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Majorana zero modes (MZMs) promise a platform for topologically protected fermionic quantum
computation. However, creating multiple MZMs and generating (directly or via measurements) the
requisite transformations (e.g., braids) pose significant challenges. We introduce fermion-parity-based
computation (FPBC): a measurement-based scheme, modeled on Pauli-based computation, that uses
efficient classical processing to virtually increase the number of available MZMs and which, given magic
state inputs, operates without transformations. FPBC requires all MZM parities to be measurable, but this
conflicts with constraints in proposed MZM hardware. We thus introduce a design in which all parities are
directly measurable and which is hence well suited for FPBC. While developing FPBC, we identify the
“logical braid group” as the fermionic analog of the Clifford group.
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Pauli-based computation (PBC) is an intriguing meas-
urement-based alternative to the circuit model of quantum
computing [1]. By performing only a minimal number of
adaptive Pauli measurements on “magic state” inputs, PBC
allows one to virtually expand the number of qubits in a
quantum computer and forego the need to perform Clifford
gates [2], at the cost of efficient classical processing. While
PBC is formulated for qubits, quantum computing can also
use fermionic modes [3]. Fermionic quantum computing is
better suited to certain tasks, a notable example being
many-electron, including quantum chemistry, simulations
[3,4]. For the fermionic hardware, Majorana zero modes
(MZMs) are a promising option, as they offer topological
protection of quantum information [4–9].
In this Letter, we formulate fermion-parity-based com-

putation (FPBC), a fermionic counterpart of PBC, and
propose a MZM hardware design well-suited to its imple-
mentation. En route, we identify the “logical braid group”
as the group of all Clifford-like fermionic gates. For MZM
computing, FPBC does not just mean fewer MZMs: it is a
new computational model, distinct from the circuit model
of previous measurement-based approaches [9–13], that
eliminates the need to generate braiding and other Clifford-
like transformations [8–15], and thus avoids the associated
overheads [13,16,17].
A key requirement for FPBC is to be able to measure

potentially complicated strings of MZMs. We find that
configuration constraints present obstacles to this in
existing MZM designs. Our design, based on top-transmon
ingredients [18–21], is free of such constraints.
Furthermore, unlike circuit-based computing in existing
designs [4,9–13,21], FPBC with our design uses no ancilla
MZMs. The only remaining limitation is locality, as we
shall explain.

Fermionic quantum computing and logical braids.—
Consider 2n Majorana operators γj ¼ γ†j (j ¼ 1;…; 2n)
with anticommutator fγj; γkg ¼ 2δjk. These 2nmodes have
total fermion parity Γ2n ¼ in

Q
2n
j¼1 γj. Let MajðmÞ denote

the group of Majorana strings generated by γ1;…; γm and
the phase factor i, and MajðmÞ denote the subgroup of
MajðmÞ that commutes with Γ2n. We call the Hermitian
elements of MajðmÞ fermion parity operators; FPBC will be
based on their adaptive measurements.
To develop FPBC, we first consider fermionic quantum

computing in the circuit model, and then, analogously to
PBC [1,22], show how FPBC can simulate it. We consider
fermionic circuits based on the universal gate set fW4;abcd ¼
exp ½iðπ=4Þγaγbγcγd�; T2;ab ¼ exp ½ðπ=8Þγaγb�g [3]. Note
that noncommuting W4 operators can generate all possible
gates of the formW2k;i1i2…i2k ¼ exp ½�ikþ1ðπ=4Þγi1γi2…γi2k �
(including braid operatorsW2;ab [7,23–25]). This is because
W4;abcd is a “logical braid” between γa and iγbγcγd, the latter
being a “logical Majorana” relative to γa (i.e., a parity-odd,
HermitianMajorana string anticommutingwith γa [26]), and
hence can send W2k ↦ W2k�2 under conjugation. Because
of this observation we refer to the group generated by theW4

as the logical braid group and its elements, including allW2k,
as logical braids. Under conjugation,W4 gates map between
strings in Majð2nÞ [31]; they are Clifford-like. Indeed,
logical braids are the only parity-preserving unitaries with
this property [32].
A key insight for FPBC is that a T2 gate can be

implemented via a “magic state gadget.” Here, we describe
this procedure using a dense encoding [7] of magic states,
which is more suitable for our fermionic hardware
(cf. below) and a more efficient use of quantum resources
[4]. To implement t T2 gates, assume we have a separate

