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Collider experiments often exploit information about the quantum numbers of final state hadrons to
maximize their sensitivity, with applications ranging from the use of tracking information (electric charge)
for precision jet substructure measurements, to flavor tagging for nucleon structure studies. For such
measurements, perturbative calculations in terms of quarks and gluons are insufficient, and nonperturbative
track functions describing the energy fraction of a quark or gluon converted into a subset of hadrons (e.g.,
charged hadrons) must be incorporated. Unlike fragmentation functions, track functions describe
correlations between hadrons and therefore satisfy complicated nonlinear evolution equations whose
structure has so far eluded calculation beyond the leading order. In this Letter, we develop an understanding
of track functions and their interplay with energy flow observables beyond the leading order, allowing them
to be used in state-of-the-art perturbative calculations for the first time. We identify a shift symmetry in the
evolution of their moments that fixes their structure, and we explicitly compute the evolution of the first
three moments at next-to-leading order, allowing for the description of up to three-point energy
correlations. We then calculate the two-point energy correlator on charged particles at Oðα2sÞ, illustrating
explicitly that infrared singularities in perturbation theory are absorbed by moments of the track functions
and also highlighting how these moments seamlessly interplay with modern techniques for perturbative
calculations. Our results extend the boundaries of traditional perturbative QCD, enabling precision
perturbative predictions for energy flow observables sensitive to the quantum numbers of hadronic states.
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Introduction.—The fundamental problem in collider
experiments is understanding how the observed distribution
of energy (energy flow) is carried by states of the under-
lying theory. For quantum chromodynamics (QCD), energy
is carried by collimated sprays of hadrons, called jets. The
energy flow within jets, referred to as jet substructure [1–3],
has come to play a central role in modern collider experi-
ments with wide-ranging applications from searches for
new physics and studies of QCD in the vacuum at the LHC,
to investigations of QCD in the medium produced by
heavy-ion collisions, to future studies of nucleon structure
at the electron-ion collider (EIC) [4–6].
Understanding energy flow in confining theories such as

QCD is particularly difficult because the microscopic
degrees of freedom (the quarks and gluons, with which
we can perform calculations using well-developed

perturbative techniques) are different from the nonpertur-
bative asymptotic states (baryons and mesons) observed in
the detector. In the absence of nonperturbative techniques
for computing Lorentzian observables with real-time evo-
lution, the traditional approach has been to focus on a
restricted set of questions about the energy flow that can be
computed in perturbation theory. The famous theorems of
Kinoshita [7] and Lee and Nauenberg [8] ensure that this is
possible if one considers the energy flow summed over the
quantum numbers of all possible final states. For such
inclusive observables, there has been remarkable theoreti-
cal progress, driven both by advances in perturbative
quantum field theory and by the development of more
sophisticated techniques for the resummation of higher-
order corrections in singular regions of phase space.
However, there are many interesting cases in modern

collider experiments that require an understanding of
energy flow on particular subsets of hadrons. For example,
many state-of-the-art jet substructure measurements [9–
13], as well as measurements of fragmentation [14–20], are
performed on charged hadrons. This allows one to exploit
the exceptional angular resolution of tracking detectors, as
well as suppress pileup contamination, leading to more
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precise measurements. The ability to perform calculations
on charged particles therefore increases the precision with
which measurements can be performed in complicated
hadronic environments. As another example, in deep
inelastic scattering experiments such as HERA and the
upcoming EIC, measurements of energy flow on flavored
(e.g., strange) hadrons allow one to tag the initial state,
providing new insight into nuclear structure [5,6]. New
theoretical techniques are therefore required to go beyond
the paradigm of fully inclusive energy flow observables.
In this Letter we show that nonperturbative track

functions [21,22] can be used to extend recent progress
in perturbative calculations to observables measured on
subsets of final-state hadrons. We focus on a specific class
of observables, the N-point energy correlators, which
characterize correlations in energy flow. We will show
that these observables are particularly advantageous for
interfacing with track functions, as they only require the
knowledge of the ≤ Nth moments of the track functions,
instead of their full functional form. We show that the
moments of the track function exhibit a shift symmetry,
which significantly simplifies the structure of their evolu-
tion, and we present a method for computing their
renormalization group equations (RGEs), along with
explicit results for the first three moments at next-to-
leading order. We then perform a complete calculation
of the two-point energy correlator at Oðα2sÞ, explicitly
verifying that the infrared poles are as predicted by the
track function evolution and establishing for the first time
the consistency of the track function formalism beyond
leading order. This calculation also illustrates how
moments of track functions interface with modern tech-
niques for perturbative calculations. This opens the door to
a wide variety of new calculations and enables powerful
perturbative calculations to also be applied to obtain
predications for certain nonperturbative measurements.
Energy correlation functions.—Energy flow in collider

