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The eigenstate thermalization hypothesis explains the emergence of the thermodynamic equilibrium in
isolated quantum many-body systems by assuming a particular structure of the observable’s matrix
elements in the energy eigenbasis. Schematically, it postulates that off-diagonal matrix elements are
random numbers and the observables can be described by random matrix theory (RMT). To what extent a
RMT description applies, more precisely at which energy scale matrix elements of physical operators
become truly uncorrelated, is, however, not fully understood. We study this issue by introducing a novel
numerical approach to probe correlations between matrix elements for Hilbert-space dimensions beyond
those accessible by exact diagonalization. Our analysis is based on the evaluation of higher moments of
operator submatrices, defined within energy windows of varying width. Considering nonintegrable
quantum spin chains, we observe that matrix elements remain correlated even for narrow energy windows
corresponding to timescales of the order of thermalization time of the respective observables. We also
demonstrate that such residual correlations between matrix elements are reflected in the dynamics of out-
of-time-ordered correlation functions.
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Introduction.—In the overwhelming majority of cases,
isolated quantum many-body systems undergoing unitary
time evolution are expected to reach thermal equilibrium at
long times [1–5]. During the thermalization process, local
memory of the initial nonequilibrium state is lost and
observables reach a constant value that agrees with an
appropriate thermodynamic ensemble average, as observed
in some recent experiments, see, e.g., Refs. [6–13].
Motivated by seminal works on quantum chaos and

random-matrix theory (RMT), see Refs. [14–19] for
reviews, including intimate connections to transport in
mesoscopic systems [20,21], the eigenstate thermalization
hypothesis (ETH) explains eventual thermalization by
postulating a particular structure of matrix elements of
observable O in the eigenbasis of a generic HamiltonianH
[22–24],

Omn ¼ OðĒÞδmn þ Ω−1=2ðĒÞfðĒ;ωÞrmn; ð1Þ

where ω¼Em−En, Ē¼ðEmþEnÞ=2, and Omn¼hmjOjni,
with Em and jmi denoting the eigenvalues and eigenstates
of H. Moreover, ΩðĒÞ is the density of states, OðĒÞ and
fðĒ;ωÞ are smooth functions, and the rmn ¼ r�nm are
usually assumed to be independent random Gaussian
variables with zero mean and unit variance, see also

Refs. [25–27] for early works on precursors of Eq. (1).
While the general features of the ETH have been numeri-
cally confirmed for various nonintegrable models [28–38],
recent works have proposed further generalizations
[39–42], and scrutinized detailed aspects such as entangle-
ment structure of highly excited eigenstates [43], or the
presence of rare ETH-violating states [44].
The formulation of the ETH in Eq. (1) may essentially

be regarded as an extension of the RMT applied to
observables. It builds on earlier sophisticated models to
describe physical systems by random matrices such as band
matrices [45,46] and embedded ensembles [18,47–49],
which take into account the locality of real systems.
Numerical analyses have yielded a convincing agreement
with the predictions of Eq. (1), for instance regarding the
Gaussianity of the rmn [35,50], the distribution of transition
strengths jOmnj2 [51–53], and the ratio of variances of
diagonal and off-diagonal matrix elements [3,33,34,54].
Moreover, statistical properties of matrix elements have
been analyzed semiclassically in few-body systems with a
classically chaotic counterpart [55–57].
Physical Hamiltonians and observables clearly differ

from genuinely random operators [18] (for instance, matrix
elements hmjσzjni of a Pauli operator must be correlated to
yield the eigenvalues �1). In this context, the question
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whether and to what extent the rmn in Eq. (1) can indeed be
considered as uncorrelated random numbers has attracted
increased attention recently [37,58,59]. In particular, it has
been argued that correlations between matrix elements are
necessary to explain the growth of out-of-time ordered
correlation function (OTOC) [60–62], which is a central
quantity to characterize scrambling in quantum systems
[63]. Using full eigenvalue spectrum of operator subma-
trices as a sensitive indicator, correlations between matrix
elements have been shown to persist to small energy scales,
but appear to vanish at even lower ω [37]. The lack of
correlations between rmn at low ω is consistent with
expected universality of the observable’s dynamics at late
times [64–67].
An important and less clear aspect is to connect the onset

