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Fuzzy dark matter (FDM) made of ultralight bosonic particles is a viable alternative to cold dark matter
with clearly distinguishable small-scale features in collapsed structures. On large scales, it behaves
gravitationally like cold dark matter deviating only by a cutoff in the initial power spectrum and can be
studied using N-body methods. In contrast, wave interference effects near the de Broglie scale result in new
phenomena unique to FDM. Interfering modes in filaments and halos yield a stochastically oscillating
granular structure which condenses into solitonic cores during halo formation. Investigating these highly
nonlinear wave phenomena requires the spatially resolved numerical integration of the Schrödinger
equation. In previous papers we introduced a hybrid zoom-in scheme that combines N-body methods to
model the large-scale gravitational potential around and the mass accretion onto pre-selected halos with
simulations of the Schrödinger-Poisson equation to capture wave-like effects inside these halos. In this
work, we present a new, substantially improved reconstruction method for the wave function inside of
previously collapsed structures. We demonstrate its capabilities with a deep zoom-in simulation of a well-
studied sub-L�-sized galactic halo from cosmological initial conditions. With a particle mass of m ¼
2.5 × 10−22 eV and halo mass Mvir ¼ 1.7 × 1011 M⊙ in a ð60 h−1 comoving MpcÞ3 cosmological box, it
reaches an effective resolution of 20 comoving pc. This pushes the values of m and M accessible to
simulations significantly closer to those relevant for studying galaxy evolution in the allowed range of
FDM masses.
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Introduction.—Fuzzy (or wave) dark matter (FDM) is a
class of ultralight bosonic dark matter models giving rise to
pronounced wavelike effects in collapsed cosmological
structures [1–4]. It is represented by a classical field theory
for ultralight (pseudo)scalar particles, including axionlike
particles, with negligible nongravitational interactions that
reside in very low, highly populated momentum states. In
plausible scenarios motivated by superstring cosmology
[5,6], FDM particles are abundantly produced nonther-
mally in the early Universe. Modeled as a nonrelativistic
coherent scalar field ψ with mass m their time evolution, to
leading order, is governed by the comoving Schrödinger-
Poisson (SP) equation [7]

iℏ
∂ψ
∂t ¼ −

ℏ2

2ma2
∇2ψ þmVψ ;

∇2V ¼ 4πG
a

δρ; ρ ¼ jψ j2; ð1Þ

where V denotes the gravitational potential and a is the
scale factor. The coherence wavelength λdB ∼ ℏ=ðmvÞ
provides a characteristic length scale above which FDM
behaves like cold dark matter (CDM) with respect to

gravitational interactions [8–10], hence mirroring the
successes of standard CDM on these scales.
New, discriminating phenomena occur on length

scales close to λdB and characteristic times ∼ℏ=ðmv2Þ.
Simulations found that FDM halos host solitonic cores
surrounded by a fluctuating, granular structure formed by
wave interference [2,10,11]. Later simulations started to
include baryons [12,13]. Core formation [14], evolution
[10,15], and mergers [16] have been further investigated.
The fluctuating granules produce gravitational relaxation
effects on star clusters or black holes [6,17–19] leading to
strong constraints on the allowed FDM mass range [20].
Together with bounds on suppression of small-scale power
from the Lyman-α forest flux power spectrum [21,22] and
the high-redshift galaxy luminosity function [23–26], they
indicate a lower bound on the FDMmass ofm≳ 10−21 eV.
For a comprehensive review see Ref. [4].
Suppression of the linear perturbation spectrum mani-

fests itself on scales ≫ λdB and is therefore accessible to
standard N-body methods. On the other hand, simulations
of nonlinear wavelike effects inside collapsed structures
require solutions of the SP equations. These are numeri-
cally expensive since the complex phase of the wave
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function has to be properly resolved in the entire simulation
volume including voids [2]. Methods that solve the fluid
representation of Eq. (1) including a quantum pressure term
can overcome these restrictions but cannot account for
interference patterns emerging after multistreaming occurs
[27–30]. This approach is therefore inadequate to study
wavelike effects near λdB.
For these reasons, simulations with cosmological initial

