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Phase-insensitive optical amplifiers uniformly amplify each quadrature of an input field and are of both
fundamental and technological importance. We find the quantum limit on the precision of estimating the
gain of a quantum-limited phase-insensitive amplifier using a multimode probe that may also be entangled
with an ancilla system. In stark contrast to the sensing of loss parameters, the average photon numberN and
number of input modesM of the probe are found to be equivalent and interchangeable resources for optimal
gain sensing. All pure-state probes whose reduced state on the input modes to the amplifier is diagonal in
the multimode number basis are proven to be quantum optimal under the same gain-independent
measurement. We compare the best precision achievable using classical probes to the performance of an
explicit photon-counting-based estimator on quantum probes and show that an advantage exists even for
single-photon probes and inefficient photodetection. A closed-form expression for the energy-constrained
Bures distance between two product amplifier channels is also derived.
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Phase-insensitive amplifiers coherently and uniformly
amplify every quadrature amplitude of an input electro-
magnetic field. The prototypical example of such an
amplifier is a laser gain medium with population inversion
between the active levels. Besides being a key component
of lasers, phase-insensitive amplifiers (e.g., erbium-doped
fiber amplifiers) are widely deployed in today’s optical
communication networks for restoring signal amplitudes
and to offset detection noise [1]. Many physical mecha-
nisms leading to phase-insensitive amplification are known
in diverse platforms (see, e.g., Refs. [2–5]), but they are all
constrained by the unitarity of quantum dynamics to add a
gain-dependent excess noise [2,6,7] that is minimized when
the effective population in the active levels of the gain
medium is completely inverted [3,8].
Such minimum-noise phase-insensitive amplifiers—

hereafter called quantum-limited amplifiers (QLAs)—are
also of fundamental importance in continuous-variable
quantum information. This is because the quantum chan-
nels defined by QLAs, together with pure-loss channels, are
building blocks for constructing all other phase-covariant
Gaussian channels by concatenation [9,10]. Because of the
ubiquity of loss channels in nature, there is a vast literature
on their sensing (see, e.g., Refs. [11–14], and references
therein). In contrast, previous work on sensing gain of a
QLA is limited to the context of detecting Unruh-Hawking
radiation using single-mode probes [15] or assumes access
to the internal degrees of freedom of the amplifier [16].
In this Letter, we fill this gap by optimizing the gain

sensing precision over all multimode ancilla-entangled

probes and all joint quantum measurements, constraining
only the energy and number of input modes of the probe.We
also propose concrete probes,measurements, and estimators
enabling laboratory demonstration of a quantum advan-
tage using present-day technology limited by nonunity-
efficiency photodetection. Beyond gain sensing itself,
owing to the above-mentioned concatenation theorem,
our results combined with those for pure-loss channels
[11] are expected to yield fundamental performance limits
for a vast suite of detection and estimation problems
involving Gaussian channels with excess noise—see, e.g.,
Refs. [17–32].
Quantum-limited amplifiers.—A canonical realization of

a QLA involves an optical parametric amplifier (or par-
amp) effecting a two-mode squeezing interaction between
the amplified or signal (S) mode (annihilation operator â)
and an environment mode (E) (annihilation operator ê),
after which the Emode is discarded [3,8,10] (Fig. 1, dashed
box). In the interaction picture, the paramp Hamiltonian
ĤI ¼ iℏκðâ ê−â†ê†Þ, where κ is an effective coupling
strength. Quantum-limited operation obtains when the
environment is initially in the vacuum state. Evolution
for a time t results in the Bogoliubov transformations
âout ¼

ffiffiffiffi
G

p
âin −

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
ê†in; êout ¼

ffiffiffiffi
G

p
êin −

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
â†in,

where âin ¼ âð0Þ, êin ¼ êð0Þ are the input (time zero)
and âout ¼ âðtÞ, êout ¼ êðtÞ are the output (time t) anni-
hilation operators and

ffiffiffiffi
G

p ¼ cosh κt≡ cosh τ. The average
output energy hâ†outâouti ¼ Ghâ†inâini þ ðG − 1Þ, where
the last term represents the added noise of a QLA of gain
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G ≥ 1 [7]. The state transformation (quantum channel) on
the signal mode corresponding to a QLA of gain G is
denoted AG.
Gain sensing setup and background.—Figure 1 also