PHYSICAL REVIEW LETTERS 128, 180504 (2022)

0031-9007=22=128(18)=180504(7) 180504-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5848-291X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.180504&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1103/PhysRevLett.128.180504
https://doi.org/10.1103/PhysRevLett.128.180504
https://doi.org/10.1103/PhysRevLett.128.180504
https://doi.org/10.1103/PhysRevLett.128.180504


register Rt of 2tþ 2 Majoranas with its own conserved
parity Γ2tþ2. Define two sets of operators in Majð2tþ 2Þ:
fX1; X2;…; Xtg and fsj ¼ iγ2j−1γ2jjj ¼ 1;…; tg, obeying
fsj; Xjg ¼ 0 (for all j) and ½sj0 ;Xj�¼½Xj0 ;Xj�¼½sj0 ;sj�¼0

(j0 ≠ j). Then let register Rt be in the state jψ ðtÞi ¼
T2;12T2;34…T2;2t−1 2tjψXi, where jψXi is the þ1 eigenstate
of all Xj operators. Thus, the register contains tmagic states
densely encoded into 2tþ 2 Majoranas. The gate T2;ab ¼
exp ½ðπ=8Þγaγb� can then be applied to Majoranas a, b in a
separate register Rn with its own conserved parity,
using the procedure or “gadget” (shown in Fig. 1):
Mj;ab ¼ RjΠ

mj

isjγaγb
, for j ∈ f1;…; tg, enacted on both

registers. Here, Πmj

isjγaγb
is the projector representing the

measurement of isjγaγb with outcome mj, and Rj ¼
fexp½ðπ=4Þγbγa�gð1þmjÞ=2 exp½ðπ=4ÞγaγbXj� is a measure-
ment-dependent logical braid.
Magic states can be distilled from multiple approximate

copies with logical braids and measurements, using
magic state distillation [4,31,35,36]—this is one of the
leading candidates for preparing high-fidelity magic
states in Majorana-based architectures, and thereby for
achieving fault-tolerant, universal quantum computation
[4,7,9,27,37,38]. Much work has been devoted to optimiz-
ing its resource cost [39–42] and finding alternatives that
can also be used to prepare magic states [43,44].
Fermion-parity-based computation.—By performing

adaptive fermion parity measurements only on Rt initial-
ized in state jψ ðtÞi, and efficient classical processing, FPBC
can simulate an arbitrary fermionic circuit C on Rn.
Without loss of generality, we take C to act on Rn

initialized in the þ1 eigenstate of all sðcÞj [j ¼ 1;…; n;
(c) indicatesRn operators], and that it uses t ¼ polyðnÞ T2

gates, interspersed with logical braids Bi (recall that T2

gates and logical braids form a universal gate set [3]). C

ends by measuring all sðcÞj on Rn, i.e., sampling the output
distribution. The bit string b of these final measurement
results comprises the output of the circuit.