of RMT behavior, particularly the statistical independence
of matrix elements, with the timescale of thermalization.
Given a (one-dimensional) quantum many-body system of
size L, the thermalization time τth of an observable O is
expected to scale as τth ∝ Lν, where ν ≥ 0 depends on O
and details of the system, e.g., presence of conservation
laws [68], or disorder [69]. Somewhat unexpectedly, it was
analytically shown in [58] that in one dimensional systems,
macroscopic thermalization dynamics prevents matrix ele-
ments of O from becoming truly uncorrelated above a
smaller energy scale ΔERMT ∝ 1=ðτthLÞ, and the system’s
dynamics is fully described by RMT only at much later
times, TRMT ∝ 1=ΔERMT ∝ τthL. This has consequences,
for instance, for the dynamics of certain initial states with a
macroscopic spatial inhomogeneity of a conserved quan-
tity, e.g., energy, which will display nontrivial dynamics
even for t > τth and saturate into exponentially small
fluctuations ∝ e−L only at parametrically longer t [58].
We note that the time TRMT explored here and in [58],

which marks the absence of correlations between matrix
elements, is different from the so-called “Thouless time”
[70], see Ref. [71] for details, which has also been
associated with the applicability of RMT to the energy
spectrum, signaled by a ramp in the spectral form factor
[67,73–76].
From a numerical point of view, a major complication to

study matrix elements is given by the restriction of full
exact diagonalization (ED) to small system sizes, such that
the analysis of low-frequency or, correspondingly, long-
time regimes is plagued by severe finite-size effects. In this
Letter, we introduce a novel numerical approach based on
quantum typicality (see Refs. [77,78] and references
therein). We show that moments of operator submatrices,
defined within energy windows of varying width, can be
evaluated for system sizes beyond the range of ED, and
provide a sensitive probe to study the presence of corre-
lations between matrix elements. This allows us to shed
new light on residual deviations of physical operators from
genuine RMT ensembles, including the Gaussian orthogo-
nal ensemble (GOE), which is expected to emerge for the

models and operators with real and symmetric matrix
representation considered here. For nonintegrable quantum
spin chains, our analysis shows that matrix elements remain
correlated even in narrow energy windows corresponding
to timescales around the thermalization time of the respec-
tive observable. For shorter times, the residual correlations
between matrix elements are manifest in the nontrivial
dynamics of suitably defined OTOCs within such energy
windows.
Setup.—We consider submatrices OT defined within

energy windows of width 2π=T [37,54,58],

OT
mn ¼ hmjPTOPT jni ¼

�
Omn; jEm;n − E0j ≤ π

T ;

0; otherwise;
ð2Þ

where PT ¼ P
jEm−E0j≤ðπ=TÞ jmihmj is a projection on

eigenstates of H centered around E0. Parameter T con-
trolling the size of the submatrix determines characteristic
timescale (matrix elements at low ω contribute to dynamics
at long times). We will compare the energy scale 1=T,
where the OT

mn become uncorrelated, with the scale 1=τth
set by thermalization time of O. Examples of H, O, and a
definition of τth are given below.
We study the presence of correlations between matrix

elements by introducing the ratio ΛT of moments of OT
c ,

ΛT ¼ M2
2=M4; Mk ¼ Tr½ðOT

c Þk�=d; ð3Þ

where d ¼ Tr½PT � ¼
P

jEm−E0j≤π=T 1 and OT
c ¼ OT −

TrðOTÞ=d. If OT were to be described by an ideal GOE,
its eigenvalues would follow famous Wigner semicircle
distribution, implying ΛT

GOE ¼ 1=2. Crucially, as we show
in [79], ΛT ≃ 1=2 can be derived also for weaker conditions
on OT as long as the OT

mn are statistically independent. In
particular, as discussed in [79] and demonstrated below,
ΛT → 1=2 can serve as a sensitive indicator to locate the
energy scale where OT

mn become uncorrelated and devia-
tions from a strict GOE disappear.
Numerical approach.—To construct OT explicitly

without using ED, it is crucial to rewrite PT as
PT¼ð1=TÞRþ∞

−∞ sincðt=TÞexp½−iðH−E0Þt�dt [58], where
sincðtÞ ¼ sinðπtÞ=πt. In particular, by expanding the time
evolution operator in terms of Chebyshev polynomials
[81–83] and evaluating the integral analytically, one finds
[79], PT ¼ P∞

k¼0 CkTk½ðH − bÞ=a�, where TkðxÞ are
Chebyshev polynomials of the first kind, Ck are
suitable coefficients [79], and a ¼ ðEmax − EminÞ=2, b¼
ðEmaxþEminÞ=2, where Emax (Emin) is the largest (smallest)
eigenvalue of H. Exploiting quantum typicality [77,78]
(see also Ref. [79]) one can then calculate the second and
the fourth central moments of OT as