shows a general ancilla-assisted parallel estimation strategy
for gain sensing. A pure state jψiAS (called the probe) ofM
signal modes entangled with an arbitrary ancilla system A is
prepared. Each of the signal modes passes through the
QLA, following which the joint AS system is measured
using an optimal (possibly probe-dependent) measurement
for estimating G. The probe has the general form

jψiAS ¼
X
n≥0

ffiffiffiffi
p

p
njχniAjniS; ð1Þ

where jniS ¼ jn1iS1 jn2iS2 � � � jnMiSM is an M-mode num-
ber state of S, fjχniAg are normalized (not necessarily
orthogonal) states of A, and fpn ≥ 0g is the probability
distribution of n. The number M of available signal modes
depends on operational constraints such as measurement
time and bandwidth, and will turn out to be fundamental in
determining the sensing precision. Additionally, we impose
the standard constraint on the average photon number
in the signal modes: hψ jÎA ⊗ ðPM

m¼1 N̂mÞjψi ¼ N, where
N̂m ¼ â†mâm is the number operator of the mth signal
mode and ÎA is the identity on the ancilla system. This
constraint can be simplified as

P∞
n¼0 npn ¼ N, where

pn ¼
P

n∶n1þ���þnM¼n pn is the probability mass function
of the total photon number in the signal modes. A mixed-
state probe can be purified using an additional ancilla with
the resulting purification being again of the form (1) with
the same N and M. Thus, optimization over probes of the
form of Eq. (1) suffices.
We are interested in comparing the performance of the

optimal quantum probes of the form of Eq. (1) to the best
performance achievable using classical probes under the

same resource constraints, i.e., probes that consist of
mixtures of M-mode coherent states, possibly correlated
with an arbitrary numberM0 of ancilla modes. Such probes
can be prepared using laser sources, and have the form

ρAS ¼
ZZ

d2M
0
αd2MβPðα; βÞjαihαjA ⊗ jβihβjS; ð2Þ

where α ¼ ðαð1Þ;…; αðM0ÞÞ ∈ CM0
and β ¼ ðβð1Þ;…;

βðMÞÞ ∈ CM index M0- and M-mode coherent states of A
and S respectively, and Pðα; βÞ⩾0 is a probability distri-
bution. The signal energy constraint takes the formR
CM0 d2M

0
α
R
CM d2MβPðα; βÞðPM

m¼1 jβðmÞj2Þ ¼ N.
Given a probe jψiAS, we have the output state ρG ≔

idA ⊗ A⊗M
G ðjψihψ jASÞ [ρG ¼ idA ⊗ A⊗M

G ðρASÞ for a
classical probe (2)], where idA is the identity channel on
A. EstimatingG from the state family fρGg is subject to the
quantum Cramér-Rao bound (QCRB) [12,14,33], a brief
description of which follows. A measurement on the AS
system is described by a collection of positive operators
fΠ̂ygY indexed by the measurement result y ∈ Y and
summing to the identity. The probability distribution of
the result Pðy;GÞ ¼ TrρGΠ̂y, and an estimator ǦðyÞ based
on this measurement is called unbiased for G ifR
Y dyǦðyÞPðy;GÞ ¼ G for all G in the interval of interest.
The (classical) Cramér-Rao bound (CRB) bounds the
mean squared error (MSE) E½Ǧ − G�2 of any unbiased
estimator as E½Ǧ − G�2 ≥ 1=J G½Y�, where J G½Y� ≔
E½∂G lnPðY;GÞ�2 ¼ −E½∂2

G lnPðY;GÞ�, is the (classical)
Fisher information (FI) on G of the measurement Y [34].
Different measurements fΠ̂ygY result in different CRBs.
On the other hand, there exists a Hermitian operator L̂G

called the symmetric logarithmic derivative (SLD) satisfy-
ing ∂GρG ≡ ∂ρG=∂G ¼ ðρGL̂G þ L̂GρGÞ=2. The quantum
Fisher information (QFI) is defined as KG ¼ TrρGL̂

2
G, and

the QCRB E½Ǧ −G�2 ≥ K−1
G minimizes the right-hand side

of the CRB over all unbiased measurements and defines the
quantum-optimal sensing performance. The QFIKθ on θ of
an arbitrary state family fρθg is related to the fidelity
Fðρθ; ρθ0 Þ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρθ

p
ρθ0

ffiffiffiffiffi
ρθ

pp
between the states of the

family via [35]

