recent theoretical values [Hori et al., Phys. Rev. A 89, 042515
(2014)]. In addition, collisional effects between pionic helium and target helium on transition frequencies
are estimated. Once measurements reach the ppb level, our Letter will improve the value of the π− mass by
2–3 orders of magnitude.
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Pionic helium πHeþ is an exotic three-body atomic
system that consists of a helium nucleus, an electron, and
a negatively charged π− meson. This system can be
formed by a negative pion that is stopped and then
replaces one of the electrons in a helium atom. If it
occupies a nearly circular orbit n ∼ lþ 1 with n ∼ 16, it
forms a long-lived state that can be studied by methods of
precision laser spectroscopy. The principal motivation of
studying this three-body pionic helium is to deter-
mine the pion mass at the ppb level. The basic idea is that,
since the sensitivity coefficient η of a transition fre-
quency ν to the π− mass mπ can be expressed as
η ∼ ðδν=νÞ=ðδmπ=mπÞ, which is 1.88 for the transition
ðn;lÞ ¼ ð17; 16Þ → ð16; 15Þ, if this frequency can be both
measured and calculated to an accuracy of ppb level, one
can derive a value ofmπ at a similar ppb level. Such a high
precision value of mπ can impose direct experimental
constraints on the mass of the antineutrino of muon
flavor [1]. Currently, the most precise value of π− mass
ismπ ¼ 273.13244ð35Þme at 1.3 ppm determined by x-ray
wavelength measurements for transitions in π−-mesonic
atoms [2–4], where the precision is mainly limited by
large line widths [5].
Recently, significant progress has been made in experi-

ments confirming the existence of πHeþ by detecting
the ð17; 16Þ → ð17; 15Þ transition at the frequency of
183760 GHz at Paul Scherrer Institute (PSI) [6]. However,
for this transition the line broadening about 100 GHz due to
atomic collisions prevents experiments from achieving higher
precision. Therefore, the PSI team plans to search for a
narrower transition ð17; 16Þ → ð16; 15Þ, which may poten-
tially improve the accuracy by at least three orders of
magnitude at ppb level [6–8].

The purpose of this Letter is to present the quantum
electrodynamic (QED) calculations of some important
transition frequencies in π4Heþ. Special attention will be
paid to the ppb-level experiments planned by PSI on the
ð17; 16Þ → ð16; 15Þ transition. This level of accuracy
requires not only the leading-order relativistic and QED
corrections of R∞α

2 and R∞α
3 (R∞ is the Rydberg constant

and α is the fine structure constant) that have been
previously evaluated [1], but also the higher-order terms
of R∞α

4 and R∞α
5 that have never been calculated for

π4Heþ. In addition, the collisional frequency shifts for
some transitions, including ð17; 16Þ → ð16; 15Þ, are esti-
mated for the first time, providing useful information for
future high-precision experiments. Atomic units (a.u.) are
used throughout unless otherwise stated. In order to
facilitate a comparison with the previous calculations in
Ref. [1], the same masses of π− and 4He nucleus are used:
mπ ¼ 273.1320me [9,10] and mα ¼ 7294.2995361me [10]
without considering their uncertainties.
According to the theory of nonrelativistic QED

(NRQED) [11–13], an energy level of pionic helium can
be expanded in powers of the fine structure constant α

E ¼ Eð0Þ þ Eð2Þ þ Eð3Þ þ Eð4Þ þ Eð5Þ þOðα6Þ; ð1Þ

where EðnÞ is the contribution of order R∞α
n that may

include powers of ln α. Each term of EðnÞ can be written as
an expectation value of some effective Hamiltonian.
Eð0Þ in Eq. (1) is the eigenvalue of the nonrelativistic

Hamiltonian Hð0Þ ¼ T þ V, where the kinetic and
potential energy operators, in the center of mass frame,
are respectively [14]
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T ¼ 1

2μ1
p2
1 þ

1

2μ2
p2
2 þ

1

m0

p1 · p2; ð2Þ

V ¼ z0z1
r1

þ z0z2
r2

þ z1z2
r12

; ð3Þ

where the helium nucleus is taken as the zeroth particle
sitting at the origin of the reference frame, indices 1 and 2
are designated, respectively, for the electron and pion, μ1
and μ2 are their reduced masses with respect to the helium
nuclear mass m0, z0, z1, and z2 are the charges of the three
particles, and r12 ¼ r1 − r2.
Since pion-excited states in πHeþ are embedded

in the electron continuum, these states are quasi-bound

ones against Auger decay. Here we use the method of
complex coordinate rotation (CCR) [15] to determine the
complex eigenvalues of the rotated Hamiltonian