M2 ≈
hψPOPjψPOPi
hψPjψPi

; M4 ≈
hψ ðPOPÞ2 jψ ðPOPÞ2i

hψPjψPi
; ð4Þ
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where jψPi ¼ PT jψi, jψPOPi ¼ PTOT
cPT jψi, jψ ðPOPÞ2i ¼

ðPTOT
cPTÞ2jψi, and OT

c ¼ OT − hψPjOT jψPi=hψPjψPi.
Here, jψi is a pure state drawn at random from the unitarily
invariant Haar measure [84], i.e., in practice jψi is con-
structed in the computational basis with Gaussian distrib-
uted coefficients. The approximation of Mk in Eq. (4)
becomes very accurate for energy windows with suffi-
ciently many eigenstates. For smaller windows with fewer
eigenstates, the accuracy can be improved by averaging
over multiple realizations of jψi. The most demanding step
of our approach is to restrict the random state to a narrow
energy window, PT jψi¼

P
M
k¼0CkTk½ðH−bÞ=a�jψi, where

PT is approximated by a sum up to k ¼ M, which has to be
chosen large enough to yield accurate results [85].
Combined with efficient sparse-matrix techniques, Mk

and ΛT can then be obtained for Hilbert-space dimensions
far beyond the range of the ED. Note that other approaches
exist to construct states in a specified energy window
[86–89].
Numerical analysis.—We consider the one-dimensional

mixed-field Ising model, H ¼ P
L
l¼1H

l,

Hl ¼ Jσlzσlþ1
z þ hx

2
ðσlx þ σlþ1

x Þ þ hz
2
ðσlz þ σlþ1

z Þ; ð5Þ

where σlx;z are Pauli operators at lattice site l, L is the
length of the chain with periodic boundaries, and J ¼ hx ¼
1.0 and hz ¼ 0.5 in the following. Moreover, we add two
defect terms h2σ2z and h5σ5z with h2 ¼ 0.1665 and h5 ¼
−0.2415 to lift translational and reflection symmetries,
such that our simulations are performed in the full Hilbert
space of dimension 2L. We note that H is nonintegrable,
fulfills the ETH for these parameters [79], and exhibits
diffusive energy transport [90]. We consider energy win-
dows around E0 ¼ 0, corresponding to infinite temper-
ature. We study ΛT for two kinds of operators,

A ¼ 1ffiffiffiffi
L

p
XL
l¼1

cos
�
2π

L
ql

�
Hl; B ¼ 1ffiffiffiffi

L
p

XL
l¼1

σlx ; ð6Þ

where B exhibits no transport behavior and decays quickly.
In contrast, dynamics of the density-wave operator A
depends on q, with a quick L-independent decay for
q ¼ L=2 and a slow hydrodynamic (diffusive) relaxation
in the limit of small q [68]. For our numerical analysis,
operators with short, L-independent, τth are beneficial as
this allows us to reach regimes T=τth ≫ 1, which in
contrast becomes very costly if τth ∝ L2 scales diffusively.
A first glance of how ΛT behaves upon varying the width

of the energy window is given in Fig. 1, where we consider
A for a small system with L ¼ 16 amenable to ED. ED
values of ΛT show convincing agreement with those
obtained using the typicality approach for a wide range
of T. Analyzing ΛT behavior, we see that it deviates from

the GOE value for small T (i.e., large energy windows), but
approaches it for larger T. As shown in the insets of Fig. 1,
the full eigenvalue distribution PðλÞ ofAT is approximately
Gaussian for small T (ΛT ¼ 1=3 for strictly Gaussian
distributions), while it takes an approximately semicircle
shape for larger T, indicating a transition to GOE behavior
[37]. Importantly, while ΛT displays that strict GOE
behavior only occurs at large T, other common random-
matrix indicators, such as the mean ratio of adjacent level
spacings hri [91], turn out to be insensitive to the residual
correlations between the OT

mn at small T, see Ref. [79].
In this context, it is also helpful to evaluate ΛT for a sign-
randomized version of OT [37,92,93],