The first step towards simulating C by FPBC is to
replace all T2 gates with magic state gadgets. As shown in
Fig. 1, C then involves logical braids Bi and Ri, fermion
parity measurements (labeledM0

i for i ¼ 1;…; t) from the t

uses of the gadget, and final sðcÞj measurements. We denote

these final measurements M0
tþj ≡ sðcÞj (j ¼ 1;…; n). The

next step is to eliminate all logical braids, by commuting
the Bi and Ri to the end of the circuit, thereby updating
M0

i ↦ Mi ∈ Maj½2ðnþ tþ 2Þ�. Since the quantum state
after the final measurement is discarded, the logical braids
now have no effect on the output, and can be deleted. For
what follows, we append a set of dummy measurements of

all sðcÞj to the start of C, shown in Fig. 1, which have

outcomes þ1 on Rn’s initial state, and define Mj−n ≡ sðcÞj

for j ¼ 1;…; n. At this stage, either ½Mi;Mj� ¼ 0 or
fMi;Mjg ¼ 0 for all i, j. We now show that one can limit
the measurements to a mutually commuting set, thereby
reducing the number needing to be performed and restrict-
ing the computation to Rt. To achieve this, we go through
the Mi sequence, starting with M1, and, if we reach an i
such that fMi;Mjg ¼ 0 for some j < i, we delete Mi and
replace it with the logical braid

Vðλi; λjÞ ¼
1þ λiλjMiMjffiffiffi

2
p ¼ exp

�
π

4
λiλjMiMj

�
; ð1Þ

where λj ¼ �1 is the measurement outcome of Mj and
λi ¼ �1 is chosen uniformly at random. As in PBC [1,22],
this simulates the measurement of Mi: fMi;Mjg ¼ 0

implies equal measurement probabilities 1=2 forMi, which
is simulated by uniformly choosing λi at random, and since
λjMj ¼ 1 on the premeasurement state, Vðλi; λjÞ produces
the correct corresponding postmeasurement state. We then
commute Vðλi; λjÞ past all Ml>i. Again, it can then be
deleted. (Henceforth we leave the resulting updates ofMl>i
implicit.) For the final nmeasurements, ifMi is replaced by
its corresponding Vðλi; λjÞ, we include the classically
randomly generated value of λi in b.
Finally, we are left with a sequence of mutually

commuting Mi. For j ≤ 0 we still have dummy measure-

ments Mj ¼ sðcÞj and λj ¼ 1, which completely specifies a
basis of Rn (within a given parity sector). Hence, since
½M1;Mj� ¼ 0 for all j ≤ 0, we can restrictM1 toRt without
changing its measurement distribution or postmeasurement
state. We can then restrictM2 toRt, since ½M2;Mj� ¼ 0 for
all j ≤ 1, and so on. Doing this for all Mj>0 and then
discardingMj≤0, we thereby restrict the entire computation
to Rt. There are only t independent commuting parities
(besides Γ2tþ2) onRt. Using efficient classical computation
[45], one computes the outcomes for those Mj dependent
on precedingMi, and deletes them. The quantum part of the
computation is thus reduced to the adaptive measurement

FIG. 1. An arbitrary fermionic circuit C on register Rn, to be
simulated by FPBC. The T2 gates are enacted via magic state
gadgets (dashed boxes), with magic states encoded in registerRt.
The gadgets involve a two-register fermion parity measurement
M0

j and a measurement-dependent logical braid Rj. C involves t
uses of the gadget, interspersed with logical braids Bi, and ends

with the measurement of all sðcÞj . Dummy measurements of all

sðcÞj are appended to the start of C.

PHYSICAL REVIEW LETTERS 128, 180504 (2022)

180504-2



of p ≤ t mutually commuting parities on Rt. The remain-
ing entries in b (those not filled by the classically sampled
λi) come from the outcomes of those Mj>t that were not
replaced by logical braids; via the process described above
these outcomes are either measured explicitly or computed
classically. Thus, assisted with polyðnÞ-time classical
processing, we can sample from C’s output distribution
using FPBC.
FPBC hardware.—To perform FPBC, one needs hard-