conditions and statistically meaningful volumes aiming at
resolving wavelike dynamics in FDM halos have been
restricted to FDM masses m≲ 10−22 eV, i.e., significantly
below the bound from large-scale structure probes, and halo
masses M ≲ 1010 M⊙. There is an urgent need to push
computational capabilities toward higher m and M with
realistic initial conditions. Here, we present simulations of
an isolated halo from initial conditions provided by the
AGORA galaxy evolution project with final mass
M ≃ 1.7 × 1011 M⊙, adapted for an FDM linear power
spectrum with m ¼ 2.5 × 10−22 eV. The numerical reso-
lution needed to observe the formation of a central soliton
was achieved by running deep zoom-in simulations with a
hybrid N-body-Schrödinger scheme which is a signifi-
cantly improved version of the method described in
Ref. [10].
In Ref. [10], we combined the efficiency of N-body

simulations with the accuracy of finite-difference solvers
for the Schrödinger equation using adaptive mesh refine-
ment (AMR). We conducted zoom-in simulations focusing
on the inner dynamics of a few preselected halos. Evolving
most of the simulation volume using N-body particles to
accurately compute the large-scale gravitational field and
the mass accretion onto the halos, the highly resolved halos
themselves were evolved by explicitly solving the SP
equations. The critical part was the reconstruction of the
wave function from particle information at the N-body-
Schrödinger boundaries, for which the classical wave
approximation [31] was used. These simulations enabled
us to investigate the dynamics of the halos’ granular
structure and their central solitonic cores.
The main downside of the classical wave approximation

is its inability to capture the interference pattern in multi-
streaming regions. The wave function therefore needs to be
reconstructed in the Lagrangian volume of the halo before
the onset of collapse, restricting the analysis in Ref. [10] to
dwarf sized halos.
In this Letter, we present a new reconstruction method

for the N-body-Schrödinger boundaries that fully captures
the nonlinear wave dynamics on a statistical level. It is
implemented in our AXIONYX code specialized for axion-
like particle dark matter simulations [32]. The new
reconstruction scheme is closely related to the Gaussian
beam (GB) method [33–36] originally developed for semi-
classical calculations in quantum chemistry [37–42].
Variations of the GB method have been used to study
the dynamics around quantum barriers with discontinuous

potentials [43–45], including a hybrid method similar to the
one described below [46]. It also lends itself to the analysis
of interacting bosons [47] and photoexcitation and photo-
ionization [48]. Contrary to simple ray tracing algorithms,
the GB method does not become singular at caustics [34].
See the Supplemental Material [49] for details of the full
GB method, its relation to our reconstruction scheme, and
the implementation in AXIONYX.
Using our new GB-related technique, we can reconstruct

the wave function after the preselected halo has already
collapsed while resolving only the inner part of the halo
well within its virial radius. This improvement enabled us
to resimulate the proof-of-concept test of the AGORA High-
resolution Galaxy Simulations Comparison Project [50],
consisting of a dark-matter only simulation of a sub-L�-
sized galactic halo from cosmological initial conditions,
with full FDM dynamics.
Simulation setup.—As part of the AGORA project [50],

several widely used cosmology codes were compared by
evolving identical initial conditions in a dark matter only
simulation with standard ΛCDM cosmology. Using a
ð60 h−1 comoving MpcÞ3 box on a 1283 root grid, the
Lagrange patch of a preselected halo with virial mass M ≃
1.7 × 1011 M⊙ at z ¼ 0 and quiescent merger history was
further resolved by five static refinement levels and up to
six adaptively refining levels whenever an overdensity of
four or more particles was reached in a single cell.
Doubling the resolution per refinement level, the simulation
was thus resolved down to 326 comoving pc. In order to
properly resolve the FDM interference patterns of the pre-
selected halo in our simulations, the wave function is
reconstructed on higher levels reaching a final resolution of
20 comoving pc.
The preselected halo is first re-run in pure N-body mode

with AXIONYX in order to ensure consistency with
Ref. [50]. Constructing ΛCDM initial conditions at redshift
z ¼ 100with MUSIC [51] as specified by the AGORA project,
we recover the expected final density configuration at
z ¼ 0. Using the publicly available analysis scripts of
the AGORA project, we obtain the same density slice plot
through the halo center. The consistency of the numerical
results can be seen by comparing our Fig. 1 (left) with
figure 3 in Ref. [50].
FDM cosmology is characterized by a cutoff in the initial

transfer function [1]. We obtained the corresponding FDM
transfer function using AXIONCAMB [52] with
m ¼ 2.5 × 10−22 eV. Initial conditions were created with
MUSIC [51], keeping the original large scale features but
suppressing small scales. As expected, the N-body simu-
lation conducted with AXIONYX reveals a final state which
is effectively a smoothed version of the CDM final state. As
seen in Fig. 1 (right), in the FDM run only the largest halos
collapsed.
Restarting the FDM simulation at redshift z ¼ 3, after