Hð0Þ → Hð0ÞðθÞ ¼ T expð−2iθÞ þ V expð−iθÞ; ð4Þ

under r → r expðiθÞ, where the rotational angle θ is real
and positive. Computational details can be found in
Ref. [16] and see Supplemental Material [17].
Eð2Þ is the expectation value of the spin-independent

Breit-Pauli Hamiltonian [21]

Hð2Þ ¼ α2
�
−

p4
0

8m3
0

−
p4
1

8m3
1

−
p4
2

8m3
2

−
π

2
z0z1δðr1Þ −

π

2
z1z2δðr12Þ −

z0z1
2m0m1

�
p0 · p1

r1
þ r1 · ðr1 · p0Þp1

r31

�

−
z0z2

2m0m2

�
p0 · p2

r2
þ r2 · ðr2 · p0Þp2

r32

�
−

z1z2
2m1m2

�
p1 · p2

r12
þ r12 · ðr12 · p1Þp2

r312

��
; ð5Þ

where p0 ¼ −p1 − p2. For the nonrecoil part of Hð2Þ, in
order to obtain enough significant digits, we not only apply
the complex rotated wave functions but also apply the
global operator method [22] to deal with more singular
operators such as p4

1, δðr1Þ, and δðr2Þ. For the recoil part, it
is sufficient to only use the closed-channel method [23]. It
should be mentioned that in the work of Hori et al. [1], only
the nonrecoil part of Hð2Þ is considered by treating the
electron in the field of two massive particles. This adiabatic
approximation to the leading relativistic correction can
cause an error of hundreds of ppb in the final transition
frequency.
Moreover, the finite size correction of He2þ and π−

should be considered [24]:

Eð2Þ
nuc¼2πz0ðR0=a0Þ2

3
hδðr1Þiþ

2πz2ðR2=a0Þ2
3

hδðr12Þi; ð6Þ

where R0 is the root-mean-square (rms) radius of the
nuclear charge distribution of He2þ and R2 is for π−,
which are R0 ¼ 1.6757ð26Þ [25] and R2 ¼ 0.659ð4Þ fm
[3]. This correction is included in Eð2Þ:

Eð2Þ ¼ hHð2Þi þ Eð2Þ
nuc: ð7Þ

Eð3Þ is the leading radiative contribution of R∞α
3, which

can be expressed as [26–29]

Eð3Þ ¼ 4α3

3m2
1

�
− lnα2 − βðn;lÞ þ 19

30

�
½z0hδðr1Þi þ z2hδðr12Þi� þ

2α3

3m1

�
− lnα− 4βðn;lÞ þ 31

3

��
z20
m0

hδðr1Þi þ
z22
m2

hδðr12Þi
�

−
14α3

3m1

�
z20
m0

Q1 þ
z22
m2

Q12

�
; ð8Þ

where Q1 and Q12 are the Araki-Sucher terms [30,31] for
He2þ − e and π− − e pairs, respectively. Equation (8)
should, in principle, also include the terms involving
hδðr2Þi and the Araki-Sucher term Q02 between the helium
nucleus and pion. However, since the pionic helium is a
quasiadiabatic system [32], and also the pion is in a circular
orbital ðn;lÞ with high l ∼ 14–16, hδðr2Þi can be effec-
tively assumed to be zero. In fact, the pion in πHeþ is about
20 times slower than the electron for the states under
consideration. The contribution from Q02 is also negligible

due to the prefactor 1=ðm0m2Þ of two heavy particles.
Finally, Eq. (8) contains the Bethe logarithm defined by

βðn;lÞ ¼ hJðHð0Þ − Eð0ÞÞ ln½ðHð0Þ − Eð0ÞÞ=R∞�Ji
h½J; ½Hð0Þ; J��=2i ; ð9Þ

where J is the electric current density operator of the
system [28]. Here βðn;lÞ is evaluated for states of π4Heþ
using the advanced Schwartz approach [33,34] to improve
the previous calculations of Ref. [1] that use the adiabatic
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effective potential. For the ð17; 16Þ → ð16; 15Þ transition,
our results are βð17; 16Þ ¼ 4.428 69ð3Þ and βð16; 15Þ ¼
4.457 87ð3Þ, which reduce the uncertainty of the Eð3Þ
contribution to 0.5 MHz.
The R∞α

4-order contribution contains relativistic and
radiative corrections

Eð4Þ ¼ Eð4Þ
rel þ Eð4Þ

rad: ð10Þ

In the above,

Eð4Þ
rel ¼ hHð4Þi þ hHð2ÞQðEð0Þ −Hð0ÞÞ−1QHð2Þi; ð11Þ

where Q is the projection operator, Hð4Þ is the R∞α
4-order

effective Hamiltonian for one-electron system

Hð4Þ ¼ α4
�

p6
1

16m5
1

þ ð∇1VÞ2
8m3

1

−
3π

16m4
1

ðp2
1ρþ ρp2

1Þ

þ 5

128m4
1

ðp4
1V þ Vp4

1Þ −
5

64m4
1

ðp2
1Vp

2
1Þ
�
; ð12Þ

and ρ ¼ ∇2
1V=ð4πÞ. The calculation of Eð4Þ

rel has been
performed in the two-center adiabatic approximation
[35]. The obtained effective potential is averaged over
the radial wave function of a particular state to obtain a final
result.The correction due to the vibration is obtained using
adiabatic approximation as Eq. (8b) of Ref. [36]. The
R∞α

