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Biological processes, frommorphogenesis to tumor invasion, spontaneously generate shear stresses inside
living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the
collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a
minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under
simple shear deformation.We show that an initially undeformed fluidlike tissue acquires finite rigidity above
a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems.
Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in thevicinity of the second
order critical point that governs the liquid-solid transition of the undeformed system. We further show that a
solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger
stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that
offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.

DOI: 10.1103/PhysRevLett.128.178001

Monolayers of tightly connected cells provide essential
physical barriers and filters to all organs in vivo. The tight
connections between cells allow the tissue to resist external
deformation and withstand stress, while maintaining its
integrity. At the single cell level, researchers have used a
broad repertoire of experimental techniques [1–6] to reveal a
rich mechanical behavior, including power-law rheology [7]
and stress stiffening [8]. At the mesoscopic level, traction
force microscopy has allowed the mapping of intercellular
forces [9–11], revealing a rough stress landscape,with spatial
fluctuations correlated over several cells [12–15].
There is increasing consensus that mechanical deforma-

tions can directly influence collective cell behavior [16–20]
and play a central role in driving developmental processes
[21–28], physiology [14,29–33], and tumor progression
[34–36]. Experiments [30,37–39] have shown that epithelial
monolayers respond nonlinearly to external mechanical
stretch, with observed stress stiffening and even fracturing.
Similar behavior has been observed in tissues deformed by
internal active motile forces [40] and in curved epithelial
sheets enclosing an expanding lumen [41]. Importantly, these
experimental studies have typically focused on probing the
behavior of solidlike tissue,where cells do not spontaneously
exchange neighbors. On the other hand, the last decade has
seen a surge of evidence demonstrating that living tissue can
spontaneously undergo transitions between a solidlike
(jammed) state and a fluidlike (unjammed) state [42–55].
Despite its fundamental importance and direct relevance to
biology, the response of a cell collective to mechanical
deformation at the tissue level remains poorly understood,
especially in the vicinity of the tissue solid-fluid transition.

A growing number of theoretical studies has begun to
address this gap. Various groups have used vertex-based
models [56,57] to simulate the linear [58] and nonlinear
[59–61] rheology of a tissue under steady shear. The effects
of active tension fluctuations [60,62] and cell division [63]
have been explored. An earlier study [64] has showed that
the vertex model exhibits a nonlinear mechanical response
qualitatively similar to experiments [37]. Despite this
growing body of work, to date there is no systematic study
of the mechanical response of an amorphous epithelial
tissue near the solid-fluid transition.
Here we use a cell-vertex model to investigate the tissue

response to externally imposed shear deformations. We
show that a tissue which is fluidlike when undeformed
acquires rigidity above a threshold value of the applied
strain. This is akin to the shear-driven rigidity of fiber
networks and shear jamming in granular matter [65]. The
onset of shear-driven rigidity in the liquid state is charac-
terized by a discontinuous jump in the tissue shear
modulus, and the size of the jump depends on the distance
to the second order liquid-solid critical point of the
undeformed system. We find that nonlinear elasticity
becomes increasingly dominant closer to the critical point,
where the mechanical response is completely nonlinear.
This intrinsic critical nonlinearity was also demonstrated in
recent work on a vertex models of regular polygons, where
it was shown to arise from purely geometric constraints
[66]. While Ref. [66] focused on the response to infini-
tesimal perturbations, demonstrating the failure of linear
elasticity, here we examine the nonlinear response in
the presence of topological rearrangements that mediate
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plasticity. We additionally extend the mean-field (MF)
formulation of [66] to account for the emergence of
shear-induced rigidity in the liquid state. The MF predicts
exactly the nonlinear response and stress-stiffening expo-
nents observed in the simulations.
Model.—We model a 2D cell layer using the Voronoi-

based implementation [67,68] of the vertex model
[51,57,69–72]. Here, the cell centers frig are the
degrees of freedom and their Voronoi tessellation determine
the cellular structure [67]. The mechanics of the cell
layer is governed by the energy function [73] E ¼P