experiments is characterized by correlation functions,
hEðn⃗1ÞEðn⃗2Þ � � � Eðn⃗kÞi, of energy flow operators [23–
30], where the unit vectors n⃗i specify directions. These
correlation functions can be computed in perturbation
theory and are known explicitly for the two- [29,31–35]
and three-point correlators [36]. They have recently
received extensive theoretical interest from a variety of
communities [27–30,35–53]. In this Letter, we will empha-
size another remarkable feature of these observables,
namely, their simple interplay with nonperturbative track
functions.
Assuming that the theory exhibits noninteracting asymp-

totic states, we can define a restricted energy flow ope-
rator ERðn⃗Þ that only measures the energy flow associated
with states with certain quantum numbers. For example,
R can be the set of electrically charged hadrons. One can
then consider the corresponding correlation function
hERðn⃗1ÞERðn⃗2Þ � � � ERðn⃗kÞi. This correlation function

cannot be computed purely in perturbation theory; how-
ever, it can be computed using moments of track functions,

hERðn⃗1ÞERðn⃗2Þ���ERðn⃗kÞi
¼

X
i1;i2;…;ik

Ti1ð1Þ���Tikð1ÞhEi1ðn⃗1ÞEi2ðn⃗2Þ���Eikðn⃗kÞi: ð1Þ

Here ia ¼ g; u; ū; d;… denote parton flavors and Tiað1Þ is
the first moment of the corresponding track function,
discussed below. For simplicity we have not explicitly
written contact terms. Their inclusion involves higher
moments of the track functions, whose evolution is a focus
of this Letter. This formula should be thought of as a
timelike analog of the factorization into a partonic cross
section and parton distribution functions (PDFs) for collid-
ing protons. The precise definition of the operators Ei1ðn⃗1Þ
can be given in terms of twist-two quark and gluon
operators of definite mass dimension (instead of the more
familiar definite spin [27]), as will be discussed elsewhere.
For the purposes of this Letter, this matrix element can
simply be thought of as the energy correlator computed for
particular partonic states. This simple factorization formula
for the energy correlators, which was first noted in [49],
should be contrasted with other observables where a track
function is required for each emitted quark or gluon
[21,22], and the full functional form of the track function
is required (one notable exception is [54]). While the
recent resurgence of interest in the energy correlators
was driven by their relation to correlation functions of
local operators [27–29,37], their relation to light-ray
operators [27,30,43,44], and their simple perturbative
structure [33,35,37], for phenomenological applications
at collider experiments it may indeed be Eq. (1) that is
their most important feature. This emphasizes the impor-
tance of the exchange of ideas between different commun-
ities to ultimately improve our understanding of real world
QCD at colliders.
Beyond leading order in perturbation theory, the partonic

energy correlation function on the right-hand side of Eq. (1)
contains infrared divergences. These are absorbed into the
track functions, from which the track function RGE
follows. Again, this is in exact analogy to the renormaliza-
tion of the PDFs. The existence of a well-defined RGE is
guaranteed by the universality of collinear limits, which can
be proven to all orders using either diagrammatic tech-
niques [55,56] or effective field theory [57–60]. While
PDFs and fragmentation functions have been well tested in
higher-order calculations, track functions have only been
investigated at leading logarithmic order. In order to firmly
establish the track function formalism, we will compute
their renormalization group evolution beyond the leading
order, and furthermore, show that these objects absorb the
IR divergences appearing in an explicit perturbative cal-
culation of the two-point correlator at Oðα2sÞ.
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Track functions and their symmetries.—Fragmentation
functions [61–65], which describe the energy distribution
of single hadrons, have a long history in QCD. Track
functions were originally introduced to describe the total
momentum fraction of all charged hadrons [21,22], which
is responsible for their more complicated evolution. They
have been successfully applied in a number of calculations
in perturbative QCD [21,22,49,54]. In this Letter, we
generalize this notion to other subsets of hadrons specified
by their quantum numbers, such that the track function for
quarks in light-cone gauge is given by

TqðxÞ ¼
Z

dyþd2y⊥eik
−yþ=2 1

2Nc

X
R;R̄

δ

�
x −

P−
R

k−

�

× tr

�
γ−

2
h0jψðyþ; 0; y⊥ÞjRR̄ihRR̄jψ̄ð0Þj0i

�
ð2Þ

and similar for gluons. Here R denotes the hadrons in the
final state belonging to the subset, R̄ denotes all other
hadrons (the complement), and P−