ware such that the fermion parities Mi on Rt are meas-
urable. In existing MZM designs, one can measure only
those Mi that meet certain configuration constraints. For
example, in Majorana transmon setups [4,8,21,46] one has
“readout islands” with a pair of MZMs on each, and only
those Mi are measurable that feature no MZM without its
readout-island pair. Magic state gadgets in these setups,
however, require interisland logical braids and/or measure-
ments, which can generate FPBCs with unmeasurable Mi
[32]. (Subsequent braids may bring Mi to a measurable
configuration; however, in typical setups, and for large t,
only for a vanishingly small proportion of Mi does just a
constant-in-t number of such braids suffice [32]).
We introduce a design (sketched in Fig. 2) that is free of

such configuration constraints. The core ingredients and the
corresponding physical considerations are based on
Refs. [20,21]. The MZMs appear at trijunctions between
Majorana bound states at the ends of spin-orbit nanowires
on superconducting islands [5,47–60]. The islands are
connected via tunable Josephson junctions (JJs) to other
islands and, for some islands, also to one of two super-
conducting plates, called the bus and phase ground. This
entire system is enclosed within a transmission line
resonator. As we next explain, this has a parity-dependent
resonance frequency, which allows one to measure the Mi
via dispersive readout [15,18,20,46,61,62]. [The similar

parity dependence of the transmon ground state can be used
to implement (approximate) T2 gates [20,21] and hence to
supply (noisy) magic states for distillation].
A JJ between superconductors a and b, with phases ϕa

and ϕb of their superconducting order parameters, respec-
tively, contributes a term EJ;ab½1 − cos ðϕa − ϕbÞ� to the
Hamiltonian [63], for some energy EJ;ab that can be
controlled by fluxes or electrostatic gates [21,64,65]. By
tuning these control parameters, each JJ can thus be turned

on or off, corresponding to Josephson energy Eðon=offÞ
J;ab ,

where EðonÞ
J;ab ≫ EðoffÞ

J;ab . The kth island has charging energy
scale EC;k ¼ e2=2Ck for total capacitance Ck between
island k and all other superconductors to which it is

connected. We take Eðon=offÞ
J;ab to be of the same order of

magnitude for all ab and similarly for EC;k across all k. In
what follows, each island will be connected (directly or via
a path of “on” JJs) to either the bus or phase ground; we call
these bus-connected and ground-connected islands, respec-
tively. We assume that the Josephson energy dominates for

all islands, namely, that EðoffÞ
J;ak ≳ EC;k for all islands a, k

with JJs connecting them. Given this, and that

EðonÞ
J;ak=EC;k ≫ EðoffÞ

J;bl =EC;l (for all a; k; b; l with JJs), any
bus-connected (ground-connected) island has supercon-
ducting phase pinned to that of the bus (phase ground)
[21]. Hence, we can view the entire system as having a
single effective JJ between bus- and ground-connected
subsystems. The corresponding Josephson and charging
energies are EJ and EC, respectively, associated with sums
of (“off”-state) Josephson energies and capacitances
between the bus- and ground-connected subsystems. We
will take EJ ≫ EC, i.e., work in the transmon regime [18].
The jth trijunction has Hamiltonian [14,15,21,66]

VM;j ¼
EM

2

X3
a;b;c¼1

ϵabcAj;aðiγj;bγj;cÞ

¼ iEMjAjjγj;þγj;−: ð2Þ

Here γj;1, γj;2, and γj;3 are the Majorana bound states at the
ends of the nanowires at the jth trijunction and EM is the
overall trijunction energy scale. The Aj;a include phase-
dependent cosines encoding the 4π-periodic Josephson
effect [5,67] (cf. the flux-dependent couplings of
Refs. [15,21]) and jAjj2 ¼

P
3
a¼1 A

2
j;a. The coupling of

the three Majorana bound states results in a MZM which
we denote γj;0, and two more Majorana modes γj;þ and γj;−
encoding a nonzero-energy fermion [32].
We take EM ≪ ℏΩ0, where Ω0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
=ℏ sets the

transmon level spacing [18]; the system is thus a top-
transmon perturbed by the VM;j [32]. For low-lying levels,
VM;j can be taken at zero bus-ground phase difference [21].
Without VM;j, the effect of Majorana bound states is a
contribution ð−1ÞmδεmP to the mth transmon level energy,