N
i¼1 ½KAðAi − A0Þ2 þ KPðPi − P0Þ2�. The first term,

quadratic in the cell areas fAig, originates from the
incompressibility of cell volume, giving rise to a 2D area
elasticity constant KA and preferred area A0 [57,73]. The
second term quadratic in the cell perimeters fPig arises
from the contractility of the cell cortex, with an elastic
constant KP [57]. Here P0 is the target cell perimeter [74],
representing the interfacial tension set by the competition
between the cortical tension and the adhesion between
adjacent cells [73]. In this Letter, we focus on the case
where all cells have homogeneous single cell parameters
KA;KP; A0; P0, while noting that the results are easily
generalized to a tissue containing cell-to-cell heterogeneity
[69] and are not qualitatively affected by this assumption.
We choose A0 ¼ Ā, the mean cell area, which also serves as
the length unit. The resulting nondimensionalized energy is

E ¼
XN
i¼1

κAðai − 1Þ2 þ ðpi − p0Þ2; ð1Þ

with κA ¼ KAĀ=KP the rescaled area elasticity. Here p0 ¼
P0=

ffiffiffiffī
A

p
is a crucial model parameter called target cell shape

index. To study tissue response beyond the linear regime
[71], we impose quasistatic simple shear using Lees-
Edwards boundary conditions [75]. Starting from a
strain-free state (γ ¼ 0), the strain γ is increased in incre-
ments of Δγ ¼ 2 × 10−3, while cell center positions are
subject to an affine displacement Δri ¼ Δγyix̂. Following
each strain step, Eq. (1) is relaxed using the FIRE algorithm
[76] until all forces Fi ≡ −∂E=∂ri are vanishingly small
(<10−14). For all results presented in this Letter, we used 84
random initial configurations and N ¼ 400 cells.
The unstrained tissue is known to exhibit a liquid-solid

transition as a function of p0 [71,74,77]. When p0 is below
the critical cell shape index p�

0 ¼ 3.81 and κA ¼ 0 the
unstrained tissue behaves as a rigid solid, with a finite
linear-response shear modulus G0 ≡ limγ→0 ∂σ=∂γ. When
p0 ≥ p�

0, the unstrained tissue is fluid and G0 ¼ 0. This
solid-fluid transition at γ ¼ 0 is now well understood in
terms of a Maxwell constraint-counting approach [71,78]
and as driven by geometric incompatibility [71,74,79–81].
Nonlinear shear response.—To characterize the

mechanical response at finite γ, we compute the tissue

shear stress [82–84] σ ¼ σxy ≡ L−2 P
i<j T

x
ijl

y
ij, where lij is

the vector of the junction shared by cells i, j, and
L is the simulation box size. At each junction,
the line tension vector is given by Tij ¼ ∂E=∂lij ¼
2½ðpi − p0Þ þ ðpj − p0Þ�l̂ij. The stress-strain relation
shown in Fig. 1(a) for a range of values of p0 and
κA ¼ 0 reveals three regimes. For infinitesimal strain the
solid responds linearly with modulus G0. In the fluid,
G0 ¼ 0. At intermediate strain (0 < γ < 1) we observe
strong stiffening. In particular, the liquid acquires a finite
rigidity for γ above a critical value γCðp0Þ. At larger strains
(γ ≳ 2), the tissue undergoes plastic rearrangements via T1
transitions, resulting in intermittent stick-slip behavior. We
define the dynamic yield stress σyieldðp0Þ by averaging σ in
the plastic regime (2 < γ < 6). The yield stress is large in a
solid tissue and decreases as p0 increases, vanishing at
p0 ∼ 4.03 (see Fig. S1 [85]). The main focus of this Letter
is the stress response in the intermediate region of strain
stiffening and strain-induced rigidity, which is also the
regime most relevant to experiments [37]. We show below
that in this regime the linear response (γ → 0) cannot
predict what happens at finite strain values.
Shear-induced rigidity transition.—When the unstrained

tissue is fluid (p0 > p�
0), an applied shear strain γ ≥ γC

yields a finite stress [Fig. 1(a)]. The line γCðp0Þ where the
instantaneous shear modulusG≡ ∂σ=∂γ vanishes identifies
a strain-induced rigidity transition [Fig. 1(b)]. In the solid
(p0 < p�

0), we observe stiffening for any finite γ, and
γCðp0Þ ¼ 0. For p0 ∈ ½p�

0; 4.03�, a nonzero value of strain
is always required for rigidity and γCðp0Þ grows monoton-
ically with p0. Beyond p0 ≳ 4 the tissue remains fluidlike
regardless of the applied shear strain. This is consistent with
the vanishing of σyield for p0 > 4.03. The shear stiffening of
the liquid was also reported in recent work on a regular
(crystalline) vertex model [58], in spring networks [80], and
in deformable particle models [93]. The mean-field analysis
below provides a universal explanation for this behavior.
The nature of the strain-induced rigidity transition

depends on the value of the area stiffness κA. This is

(a) (b)

FIG. 1. (a) Stress vs. Strain at different p0 and κA ¼ 0. An
initially fluidlike tissue undergoes strain-driven rigidity
above a critical threshold γC (location indicated by vertical
arrows). (b) The critical strain γCðp0Þ defines a boundary that
separates a fluidlike tissue from a solidlike tissue. Inset: γc vs p0

on log-log scale.
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evident in Fig. 2(a), where we plot G near the rigidity onset
as a function of γ − γC. At κA ¼ 0, the onset of rigidity is
discontinuous. The jump discontinuity at γC remains finite
well above κA ¼ 0 and becomes vanishingly small and
indistinguishable from a continuous increase in G at
κA ≳ 10−3. For γ < γC the tissue is a marginally rigid solid
[79,80] with G ≈ κA [Fig. 2(a), inset]. This is highlighted
by the behavior of the fluctuations near the strain-driven
rigidity transition, which are quantified with the nonaffinity
parameter δΓ ¼ ð1=NĀΔγ2Þhðδri − δraffinei Þ2i [94–96].
Here δri is the displacement of cell i after a strain step
and δraffinei ¼ Δγyix̂ is the affine deformation of the cell
located at ri ¼ ðxi; yiÞ. As shown in Fig. 2(b), at low area
elasticity (κA ≲ 10−3), δΓ grows monotonically with strain
and exhibits a sharp peak at γC, which coincides with the
rigidity transition. At higher κA, there is no pronounced
peak in δΓ, indicating a smooth crossover from the
marginal solid to a rigid solid, rather than a discontinuous
transition.
Relating mechanical response to cell shape.—The strain

stiffening behavior above γCðp0Þ can be understood in
terms of shear-induced changes in the structural properties
of the cellular network. Past work on vertex models has
shown that the observed cell shape index, q≡ hp= ffiffiffi

a
p i, is

an important metric of the rheological state of the tissue
[42,51]. We have examined the evolution of this order
parameter with applied shear. We note, however, that the
applied strain γ does not uniquely define the state of the

tissue due to plastic events and nonaffine deformations.
Instead we use the true strain γtrue [97] to quantify the
degree of deformation of the tissue. γtrue is calculated from
the instantaneous deformation tensor of the whole tissue
and therefore captures the degree of cumulative strain
deformation [85]. The motivation for introducing γtrue is
similar to that behind the fabric tensor in granular materials
[98] or the recoverable strain in rheology [99]. In Figs. 3(a)
and 3(b) we show the stress σ and the structural order
parameter q as functions of γtrue. It is evident from Fig. 3(b)
that under shear cell shapes in the fluid stay constant at the
energetically preferred value p0 until the fluid strain
stiffens, while in the solid q always starts out at the
universal value p�

0 and grows quadratically with γtrue.
This behavior is well described by

q ¼
�
p0; γtrue ≤ γCðp0Þ;
p�
0 þ cγ2true; γtrue > γCðp0Þ:

ð2Þ

In the next section, we offer a theoretical derivation of this
form. A similar functional dependence of the observed cell
shape on the cell elongation induced by internally gen-
erated active stresses was reported in a recent study of the
developing fruit fly [28].
Equation (2) suggests that the quantity δq≡ q − p�

0 can
be used as a morphological order parameter, quantifying
the deviation of the measured cell shape from the critical
cell shape. Moreover, Figs. 3(a) and 3(b) suggest that the
three state variables (σ; γtrue; δq) are not independent, and
that any two are sufficient to describe the state of the tissue.
Therefore, we eliminate γtrue and plot δq as a function σ
[Fig. 3(c)] for a large range of p0 ∈ ½3.72; 4�. This plot
shows typical hallmarks of a critical point, with

(a) (c)

(d)(b)

FIG. 2. Strain-driven rigidity transition. (a) The shear modulusG
near the onset of the strain-driven solidification for p0 ¼ 3.84 and
different area elasticities κA ¼ 0; 10−10; 10−8; 10−6; 10−4; 0.05.
Color legends provided in (b). Inset: G immediately below and
above the transition shows a gap that narrows with increasing κA.
The dashed line corresponds to a slope of 1 on a log-log scale. The
transition is discontinuous in G at γ ¼ γC. (b) The nonaffinity
parameter near the onset of the transition for p0 ¼ 3.84 and
different κA. Nonaffine cell displacements at below (c) and at
(d) the onset of the transition.

(a)

(c)

(b)

(d)

FIG. 3. Cell shapes under shear. (a) A plot of σ as a function of
γtrue for different p0’s spanning the solid and liquid regimes.
(b) The cell shape index q vs the true strain γtrue for the same
range of p0 as in (a). (c) A plot of δq≡ q − p�

0 vs σ for various
values of p0 as indicated. (d) Replotting of the data in (c) using
the universal scaling ansatz [Eq. (3)]. Here Δ ¼ 3=2, ϕ ¼ 1. All
figures are for κA ¼ 0.
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qualitatively different behavior above and below p�
0,

suggesting a scaling ansatz

δq ¼ jp0 − p�
0jϕQ�

�
σ

jp0 − p�
0jΔ

�
: ð3Þ

HereQ�ðxÞ are the branches of the universal scaling function
for p0>p�

0 and p0≤p�
0, respectively, with x¼σ=jp0−p�

0jΔ.
This ansatz provides a nearly perfect collapse of the data
[Fig. 3(d)], with Δ ¼ 3=2 and ϕ ¼ 1. For p0 > p�

0 the
behavior is controlled by QþðxÞ, with QþðxÞ → const for
x → 0, i.e., σ → 0, implying δq ∝ jp0 − p�

0jϕ. When
p0 < p�

0, the scaling is controlled by Q−ðxÞ. In the limit
of δq → 0 (i.e., y ¼ δq=jp0 − p�

0jϕ → 0), the inverse ofQ−
tends to a constant, hence σ∝ jp0−p�

0jΔ. For jp0 − p�
0j → 0

and σ ≫ 0, the two universal branches merge and QþðxÞ ¼
Q−ðxÞ ¼ xϕ=Δ.
A nonlinear constitutive equation for sheared tissue.—In

tissues strained beyond γC both the stress σ [Fig. 1(a)] and
the shear modulus G [Fig. 2(a)] are nonlinear functions of
the applied strain γ. To quantify the nonlinearity and extract a
constitutive equation for the tissue, we use σ, instead of γ, as
a state variable and plot G as a function of σ in Fig. 4(a) for
various p0 ∈ ½3.66; 3.81�. At small σ, G ¼ G0 is indepen-
dent of σ, corresponding to linear elasticity. At higher stress,
the elastic response is nonlinear and G ∝ ðσ=σcÞb, with
b ¼ 2=3. UsingG ¼ ∂σ=∂γ and eliminatingG, this yields a
constitutive relation σ ∝ γð1=1−bÞ ¼ γ3. The linear and non-
linear regimes are separated by a critical stress threshold
σcðp0Þ ∼ jp0 − p�

0j. The linear-response modulus G0 also
shows power-law scaling in jp0 − p�

0j [71,74]. This behavior
can be summarized through a scaling ansatz to describe the
behavior of G in the vicinity of the critical point p�

0,

G ¼ jp0 − p�
0jϕG

�
σ

jp0 − p�
0jΔ

�
: ð4Þ

This form provides an excellent collapse of all our data
onto a single master curve independent of p0 [Fig. 4(b)].
From the scaling collapse we obtain G0 ∝ jp0 − p�

0jϕ and
σc ∝ jp0 − p�

0jΔ, where Δ ¼ 3=2 and ϕ ¼ 1. Crucially, the
stress-stiffening scaling collapse [Eq. (4)] is directly related
to the cell shape-stress scaling relation [Eq. (3)] asb ¼ ϕ=Δ.
Mean-field model of a sheared tissue.—To gain a

theoretical understanding of the strain-driven rigidity and
emergence of nonlinear elasticity, we examine a mean-field
theory (MFT) formulation of the vertex model [66,86,100].
Neglecting cell-cell correlations, we consider the shear
deformation of a single n-sided polygonal cell. Under
affine deformations, the vertex coordinates of a polygon
transform according to R0 ¼ D̂R, where D̂ is the defor-
mation tensor given by D̂ ¼ ðDxx

Dyx

Dxy
Dyy

Þ. We neglect in Eq. (1)

the contribution from cell area which is typically
small compared to the perimeter term and examine

area-preserving affine deformations with det D̂ ¼ 1. For
simple shear Dyx ¼ 0 and Dyy ¼ 1=Dxx, leaving only Dxx

and Dxy as independent components of D̂.
The perimeter of a deformed polygon can then be

expressed in terms of the components of D̂. For example,
the perimeter of a quadrilateral (n ¼ 4) is given by

P¼
ffiffiffi
2

p h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2

xx þðDxx −DxyÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2

xx þðDxx þDxyÞ2
q i

:

ð5Þ

Expressions for any deformed n-gon are given in the
Supplemental Material [85]. For any n, the isoperimetric
inequality defines the perimeters compatible with a fixed
area as P > Preg, where Preg is the perimeter of a regular
polygon with unit area (e.g., Preg ¼ 4 for n ¼ 4). The
condition PðDxx;DxyÞ ≥ Preg, with PðDxx;DxyÞ given by
Eq. (5), then defines a manifold in the ðDxx;DxyÞ plane
where there exist deformed polygons that satisfy the
isoperimetric constraint [Fig. 5(a)]. The maximum value
of Dxy along the isoperimetric contour defines the largest
simple shear Dmax

xy that a cell can sustain by changing its
shape, while maintaining its area and perimeter constant.
This value is γ ¼ γC ¼ Dmax

xy ∝ ðp0 − p�
0Þ1=2 and precisely

(a) (b)

FIG. 4. (a) The shear modulus G vs stress σ at various p0 and
κA ¼ 0. (b) Rescaled G=G0 vs σ=σc for same set of p0 as in (a).

(a) (b) (c)

FIG. 5. (a) When the perimeter of a polygon is larger than that
of its regular counterpart, deformations can lead to a family of
isoperimetric shapes defined by the contours shown for a five-
sided polygon. (b) The mean-field energy as a function of
(Dxx − 1; Dxy) for t > 0 has a single ground state. (c) The
mean-field energy as a function of (Dxx − 1; Dxy) for t < 0

has degenerate ground states that are connected by Goldstone
modes along δθ.