the preselected halo has fully collapsed, we further refine its
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innermost region. After subtracting the halo’s mean velo-
city from all particles in order to reduce resolution require-
ments of large phase gradients, we reconstruct the wave
function on the 11th level and add three additional levels
evolved by AXIONYX’s finite-difference Schrödinger solver.
We thus establish a hybrid method similar to the one
presented in Ref. [10]. The important improvement here is
the full reconstruction of the FDM interference pattern.
As the resolution of the granules on the GB level

deteriorates over time, interpolation to the next finer FD
level results in a continuous mass increase. We compensate
for it by rescaling the wave function on the coarsest FD
level such that its average density coincides with the N-
body density obtained from the underlying beams. At each
time step, the rescaling does not exceed a per-mil level
change.

Numerical results.—Figure 2 shows density slices
zoomed into the preselected halo at redshift z ¼ 3. The
plot on the far right depicts the wave function immediately
after reconstruction. The characteristic interference pattern
and the central solitonic core are clearly visible. They are
refined by three additional finite-difference levels. As the
collapsed halo decouples from the expanding background,
its substructure shrinks relative to the simulation box. In
order to ensure sufficient resolution, we insert an additional
refinement level after redshift z ¼ 1.56 and stop the simu-
lation at z ¼ 1.
Radial density profiles centered around the halo’s

density maxima at different redshifts are shown in
Fig. 3. The inner region is well fitted by a solitonic core
profile [2]

FIG. 2. Density slices zoomed into the preselected halo at redshift z ¼ 3. The plot on the right shows the reconstructed wave function
with self-consistent interference pattern and central solitonic core using the GB method in the innermost, highly resolved region of the
halo. The wave function is evolved with an FD solver on three additional levels. Lower levels are evolved with AXIONYX’s N-body
solver.

FIG. 1. N-body densities at z ¼ 0 for CDM (left) and FDM (right) initial conditions of the AGORA proof-of-principle halo with virial
mass M ≃ 1.7 × 1011 M⊙ in a 1 h−1 Mpc box. While the CDM density reproduces previous AGORA results [50], the cutoff in the FDM
initial perturbation spectrum results in reduced substructure.
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ρcðrÞ ≃ ρ0

�
1þ 0.091

�
r
rc

�
2
�
−8
; ð2Þ

where rc is the core radius at which the density has dropped
to half its central value

ρ0 ≃ 3.1 × 106
�
2.5 × 10−22 eV

m

�
2
�
kpc
rc

�
4 M⊙

kpc3
: ð3Þ

The outer angular-averaged density profile is NFW-like and
statistically indistinguishable from CDM, confirming pre-
vious results.
The wave function’s velocity distribution is calculated on

the finest level [10]:

fðvÞ ¼ 1

N

����
Z

d3x exp ð−imv · x=ℏÞψðxÞ
����
2

; ð4Þ

with normalization factor N. It was previously shown to
match the underlying particle velocity distribution [10],
consistent with the equivalence of the coarse-grained
Schrödinger and Vlasov equations known as the
Schrödinger-Vlasov correspondence [8,9,53]. As seen in
Fig. 4, we recover the same similarity to the beams’
velocity distribution on the finest level proving the con-
sistency of the reconstructed interference pattern on a

statistical level. Both spectra deviate from a perfect
Maxwellian distribution

fMðvÞdv ¼ 3

�
6

π

�
1=2 v2

v30
exp

�
−
3

2

v2

v20

�
dv; ð5Þ

with free parameter v0 indicating that the halo has not yet
reached virial equilibrium.
It was found numerically that solitonic core radii are

correlated with the peaks of the velocity distributions
[11,32]:

vc ¼
2π

7.5
ℏ

mrc
: ð6Þ

This implies that the growth of solitons is suppressed once
their virial temperature reaches that of their host halo
[4,54,55] and the core-halo mass relation [2] is valid for
more massive halos as well. The velocities corresponding
to vc at different redshifts are displayed as vertical lines
in Fig. 4.
On average, the solitonic core’s central density, depicted

in Fig. 5, remains constant over the entire simulation period
and oscillates on the quasi-normal frequency of the excited
soliton [10,56]

FIG. 3. Radial density profiles of the FDM wave function (blue) at different redshifts. They are well fitted by a soliton profile (green)
transitioning to an outer NFW-like profile indistinguishable from the one obtain utilizing the underlying N-body particle information
(orange).