FIG. 2. Section of FPBC hardware. Left: top and bottom black
dashed regions are superconducting plates—the bus and phase
ground, respectively. Thick black lines correspond to nanowire-
hosting superconducting islands while black dots indicate tri-
junctions between nanowires. The design may be continued to the
right and left. Right: more detailed illustration of the region
indicated. Superconducting plates and islands are shown in blue.
Nanowires (yellow) host Majorana bound states (labeled 1, 2, and
3) at their ends, combining to form a single Majorana zero mode
at each trijunction (dashed circles). In both panels, tunable
Josephson junctions are indicated with red lines.
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where δεm ∝ expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p Þ, and P is the joint fermion
parity of Majorana bound states on bus-connected islands
[21,32]. In considering VM;j, we work with EM ≫ δεm
and to first order in δεm=EM. This allows one to
project P to Q ¼ P−PP†

−, where P− ¼ Q
j Pj;− with

Pj;− ¼ ð1 − iγj;þγj;−Þ=2.
Dispersive readout thus measures Q. The only fermion

operators contributing toQ are the γj;0, with γj;0 enteringQ
if and only if there are an odd number of bus-connected
islands around trijunction j. With one bus-connected
island at trijunction j, only the γj;a on that island features
in P; then the projection gives P−γj;aP†

− ¼ Aj;aγj;0=jAjj
[32]. For three bus-connected islands at trijunction j, all
three γj;a feature in P; we have P−ðiγj;aγj;bγj;cÞP†

− ¼
P−ðiγj;0γj;þγj;−ÞP†

− ¼ −γj;0. With two bus-connected
islands, trijunction j contributes a scalar factor to Q:
P−ðiγj;aγj;bÞP†

− ¼ −
P

c ϵabcAj;c=jAjj. For a given con-
figuration of bus- and ground-connected islands, and
focusing on the lowest two transmon levels (m ¼ 0, 1),
Q can be measured via the shift

ωshift ¼
C
2
ðδε1 þ δε0Þ

Y
jj1;2 islands
bus connected

Aj;αj

jAjj
ð3Þ

in the resonator’s resonance frequency upon flipping Q’s
eigenvalue. Here, C is a constant dependent on transmon
and resonator parameters [32], the product runs over
trijunctions around which one or two islands are bus
connected, and αj is set by the jth trijunction’s bus-
connected island configuration.
Arbitrary parity measurement.—The preceding discus-

sion hints that our design allows for the measurement of
any MZM parity Mi. We now explain this in detail. Since
γj;0 features in Q when an odd number of islands surround-
ing it are bus connected, precisely those γj;0 that are
endpoints of a path of bus-connected islands feature in
Q (see Fig. 3). We convert this observation into the
following prescription: Let Mi feature those γj;0 with j
in some set SMi

. Index the labels j ∈ SMi
with kj ¼

1;…; jSMi
j such that kj0 < kj if γj;0 is to the right of or

directly below γj0;0 [cf. Fig. 3(f)]. Pair the γj;0 with
successive kj (i.e., first with second, third with fourth,
etc.) and, for each pair, draw the shortest clockwise path of
islands between the two MZMs. We then connect all
islands featuring in an odd (even) number of paths to
the bus (phase ground).
The measurement configuration thus formed for Mi is

realizable with the JJs indicated in Fig. 2. The shortest
clockwise path between a MZM pair is one of five basic
paths shown in Figs. 3(a)–3(e). A combination of these is
realizable if there exists a path through “on” JJs from every
bus-connected (ground-connected) island to the bus (phase