PHYSICAL REVIEW LETTERS 128, 178001 (2022)

178001-4



corresponds to the location of the strain-driven rigidity
γ ¼ γC in the simulations. The exponent 1=2 is in excellent
agreement with the γC scaling in the vicinity of p�

0, shown
in the inset of Fig. 1.
The isoperimetric contours are centered at (Dxx ¼ 1;

Dxy ¼ 0) and well approximated by an ellipse for small
P − Preg. We introduce polar coordinates with radius MðθÞ
and polar angle θ: Dxx − 1 ¼ MðθÞ cos θ and Dxy ¼
MðθÞ sin θ and expand Eq. (5) to OðM2Þ to give (see
Supplemental Material [85])

P ≈ Preg þ
15

32
Preg

�
1þ 3

5
cosð2θÞ

�
MðθÞ2: ð6Þ

Using Eq. (6), we rewrite the vertex model energy
[Eq. (1)] to obtain a Landau-type energy

Emf ¼
1

2
tαmðθ;MÞ2 þ 1

4
βmðθ;MÞ4; ð7Þ

where mðθ;MÞ ¼ ½1þ ð3=5Þ cosð2θÞ�1=2M is the order
parameter, α ¼ ð60=32Þp�

0
2; β ¼ ð30=32Þp�

0
2 are positive

constants, and t ¼ ðp�
0 − p0Þ=p�

0 controls the distance to a
continuous phase transition in mðθ;MÞ. For t > 0, Emf has
a single minimum at m� ¼ 0 [Fig. 5(b)], corresponding to
the rigid state. When t < 0, the minimum m�ðθ;MÞ
corresponds to the isoperimetrically degenerate liquid state.
In the energy landscape these states are connected by a
Goldstone mode [Fig. 5(c)].
The MFT explains the origin of the nonlinear elasticity.

For t > 0, Emf has a single minimum at m� ¼ 0 (corre-
sponding to an undeformed solid state) and deformations
away from it can be calculated using Eq. (7)

σ ¼ ∂Emf=∂m ¼ αtmþ βm3;

G ¼ ∂2Emf=∂m2 ¼ αtþ 3βm2: ð8Þ

For small m we recover linear elasticity with G0 ¼
αt ∝ ðp�

0 − p0Þ. At large m the response is nonlinear, with
G ∝ σ2=3. The crossover stress between the two regimes can
be calculated: σc ¼ 2βα3=2t3=2 ∝ ðp�

0 − p0Þ3=2. These pre-
dictions are in excellent agreement with simulation results.
We have used a vertex model to study the nonlinear

response of a tissue to shear. Using simulations and MFT,
we showed that a tissue that is liquid when unstrained
stiffens upon shear. Liquid-solid transitions in VM of
biological tissues are driven by geometric frustration and
active mechanisms. Recent work by some of us [66]
showed that geometric incompatibility controls the
response to infinitesimal deformations, providing the
underlying unifying mechanism for rigidity in a broad
class of underconstrained systems. The present Letter
additionally incorporates active processes that mediate
plastic response. Plasticity dominates at higher strains

and is likely to underlie the rheology of real tissue. Both
works use a MFT to highlight the geometric origin of the
degeneracy of the liquid ground state. The same MFT is
extended here to investigate the response to deformations.
While a Voronoi-based model is used, we have observed the
same quantitative behavior using a vertex-based model and
the results are independent of the model implementation.
Finally, it was shown in Ref. [66] that at the critical point

the VM shares many of the properties of odd elasticity
[101]—for instance, spontaneous shear upon uniaxial
extension—although this behavior arises from geometry,
not from an energy input at the microscale. Exploring the
response to deformations other than simple shear and the
possible connections with odd elasticity is an important
direction for future work.
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