R is the large light-cone
momentum component of R. Despite the fact that we allow
R to be a more general subset of hadrons, we continue to
refer to the object in Eq. (2) as a track function. Although
similar to the definition of standard fragmentation, the fact
that R is the set of all hadrons of a given property leads to
crucial differences. Concretely, if R consists of all pions in
the final state, a final state with two pions with momentum
fractions x1 and x2 would give a contribution ∼δðx − x1 −
x2Þ to the track function, while it would give a contribution
∼δðx − x1Þ þ δðx − x2Þ to the pion fragmentation function.
Objects similar to track functions have been studied in the
context of jet charge [66,67] and fractal observables [68].
Wewill work with the nth moments of the track function,

defined as Tiðn; μÞ ¼
R
dxxnTiðx; μÞ, with the sum rule

Tið0; μÞ ¼ 1. In the following, we often suppress the
argument μ for brevity. While the full track functions
encode correlations between arbitrary numbers of hadrons,
the nth moments can be thought of as encoding correlations
between n hadrons. More precisely, TiðnÞ is related to the
n-hadron fragmentation function [69–71] (this is discussed
for n ¼ 2 in [66]).
Because of the fact that they encode correlations between

arbitrary numbers of hadrons, the track functions satisfy
complicated nonlinear evolution equations, generated by
multiparton splittings, see Fig. 1. Nothing is known about
the structure of these equations beyond the leading order.
To organize their structure, we note that unlike fragmenta-
tion functions, which measure the energy fraction in a
single hadron, track functions measure the energy fraction
in all hadrons of a given type, as illustrated by the fact that
there is a TiðmÞ on each branch of the splitting in Fig. 1.
This implies that their evolution equations exhibit a shift
symmetry, TðxÞ → Tðxþ aÞ, corresponding to energy
conservation. In moment space, this corresponds to an

infinite set of polynomial shift symmetries, Tið1Þ →
Tið1Þ − a, Tið2Þ → Tið2Þ − 2aTið1Þ þ a2, etc., which
severely constrain the form of the evolution.
In the body of this Letter, we focus on the simplified case

where the track functions are independent of quark flavor,
and satisfy Tq ¼ Tq̄, to avoid the need for cumbersome
notation. The most general case is presented in the
Supplemental Material [72]. The shift symmetry implies
that the evolution can be expressed in terms of shift-in-
variant “central moments” σið2Þ ¼ Tið2Þ − Tið1Þ2, σið3Þ ¼
Tið3Þ − 3Tið2ÞTið1Þ þ 2Tið1Þ3, and so on, as well as
Δ ¼ Tqð1Þ − Tgð1Þ. To simplify the notation, we will
define σ⃗ðmÞ ¼ ðσqðmÞ; σgðmÞÞ. Using these symmetries,
combined with a comparison to the fragmentation function
limit, one can then show that

d
d ln μ2

Δ ¼ −½γqqð2Þ þ γggð2Þ�Δ;
d

d ln μ2
σ⃗ð2Þ ¼ −γ̂ð3Þσ⃗ð2Þ þ γ⃗Δ2Δ2;

d
d ln μ2

σ⃗ð3Þ ¼ −γ̂ð4Þσ⃗ð3Þ þ γ̂σ2Δσ⃗ð2ÞΔþ γ⃗Δ3Δ3;

d
d ln μ2

σ⃗ð4Þ ¼ −γ̂ð5Þσ⃗ð4Þ þ γ̂σ2σ2 ½σ⃗ð2Þ · σ⃗ð2ÞT �

þ γ̂σ3Δσ⃗ð3ÞΔþ γ̂σ2Δ2 σ⃗ð2ÞΔ2 þ γ⃗Δ4Δ4; ð3Þ

and similar for the higher central moments. We emphasize
that, since this structure is derived from symmetry, it holds
to all orders in perturbation theory. It is remarkably simple
compared to the most general form of the nonlinear
evolution, emphasizing the important role the symmetry
plays in constraining the evolution. Here γ̂ðJÞ are the
matrices of timelike twist-two spin-J anomalous dimen-
sions (our conventions for these anomalous dimensions, as
well as explicit results to next-to-leading order (NLO) are
provided in the Supplemental Material [72]). The other
anomalous dimensions are new, and we will explicitly
compute them to next-to-leading order for the first three
moments. Remarkably, despite the nonlinearity of the

(a) (b)