Kθ ¼ −4∂2
θ0Fðρθ; ρθ0 Þjθ0¼θ: ð3Þ

It is expedient for us to work with the QFI on the parameter
τ ¼ κt ¼ arccosh

ffiffiffiffi
G

p
. Since the SLDs with respect to τ and

G satisfy L̂G ¼ ð∂τ=∂GÞL̂τ, KG ¼ ð∂τ=∂GÞ2Kτ so that
maximizing either QFI suffices.
Optimal gain sensing.—We first obtain an upper bound

K̃τ ≥ Kτ on the QFI in the hypothetical situation where the
output of ASE is available for measurement. Given a probe
jψiAS, we then hold the state family fΨτ ¼ jψτihψτjg

FIG. 1. A general ancilla-assisted parallel strategy for sensing
the gain G of a QLA AG (dashed box). Each of M signal (S)
modes (one of which is shown) of a probe jψiAS possibly
entangled with an ancilla system A is subject to a two-mode
squeezing interaction ĤI ¼ iℏκðâ ê−â†ê†Þ between the S mode
(annihilation operator â) and an environment (E) mode (annihi-
lation operator ê) initially in the vacuum state. An estimate Ǧ of
G ¼ cosh2 κt is obtained using the optimal joint measurement on
the output of AS.
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defined by jψτiASE ¼ ÎA ⊗ ½⊗M
m¼1 ÛmðτÞ�jψiASj0iE, where

ÛmðτÞ ¼ expð−iĤIt=ℏÞ is the paramp unitary acting on the
mth signal and environment mode pair parametrized by
τ ¼ κt. The QFI K̃τ of fΨτg upper bounds Kτ due to the
monotonicity of the QFI with respect to partial trace over
E [35].
We can show (see Ref. [36], Sec. I) that the

paramp takes the input jniSj0iE to ÛðτÞjniSj0iE ¼
sechðnþ1Þτ

P∞
a¼0

ffiffiffiffiffiffiffiffiffiffi
ðnþa

a Þ
q

tanha τjnþ aiSjaiE. Thus, the par-
ampcoherently adds a randomnumberaof photons to bothS
and E according to the negative binomial distribution
NBðnþ 1; sech2τÞ [40]. For any probe (1), we have

jψτiASE ¼
X
a≥0

jψa;τ⟫ASjaiE; ð4Þ

where jψa;τ⟫AS ¼
P

n≥0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnAτðn; aÞ

p jχniAjnþ aiS are
non-normalized states of AS and Aτðn; aÞ ¼Q

M
m¼1ðnmþam

am
Þsech2ðnmþ1Þτ tanh2amτ is a product of negative

binomial probabilities. For jψτ0 iASE the output state on ASE
obtained by passing jψiAS through a QLA of gain
G0 ¼ cosh2τ0, the fidelity between the outputs can be shown
after some computation ([36], Sec. II) to be

FðΨτ;Ψτ0 Þ ¼ hψτjψτ0 i ¼
X∞
n¼0

pnν
nþM; ð5Þ

where ν¼sechðτ0−τÞ¼½ ffiffiffiffiffiffiffiffiffi
GG0p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðG−1ÞðG0−1Þp �−1∈

ð0;1�. Using Eq. (3), we obtain the sought upper bounds
K̃τ ¼ 4ðN þMÞ and eKG ¼ ½ðN þMÞ=GðG − 1Þ� on the
true QFI with respect to τ and G.
Returning to the original problem in which only ρτ ¼

TrEΨτ is accessible, we have from Eq. (4) that ρτ ¼P
a≥0 jψa;τ⟫⟪ψa;τjAS. For given fpng in Eq. (1), consider

probes for which fjχniAg is an orthonormal set. Such
probes, called number-diagonal signal (NDS) probes, are
known to be optimal probes for diverse sensing problems
[11,24,41]. Orthonormality of the fjχniAg implies that
⟪ψa;τjψa0;τ0⟫ ¼ ⟪ψa;τjψa;τ0⟫δa;a0 , so the output fidelity
Fðρτ; ρτ0 Þ ¼

P
a≥0 ⟪ψa;τjψa;τ0⟫ ¼ FðΨτ;Ψτ0 Þ of Eq. (5).