FIG. 4. Velocity spectra calculated on the finest AMR level at different redshifts. The FDM wave function’s spectra (blue) are
comparable to the underlying particle velocity dispersions (orange) and are close to a Maxwellian distribution (black). The vertical lines
mark the velocities vc from Eq. (6).
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f ¼ 10.94

�
ρc

109 M⊙ kpc−3

�
1=2

Gyr−1: ð7Þ

Conclusions.—We presented the largest FDM cosmology
zoom-in simulation to date with an effective resolution of
4.2 × 106 cells in all three spatial dimensions, exceeding
previous FDMcosmology simulations by roughly six orders
of magnitude in the number of effective grid points
[2,10,57]. The spatial resolution at the highest refinement
level of 20 comoving pc allowed the full wavelike simu-
lation of a sub-L�-sized galactic halo from cosmological
initial conditions with FDM mass m ¼ 2.5 × 10−22 eV.
In order to facilitate comparison with CDM, we chose to

re-run the proof-of-concept dark-matter only simulation of
the AGORA code comparison project [50]. We assumed
standard ΛCDM cosmology in a ð60 h−1 comoving MpcÞ3
box with FDM initial conditions for AMR simulations of a
single selected halo. Using a 1283 root grid, the halo’s
Lagrange patch was further resolved by five static refine-
ment levels and up to ten adaptively refining levels.
This deep zoom-in simulation was made possible by

extending the AXIONYX code with an improved hybrid N-
body-Schrödinger method building on the technique used
in Refs. [10,12]. Its key advantage over full Schrödinger-
Poisson simulations is the capability to solve the
Schrödinger equation only in highly refined subvolumes,
while relying on the Schrödinger-Vlasov correspondence to
treat dark matter in regions with coarser refinement level as
N-body particles. This approach drastically reduces the
required spatial resolution in most of the computational
volume.
The main improvement over previous versions is a new

reconstruction scheme at the N-body-Schrödinger bounda-
ries based on a simplified version of the Gaussian beam
method for solving the Schrödinger equation, providing the
statistically correct reconstruction of the solitonic core and
the interference pattern in the central region of the
collapsed halo. This methods requires only the complex

phase coevolved with each N-body particle to reconstruct
an FDM wave function in fully nonlinear density fields.
The wave-particle conversion can therefore begin after the
halo has collapsed and be confined to a region well within
its virial radius.
We recover the radial FDM density profiles with a

solitonic core embedded in a fluctuating halo whose
averaged density profile is consistent with an NFW
behavior. The FDM wave function’s velocity spectrum
on the finest AMR level coincides with the underlying
particle velocity dispersion and resembles a Maxwellian
distribution. It peaks close to the soliton’s virial velocity
implying that the core is in kinetic equilibrium with its
surrounding. The soliton is in an exited state dominated by
the quasinormal frequency mode.
Accuratelymodeling the oscillations of the central soliton

correctly is of paramount importance for predicting the
dynamics of tracers of the gravitational potential. Strong
constraints on the dark matter particle mass were derived
from the stability of the central star cluster subject to soliton
oscillations in Eridanus II [20] and questioned by Ref. [58].
Similarly, soliton random walk caused by incoherent wave
interference with the soliton is a genuinely wavelike effect
with important observational consequences [59–61].
Further analysis of these effects for a variety of halo histories
using our method will be the subject of future work.
Our result is a proof-of-concept demonstration of the

hybrid N-body-Schrödinger method, pushing the range of
m and M accessible to simulations significantly closer to
those relevant for studying galaxy evolution in the allowed
range of FDM masses m≳ 10−21 eV. Future simulations
will need to include the effects of baryons and star
formation whose strong impact on the core soliton was
shown in Ref. [12]. We also expect that it will enable
simulations of gravitational relaxation and heating in FDM
halos from realistic initial conditions and a variety of
merger histories.
Beyond FDM research, the nonlinear dynamics of the

Schrödinger-Poisson equation is relevant for studying the
gravitional fragmention of the inflaton field in scenarios

FIG. 5. (left) The central soliton density oscillates around an average value indicated by the black line. (right) Using Eq. (7) it defines a
quasinormal soliton frequency and its first higher harmonic (vertical black lines), which are both well matched by the numerically
obtained frequency spectrum of the oscillating central density.
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with early matter domination [62,63] including the for-
mation of “inflaton stars” [64,65], as well as axion
miniclusters and axion stars formed from QCD axion dark
matter [54,66]. These simulations can equally benefit from
the method presented here.
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