ÕT
mn ¼

�
OT

mn; 50% probability;

ð−1ÞOT
mn; 50% probability;

ð7Þ

where potential correlations between the OT
mn are thus

manually destroyed. As shown in Fig. 1, ÃT indeed yields
ΛT ≈ 0.5 with semicircular PðλÞ for all T, which further
confirms that ΛT → 0.5 is a good indicator for the absence
of correlations between matrix elements.
We now turn to the dependence of ΛT on T for larger

systems up to L ¼ 26, using our novel typicality approach.
First, we consider operator O ¼ A with q ¼ L=2, for
which the infinite-temperature autocorrelation function
CðtÞ (also obtained by typicality [77–79,94]) exhibits a
short L-independent τth [Fig. 2(a)], where

CðtÞ ¼ Tr½OðtÞO�=2L: ð8Þ

We here define τth as the time when C̃ðtÞ ¼ ½CðtÞ−
Cðt → ∞Þ�=½Cð0Þ − Cðt → ∞Þ� has decayed to C̃ðtÞ <
0.01 and stays below this threshold afterward [95]. Note
that by Fourier transformingCðtÞ, 2π=τth sets the “Thouless

FIG. 1. ΛT versus T=τth for A with q ¼ L=2 and L ¼ 16.
Results obtained by the typicality approach, averaged over 500
states, agree convincingly with ED data. As a comparison, ΛT

obtained from a sign-randomized operator [Eq. (7)] yields the
GOE value ΛT ¼ 1=2. Insets show eigenvalue distributions PðλÞ
of AT and ÃT for different energy windows.
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energy” below which fðĒ;ωÞ in Eq. (1) becomes approx-
imately constant [71,72]. Inspecting ΛT at the energy scale
which corresponds to thermalization, T ≈ τth, we find ΛT is
far from the GOE value but tends to approach it at larger
values of T. The same behavior of ΛT is also demonstrated
by the second operator O ¼ B, see Fig. 3. Specifically, B
also has L-independent thermalization time τth and, espe-
cially for large L, ΛT is still far from the GOE value even at
long times T ∼ 20τth.
Next, we consider density-wave operator A with the

longest wavelength, q ¼ 1. This is a diffusive operator and
CðtÞ decays exponentially with τth ∝ L2, as confirmed by

the collapse of C̃ðt=L2Þ for different L [inset of Fig. 2(b)].
Similar to the previous case, we find that ΛT is far from the
GOE prediction at T ≈ τth, while it tends to approach it for
larger T. Thus, in all cases shown in Figs. 2 and 3, we
conclude that matrix elements of OT remain correlated
around the energy scale defined by inverse thermalization
time 1=τth, consistent with [58]. A strict description of OT

by a randommatrix drawn from a GOEmay therefore apply
only at much longer times TRMT ≫ τth. This is the main
result of this Letter.
It would be a natural step to quantify TRMT=τth for

different operators, and in particular its dependence on
the system size L. In practice this requires extending
numerical analysis to much larger T for which ΛT ≈ 0.5,
which is a challenging task. Here, we particularly focus on
the case of A with q ¼ L=2. Plotting ΛT versus T=ðτthLÞ,
see inset in Fig. 2(a), we observe a good data collapse
extending over the entire range of T shown here. This
tentatively suggestsTRMT ∝ τthL for this particular operator,
which is also consistent with [97]. Furthermore, in [79], we
provide additional results for a nonintegrable XXZ chain
with next-nearest neighbor interactions and a local operator
exhibiting diffusive transport. Also in this case, the data are
consistent with TRMT ∝ τthL. Generally, however, the uni-
versality of this scaling remains unclear since such a collapse
of ΛT is absent in other cases [cf. Figs. 2(b) and 3(c)].
Nevertheless, at least for B in Fig. 3, it appears that while
τth ≈ const,TRMT increaseswithL, which supports ourmain
result that asymptotically TRMT ≫ τth. While a potential
confirmation of TRMT ∝ τthLwould require a collapse in the
immediate region of T ≈ TRMT, this is currently beyond our
numerical capabilities and we here leave to future work to
develop other indicators of TRMT complementary to ΛT .
Dynamics of OTOCs.—Correlations between OT

mn also
manifest themselves in dynamical properties [59]. In par-
ticular, we consider an out-of-time-ordered correlation func-
tion, defined within the energy window jEm − E0j ≤ ðπ=TÞ,