Thus, the QFIs on τ and G

Kτ ¼ 4ðN þMÞ; KG ¼ N þM
GðG − 1Þ ð6Þ

of NDS probes saturate the upper bounds calculated above.
This result exhibits several remarkable features. First,

any NDS probe with the givenN andM is quantum optimal
regardless of its exact signal photon number distribution
fpng. This generalizes the single-mode Fock-state opti-
mality result [15] not just to multimode Fock states but to
the infinite class of ancilla-entangled multimode NDS
probes including the workhorse of optical quantum

information—the two-mode squeezed vacuum (TMSV)
state. Second, gain sensing performance explicitly depends
on the number M of signal modes. This contrasts sharply
with loss sensing, for which the optimal QFI is M
independent [11]. Physically, this difference stems from
the gain-dependent quantum noise introduced by a QLA
that makes the output states of two QLAs with distinct
gains distinguishable even for a vacuum input. Increasing
the number of signal modes further improves their dis-
tinguishability. In contrast, vacuum probes of any M are
invariant states of loss channels and are therefore useless
for sensing them. Finally, the roles of N and M in Eq. (6)
are seen to be equivalent so that one resource can be
exchanged for the other, providing additional flexibility in
the choice of optimal probes.
For an M-mode signal-only coherent-state probe

j ffiffiffiffiffiffi
N1

p iS1 � � � j
ffiffiffiffiffiffiffi
NM

p iSM with
P

M
m¼1Nm ¼ N, the output

state ρG is a product of single-mode Gaussian states.
The QFI on G follows from the results of [42] after some
algebra:

Kcoh
G ¼ N

Gð2G − 1Þ þ
M

GðG − 1Þ : ð7Þ

The convexity of QFI in the state [43] and the linear
dependence on N of the first term in the above expression
imply that no classical probe [Eq. (2)] withM signal modes
can beat the QFI of Eq. (7). Both Eqs. (6) and (7) contain a
term proportional to N (the photon contribution) and
another proportional to M (the modal contribution). The
modal contribution in the optimal quantum and classical
QFI is identical, but the quantum-optimal photon contri-
bution is at least twice the classical photon contribution and
far exceeds it in the G ∼ 1 regime (see Fig. 2).
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FIG. 2. The optimal quantum (blue) [Eq. (6)] and classical QFI
(red) [Eq. (7)] for N ¼ 6 and M ¼ 9. Also shown are the FI of
homodyne (purple dash-dotted), heterodyne detection (green
dotted), and the inverse MSE of the photodetection-based
estimator [Eq. (8)] (yellow dashed) for a coherent-state probe.
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Performance of standard measurements.—Suppose that
an arbitrary NDS probe (1) is input to a QLA of unknown
gain and that we measure the basis fjχniAg and also the
photon number in each of the M output signal modes.
Denote the measurement result ðX;YÞ, where X ¼
ðX1;…; XMÞ if jχXiA is the measurement result on A
and Y ¼ ðY1;…; YMÞ if Ym photons are observed in the
mth output signal mode. We can then show ([36], Sec. III)
that the FI J τ½X;Y� ¼ 4ðN þMÞ for any NDS probe, so
that this measurement achieves the quantum-optimal
QFI (6).
While this implies that the maximum likelihood estima-

tor based on ðX;YÞ achieves the quantum limit for a large
number of copies [34,40], a quantum-optimal estimator
may not exist for a finite sample [34]. For a multimode
number-state probe ⊗M

m¼1 jnmiSm with
P

M
m¼1 nm ¼ N,

consider the estimator

Ǧ ≔ ðY þMÞ=ðN þMÞ; ð8Þ

where Y ¼ P
M
m¼1 Ym is the total photon number measured

in the signal modes. Using the fact that Y − N∼
NBðN þM; sech2 τÞ, we can show that Ǧ is unbiased

and that Var½Ǧ� ¼ ½GðG − 1Þ=ðN þMÞ� so the QCRB
(6) is achieved even on a finite sample for any multimode
number-state probe.
On the other hand, a G-independent measurement

that achieves the coherent-state QFI (7) is unknown. The
estimator Ǧ above remains unbiased but has the sub-
optimal variance MSEcoh½Ǧ� ¼ ½GðG − 1Þ=ðN þMÞ� þ
½G2N=ðN þMÞ2� ([36], Sec. IV.C). Homodyne and hetero-
dyne detection in each output mode have the respec-
tive (suboptimal) FIs J cohþhom