ground), and only “off” JJs link bus-connected and ground-
connected subsystems. In Fig. 3 we indicate how the JJs
achieve this for each basic path. All pairs of basic paths are
trivially realizable if we omit Path (e), since then no
bottom-row horizontal island is bus connected, and bus-
connected vertical islands are always adjacent to a bus-
connected horizontal island. There are a further five pairs
that include Path (e) [(e)(i) for i ¼ a;…; e] which all can be
checked to be realizable. Hence so too are all measurement
configurations produced by the prescription. A 12-MZM
example is shown in Fig. 3(f).
We thus find that implementing FPBC with our design

could reduce the resource cost of MZM-based quantum
computation. The required number of MZMs is reduced,
both since the computation is restricted to Rt and since no
ancilla MZMs are needed. We also reduce the total number
of operations, by deleting all logical braids, and avoiding
the overheads from braiding processes [68].
However, there is a residual limitation of locality in our

design; it cannot be used for arbitrarily large registersRt. In
ideal systems, this arises via the suppression of ωshift with
the number L of islands in the system. Since EJ and EC
characterize the effective JJ between bus- and ground-
connected subsystems, they scale as OðLÞ and OðL−1Þ,
respectively, so we have δεm ∼ expð−cLÞ with c a constant
[69]. ωshift is further suppressed by a factor Aj;αj=jAjj for
every trijunction around which one or two islands are bus
connected. Hence, increasing the size of Rt requires the

(a) (b)

(c)

(f)

(d) (e)

FIG. 3. The configuration for measuring any parity operator M
is obtained by combining five basic paths [labeled (a)–(e)] of bus-
connected islands; these are the shortest clockwise paths con-
necting pairs of MZMs. Paths (a)–(d) have variable length while
Path (e) has a fixed length. Solid (dashed) lines in all panels
indicate bus-connected (ground-connected) islands. Filled (un-
filled) dots are MZMs that do (do not) feature in M. Only “on”
Josephson junctions are indicated (red lines); others are omitted
for clarity. As an example, Panel (f) shows the measurement
configuration for a 12-MZM parity operator. The MZMs are
indexed as in the main text and basic paths connect MZMs j and
jþ 1 for odd j. When combining the basic paths, precisely those
islands belonging to an odd number of paths are bus connected.
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ability to resolve increasingly small ωshift. In realistic
setups, larger and more complex systems may also incur
more accidental features (e.g., material defects, accidental
quantum dots). These may reduce coherence times and
measurement fidelities [70–73], and pose challenges for
calibrating parity measurements. However, one may be able
to use techniques similar to those for mapping defect
features and locations in transmon systems [70,74,75] to
facilitate calibration, and reduce the number of defects with
new materials techniques [73,76–79]. Additionally, in
larger setups, more JJs allow for more quasiparticle poison-
ing events, which are not inhibited by a strong charging
energy as they are in other designs [9]. However, these rates
may still be small enough to be neglected on relevant
timescales [80,81], and could be further reduced with
quasiparticle traps [82,83].
Conclusion.—We have introduced fermion-parity-based

computation, a low-resource-cost, measurement-based
model of quantum computing with Majoranas, and have
explained how it is able to simulate any fermionic quantum
circuit. We introduced a MZM hardware design that is free
of constraints on measurable operators, beyond those of
locality, and hence is well suited to FPBC. We expect that a
t-MZM FPBC, similarly to PBC [1], can be simulated by a
(t − k)-MZM FPBC if supplemented by exp(k)-time
classical processing; thus with FPBC one could minimize
the quantum resources needed for fermionic computation.
To overcome the locality constraint, future work could
consider how multiple copies of our setup might be used to
measure larger fermion parities. We expect one could adapt
existing work on transmon qubit-parity measurements
[84–87] to our Majorana-transmon setup, wherein fre-
quency shifts are produced only by (suitably generalized
[28]) fermion parities. These larger setups could be made
feasible by adapting transmon-based methods for improved
measurements [88,89] and large device design and cali-
bration [90–94]. One could also investigate our hardware
design in the context of Majorana fermion codes [37,95],
taking advantage of the large set of measurable operators.
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