FIG. 1. Triple collinear splittings contributing to the evolution
of the track function moment Tqð3Þ at next-to-leading order:
(a) Tgð1ÞTgð1ÞTqð1Þ and (b) Tgð2ÞTgð1ÞTqð0Þ. Here we have
emphasized the appearance of Tqð0Þ, since it will play an
important role in our understanding of the symmetries of the
problem.
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equations, shift invariance, combined with the uniqueness
of the first three central moments, forces the evolution of
the first three central moments of the track functions to be
the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution [73–76], since (at least for charged
hadrons) Δ ¼ Tqð1Þ − Tgð1Þ is suppressed. On the other
hand, unlike the central moments, the moments TiðnÞ
exhibit complicated nonlinear evolution. The first genuine
unsuppressed nonlinearities in the evolution of the central
moments occur at the fourth moment due to mixings
between σ⃗ð4Þ and σ⃗ð2Þ · σ⃗ð2ÞT , and similar at higher
moments.
Next-to-leading order track function evolution.—We

have computed the RGEs of the track functions by
integrating the collinear splitting functions [77–79] to
obtain a jet function for the nth moment of charged
particles, differential in the invariant mass of all particles
[80]. This is illustrated in Fig. 1. After the renormalization
of this jet function (which is the same as the renormaliza-
tion of the invariant mass jet function [81,82]), the track
function evolution can be inferred from the remaining IR
poles. Using the shift symmetry of the track function
evolution equations significantly reduces the required
calculations. However, as an additional check on our
calculation, we have computed all mixing terms separately
and verified that they respect the shift symmetry.
The complete results for the first three moments at NLO

are given in the Supplemental Material [72]. Here we
present only the mixing anomalous dimensions for the
second moment to illustrate their features. We find

γgΔ2 ¼ 4

3
asnfTFþa2snfTF

�
CA

�
−
16

9
π2þ5897

675

�

þ39161

2700
CF

�
;

γqΔ2 ¼ 7

6
asCFþa2sCF

�
817

108
CAþ

�
1369

432
−
14

9
π2
�
CF

�
; ð4Þ

where as ¼ αs=ð4πÞ. We have checked that the leading-
order evolution of the second moment is consistent with
that of the dihadron fragmentation function [69,70,83].
Because of the smallness of Δ for the specific case of

charged hadrons in QCD, this implies that the next-to-next-
to-leading order (NNLO) corrections to the DGLAP
anomalous dimensions are significantly larger than the
NLO corrections to the mixing terms for the evolution of
σð2Þ. This allows one to immediately extend the evolution
of σð2Þ to NNLO, using the known values of the timelike
anomalous dimensions [48,84–86]. Combined with the
factorization formula of [46], one can perform the resum-
mation of the energy-energy correlator (EEC) on tracks in
the collinear limit to NNLL, with eventual applications to
jet substructure.

Two-point correlations at next-to-leading order.—
Having calculated the evolution at next-to-leading order,
we will now illustrate the consistency of track functions
beyond the leading order. We will analytically compute the
two-point energy correlation [31,32,87] at order Oðα2sÞ,
with a generic restriction on hadrons. The two-point energy
correlator is characterized by a single angle χ between the
two calorimeter cells. This calculation also illustrates how
track functions seamlessly mesh with perturbative calcu-
lations, as this calculation matches the highest order
available analytically for the two-point energy correlator
on all partons.
The two-point energy correlator has been computed

analytically at NLO for both eþe− collisions [33] and
Higgs decays [34,88]. When computed on all final-state
particles, it is infrared finite to all orders in perturbation
theory. However, when computed in dimensional regulari-
zation in d ¼ 4–2ε, the partonic two-point correlator in
Eq. (1) has infrared poles in ε, which must be absorbed into
the track function. These poles are uniquely fixed in terms
of the renormalization group (RG) evolution of the track
function. Since the RG of the nth moments of the track
function involve mixing with products of all lower
moments, it is convenient to write their RG in an abstract
form

d
d ln μ2

T⃗n ¼ R̂nT⃗n; ð5Þ

where T⃗n is a vector of all possible products of moments of
track functions that have total weight n [e.g., for n ¼ 2,
T⃗2¼fTgð2Þ;Tqð2Þ;Tqð1ÞTqð1Þ;Tgð1ÞTqð1Þ;Tgð1ÞTgð1Þg],
and R̂n is a matrix, whose perturbative expansion is