G ¼ ½N=Gð2G − 1Þ� þ ½2M=
ð2G − 1Þ2� and J cohþhet

G ¼ ½ðN=2þMÞ=G2�. These Fisher
information quantities are compared in Fig. 2.
Practical quantum advantage.—To examine whether a

quantum advantage can be demonstrated in the laboratory,
we study the estimation of G using single-photon probes
and photodetectors of efficiency ηd < 1 (see Fig. 3). For
any multimode number-state probe ⊗M

m¼1 jnmi, photon
counting in each output mode remains the QFI-achieving
measurement and the QFI can be obtained numerically
([36], Sec. IV.B). We also calculate the QFI of a coherent-
state probe ⊗M

m¼1 j
ffiffiffiffiffiffiffi
Nm

p i of the same N and M ([36],
Sec. IV.A), and also the MSE of the unbiased estimator

Ǧ ¼ ðη−1d Y þMÞ=ðN þMÞ ð9Þ

generalizing that of Eq. (8) ([36], Sec. IV.C).
Since single-photon states are more readily prepared

than multiphoton Fock states [44], we compare their
performance relative to coherent states in Fig. 4. The
MSE MSE1-photon½Ǧ� of Ǧ for single-photon probes (for
which M ¼ N) is always less than that for coherent states
(See Ref. [36], Sec. IV.C, and Fig. 4, left and center).
Moreover, for each value of ηd, there is a threshold value of
the gain (which is independent of M) beyond which
MSE1-photon½Ǧ� falls below the QCRB for coherent states
(Fig. 4, right), so that a quantum advantage is guaranteed
for sensing gain values known to lie beyond the threshold.

FIG. 3. Gain estimation under inefficient detection. Each mode
of a product signal-only probe⊗M

m¼1 jψmi passes through a QLA
AG. Detection with quantum efficiency ηd is modeled by a beam
splitter with mode f̂ in vacuum and output mode b̂ that is
measured using an ideal photodetector D, resulting in photon
count Ym.
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FIG. 4. Performance of single-photon probes with inefficient detection. Left and center: QCRBs of multimode single-photon (blue
solid) and coherent-state (red solid) probes along with the MSE of Ǧ of Eq. (9) for single-photon (blue dashed) and coherent-state (red
dashed) probes for ηd ¼ 0.7 (left) and ηd ¼ 0.9 (center) with M ¼ N ¼ 20. Right: the threshold gain beyond which single-photon
probes and photon counting beat the coherent-state QCRB.
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Energy-constrained Bures distance.—As our final result,
we derive the energy-constrained Bures distance [45]
between the amplifier channels A⊗M

G and A⊗M
G0 . This

distance is one of several energy-constrained channel
divergence measures between bosonic channels, with
many applications in quantum information and sensing
[24,25,45–53]. Its calculation is equivalent to minimizing
the output fidelity FðρG; ρG0 Þ over all M-signal-mode
probes (1) with average signal energy N. We show ([36],
Sec. V) that this minimum equals FminðρG; ρG0 Þ ¼
νM½ð1 − fNgÞνbNc þ fNgνbNcþ1�, where bNc and fNg
are, respectively, the integer and fractional parts of N.
This results adds QLAs to the short list of channels for
which exact values of energy-constrained channel diver-
gences are known and also gives bounds on other diver-
gences between QLAs [54].
Discussion.—We have delineated the optimal precision

of sensing the gain of QLAs regardless of their implemen-
tation platform and explicit physical realization. Our
problem formulation constrained the average signal energy
to equalN but since the optimal QFI increases withN, NDS
states of average energy N are optimal over all probes with
an average energy less than or equal to N.
For multimode number-state probes, we identified a

concrete quantum-optimal estimator and showed the in-
principle feasibility of quantum-enhanced gain sensing
using standard single-photon sources [44] and photon
counting even under inefficient detection. Additional loss
in the signal path upstream of the QLA can also be
accounted for by our calculation techniques. The use of
brighter TMSV sources is expected to harness the photon
contribution to the QFI of Eq. (6) even better, and finding
good measurements and estimators for TMSV probes with
imperfect detection is of great interest for future work. Our
study can be generalized to the estimation of multiple [55]
and distributed [56] gain parameters. The implications of
our results for relativistic metrology problems [15,57] also
remain to be explored.
Noisy attenuator channels (relevant to quantum illumi-

nation, noisy imaging, and quantum reading [17–22]
among other applications), noisy amplifier channels (which
model laser amplifiers with incomplete inversion [8,10]),
and additive noise channels (relevant to noisy continuous-
variable teleportation [58]) are compositions of pure-loss
channels with QLA channels. Our Letter here, together
with complementary results in loss sensing [11], is
expected to be basic to a general theory of fundamental
limits for sensing such noisy phase-covariant Gaussian
channels, while highlighting the role of M as an important
resource therein.
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