4-order radiative correction can be taken in the external
field approximation [24]. Following Ref. [37], one has

Eð4Þ
rad ¼ α4

4π

m2
1

��
139

128
−
ln 2
2

þ 5

192

�
½z20δðr1Þ þ z22δðr12Þ�

−
1

4π2

�
2179

648
þ 10

27
π2 −

3

2
π2 ln 2þ 9

4
ζð3Þ

�

× ½z0δðr1Þ þ z2δðr12Þ�
�
: ð13Þ

The dominant part of order R∞α
5 contribution for the

electron bounded by the He2þ − π− two-center electrostatic
field is [24,38]

Eð5Þ ¼ Eð5Þ
se þ Eð5Þ

2loop; ð14Þ

where

Eð5Þ
se ¼ α5

��
A61 ln

1

ðz0αÞ2
þ A60 − ln2

1

ðz0αÞ2
�
z30hδðr1Þi

þ
�
A61 ln

1

ðz2αÞ2
þ A60 − ln2

1

ðz2αÞ2
�
z32hδðr12Þi

�
;

ð15Þ

and

Eð5Þ
2 loop ¼

α5

π
B50z20hδðr1Þi: ð16Þ

Here state independent coefficients A61 ¼ 5.419 [39],
A60 ¼ −30.924 [40], and B50 ¼ −21.556 [41,42] are taken
from the atomic hydrogen ground state calculations.
Although the contribution of this order can be evaluated
using the Schwartz approach for the relativistic Bethe
logarithm [43,44], the above approximation is sufficient
to achieve a precision of ppb level.
Table I presents nonrelativistic energies and their asso-

ciated widths, as well as the expectation values of operators
of p4

1, δðr1Þ, and δðr12Þ for some metastable states with
possible large populations in experiments (though the
distribution of occupancy numbers of mesons captured by
atoms in experiments is not clear). Our results are in
agreement with the previous ones [1]. As can be seen from
the table, the resulting accuracy for narrower-width states is
generally higher than for wider-width states, and the
calculations also favor those with smaller vibrational quan-
tum numbers ν ¼ n − l − 1. Nonetheless, for the particular
states of (17,16) and (16,15), the nonrelativistic energies are
accurate to few parts in 1015 and 1013, respectively, which far
exceeds our target accuracy of the ppb level.
Table II lists our theoretical transition frequencies for

some transitions in π4Heþ, and comparison with available
data. Table II also lists theoretical collisional shifts of
frequencies due to the long-range interaction between
π4Heþ and He. For ð17; 16Þ → ð16; 15Þ in particular, we
also display all the nonrelativistic and QED contributions
up to R∞α

5. Compared to the values of Hori et al. [1], our
calculations not only have significantly improved their
leading-order relativistic and radiative corrections, but also
have included, for the first time, the higher-order correc-
tions of the R∞α

4 term, obtained within the adiabatic
approximation, and the R∞α

5 term, which contributes to
the final transition frequency at 140 and 14 ppb, respec-
tively, with their uncertainty being 2.8 ppb. For the
experimentally confirmed transition ð17; 16Þ → ð17; 15Þ
[6], there is a 78(8) GHz difference from our value, which
is roughly in agreement with the estimation based on the
binary collision theory of spectral line shape [45]. In fact, at
the density of helium target 2.18 × 1022 cm−3 used in the
PSI experiment [6], the blueshift estimated by the theory is
between 96 and 142 GHz. A rigorous calculation of
collisional effects may be done by treating π4Heþ-He as
a six-body system using Gaussian basis sets [46,47] so that
both short- and long-range interactions can be taken into
consideration, which is very difficult and requires large
computational efforts. As shown in Table II, when the
target helium density is as low as 2 × 1018 cm−3, where the
short-range interaction may be neglected, the collisional
shifts can be estimated using our long-range dispersion
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coefficients C6 [48] of π4Heþ-He, which are well below the
ppb level.
In summary, we have greatly improved the accuracy of

the transition frequency of ð17; 16Þ → ð16; 15Þ in π4Heþ by
including the relativistic and QED corrections up to R∞α

5,
at the ppb level. Combined with future measurements of a
similar level of precision, our result can be used to derive an
atomic physics value of the π− mass that is more accurate
than the current value by 2–3 orders of magnitude.
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