R̂n ¼
P

ajsR̂
ðjÞ
n . The IR divergences of the partonic energy

correlators follow from the UV divergences of track
functions

T⃗n;bare¼ T⃗nðμÞþas
R̂ð1Þ
n

ε
T⃗nðμÞþ

1

2
a2s

�
R̂ð2Þ
n

ε

þ R̂ð1Þ
n R̂ð1Þ

n −β0R̂
ð1Þ
n

ε2

�
T⃗nðμÞþOða3sÞ: ð6Þ

The 1=ε2 poles at two loops are completely predicted from
the one-loop renormalization, while the 1=ε provide an
independent calculation of the NLO RG evolution and the
universality of the track functions.
To compute the EEC on tracks requires the calculation of

the general partonic correlators in Eq. (1), extending the
calculation of the EEC in [33]. To perform this calculation,
we follow the approach of [33] and use reverse unitarity
[89] to express the phase space integrals for the EEC in
terms of multiloop integrals. These integrals are reduced to
master integrals using LITERED [90,91] and FIRE6 [92]. The
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master integrals are found to be the same as for the standard
EEC and are evaluated by differential equations, using
CANONICA [93] to obtain their canonical form [94]. Master
integrals for the contact terms [δðχÞ] are the same as those
for cut bubble integrals and can be extracted from [95,96].
The final results are written in terms of classical poly-
logarithms using HPL [97], and complete analytic results
will be presented elsewhere. We again emphasize that this
perturbative calculation on tracks matches the state of the
art for analytic perturbative calculations of energy flow
observables. This clearly illustrates how important the
factorization property of energy correlator observables in
Eq. (1) is for simplifying the perturbative component of
calculations interfaced with tracks.
Extracting the IR poles from the calculation of the

partonic correlators, we find that they exactly match with
those predicted by Eq. (6), providing a strong check on the
track function formalism at Oðα2sÞ. Absorbing these poles
into the renormalized track functions gives an IR finite
result for the EEC computed on any subset of final-state
hadrons at NLO. In Fig. 2 we show our results for the EEC
on all particles, charged particles, and positively charged
particles, along with a comparison to PYTHIA [98]. Here and
in Fig. 3 we have used track functions extracted from
PYTHIA [21,22]. In Fig. 3 we compare our LO and NLO
results with DELPHI data [99] for the EEC asymme-
try (AEEC), defined as AEEC½cosðχÞ� ¼ EEC½cosðχÞ�−
EEC½− cosðχÞ�, finding remarkably good agreement at
NLO. The disagreement in the region cosðχÞ → −1 is
due to the fact that we have not incorporated resummation.
Such resummation could be included using the results of
this Letter, although it is beyond the scope of our current
analysis. Although we find this agreement promising, there
are a number of details about the normalization of the

DELPHI data and the experimental analysis that must be
better understood before more quantitative studies can be
performed. This is the first Oðα2sÞ calculation of a track-
based observable, and we hope that the reduced exper-
imental uncertainty for track-based observables can enable
improved extractions of the strong coupling constant from
event shapes.
Conclusions.—In this Letter we have extended the

precision perturbative QCD program by showing the
consistency of track functions beyond the leading order
and elucidating aspects of their evolution and their inter-
play with energy flow observables. Our results allow one to
harness the significant progress in perturbative quantum
field theory to nonperturbative questions, allowing these to
be computed beyond leading order for the first time and
avoiding the need to model these effects with parton
showers.
We believe that the results of this Letter will have many

applications to jet substructure, and QCDmore generally, at
a variety of colliders, ranging from the LHC, to ALICE, to
EIC, and eþe− colliders, by drastically increasing the
breadth of observables for which systematic perturbative
calculations can be performed. We look forward to the
phenomenological applications of our results.

We thank Matt Leblanc, Ben Nachman, and Jennifer
Roloff for many motivating discussions about the impor-
tance of tracks at the LHC, and Ben Nachman for help
navigating the experimental literature. We thank Hao Chen,
Ming-xing Luo, Peter Jacobs, Petr Kravchuk, Tong-Zhi
Yang, Xiao-Yuan Zhang, Jesse Thaler, Patrick Komiske,
Meng Xiao, Jan Timmermans, and Klaus Hamacher for
helpful discussions. I. M. would like to thank both the
KITP Santa Barbara and the Charles T. Munger Physics
Residence for hospitality for the duration of this work. Y. L.
and H. X. Z. are supported by the National Natural Science

NLO, Positively Charged

NLO, Charged

NLO, Partonic
Pythia, Positively Charged

Pythia, Charged

Pythia, All

– 1.0 – 0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

cos

E
E

C

Q = 250 GeV
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quired. The bands indicate the perturbative uncertainty from scale
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