FTðtÞ ¼ Tr½OT
c ðtÞOT

cOT
c ðtÞOT

c �: ð9Þ

Assuming that off-diagonal matrix elements of OT
c are

uncorrelated and that diagonal elements satisfy ETH [79],

FIG. 2. ΛT versus T=τth for the density-wave operator A with
(a) q ¼ L=2 and (b) q ¼ 1. Data are obtained using the typicality
approach up to L ¼ 26, averaged over 500 · 216−L random states
[96]. The dashed line indicates the GOE value ΛT

GOE ¼ 0.5. Insets
show ΛT versus T=ðτthLÞ and the rescaled correlation function
C̃ðtÞ. The dashed vertical line signals τth according to our
definition in the text. The data collapse of C̃ðtÞ and C̃ðt=L2Þ
indicates L independence of τth for q ¼ L=2 and diffusive
behavior τth ∝ L2 for q ¼ 1.

FIG. 3. Analogous data as in Fig. 2, but now for B.
FIG. 4. FTðtÞ [Eq. (9)] and 2C̄TðtÞ [Eq. (10)] for A with
q ¼ L=2 and L ¼ 16, for (a) T ¼ τth and (b) T ¼ 25τth.
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FTðtÞ should reduce to FTðtÞ ≃ 2C̄TðtÞ, where C̄TðtÞ is the
eigenstate-averaged two-point function,

C̄TðtÞ≡
Xd
m¼1

ℜhmjOT
c ðtÞOT

c jmi2: ð10Þ

In Fig. 4, FTðtÞ and C̄TðtÞ are shown for the density-
wave operator A with q ¼ L=2. We consider L ¼ 16 and
two different energy windows, T ¼ τth [Fig. 4(a)] and
T ¼ 25τth [Fig. 4(b)]. In the former case, we find
FTðtÞ ≠ 2C̄TðtÞ, which is consistent with our earlier
observation that ΛT ≠ 0.5 at T ¼ τth [Fig. 2(a)] and
supports our conclusion that higher-order correlations
exist between the OT

mn. In contrast, in the latter case,
FTðtÞ ≈ 2C̄TðtÞ, consistent with ΛT → 0.5 and signaling
that correlations between the OT

mn vanish and strict GOE
behavior emerges for such narrow energy windows.
Conclusion and outlook.—We have studied the presence

of correlations between matrix elements of observables
written in the energy eigenbasis of chaotic quantum many-
body systems. We introduced a novel numerical method to
evaluate higher moments of operator submatrices for
system sizes beyond those accessible by ED. As a main
result, we have shown that even for narrow energy
windows, corresponding to timescales of the order of
thermalization time for the given observable, matrix ele-
ments remain correlated. Consistent with the results of
[37,58], our findings suggest that even though usual
indicators of the ETH might be completely fulfilled [79],
ETH has to be refined to properly describe all dynamical
aspects of thermalization. Specifically, in addition to the
usual thermalization or Thouless time controlling RMT
behavior of energy levels, there exists another relevant time
TRMT ≫ τth, which marks the end of macroscopic thermal-
ization dynamics (see also Ref. [58]) and the scale where
OT

mn become uncorrelated. We demonstrated this fact by
studying suitably defined OTOCs, which visualized the
presence of correlations between OT

mn well beyond the
thermalization time of the two-point function.
A natural next step is to systematically study L depend-

ence of TRMT=τth for various operators and to clarify the
role of conservation laws giving rise to hydrodynamic
behavior at late times. While we expect that our findings
can be generalized to other systems, it would be interesting
to study TRMT in a wider class of models, including time-
dependent Floquet models without energy conservation, as
well as disordered systems which may exhibit subdiffusive
transport or localization depending on the disorder strength
[98]. Finally, another direction is to consider few-body
systems with a classically chaotic counterpart and to
explore TRMT and its deviations from the Thouless time
from a semiclassical point of view.
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