
Curved Magnetism in CrI3

Alexander Edström ,1,2 Danila Amoroso ,3,4 Silvia Picozzi,3 Paolo Barone ,5 and Massimiliano Stengel1,6
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Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing
exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the
theoretical understanding of such phenomena; their predictive power, however, rests on the availability of
reliable model parameters to describe a given material or nanostructure. Here we demonstrate how
noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling
coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature
between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of
effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an
unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss
in the context of existing phenomenological models.
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Introduction.—Inhomogeneous deformations in the form
of local curvature are ubiquitous at the nanoscale, and
currently regarded as a rich playground for new phenom-
ena. [1–3] Understanding their effects is crucial for the
materials design of tailored functionalities, e.g., in flexible
electronics, as well as for the tunability of existing ones via
external mechanical stimuli [4,5]. A notable example is
flexoelectricity [1], i.e., the emergence of a macroscopic
electric polarization in the presence of a nonuniform strain,
highly attractive for piezoelectric replacements [5] or
strain-enabled photovoltaics [6]. Atomically thin two-
dimensional (2D) crystals and membranes, due to their
extreme flexibility and natural tendency toward rippling
[7], appear as the ideal class of materials to explore these
effects.
Strain gradients can have a comparably strong impact on

magnetism [2,3,8], via a curvature-induced modification of
the spin coupling parameters, commonly referred to as
flexomagnetism [9]. Representative examples include the
emergence of curvature-induced Rashba spin-orbit cou-
pling (SOC) [10–12], asymmetric magnon dispersions

[13], topological magnetism [14], magnetic anisotropies,
and effective Dzyaloshinskii-Moriya interactions (DMI)
[2,14–16]. Remarkably, the geometric DMI can drive the
formation of chiral and topological spin configurations
even in the absence of SOC [2], thus lifting the traditional
requirement of heavy elements in the crystal structure for
exotic magnetic orders to occur. An exciting development
in this context is the recent experimental report of strain-
gradient-induced DMI resulting in a room-temperature
Skyrmion lattice [17]. Thanks to impressive advances in
experimental fabrication and characterization techniques
[18,19], additional observations of these effects in the lab
are anticipated in the near future. From theory, it would be
desirable to support the experimental efforts by developing
a quantitatively accurate understanding of flexomagnetism
in real materials. Several simplifying assumptions are
currently adopted in micromagnetic simulations of curved
nanostructures (see, e.g., Ref. [2] and references therein),
potentially limiting their predictive power. For example, the
effective DMI and anisotropy in the curved structure are
modeled as nonrelativistic effects via a coordinate trans-
formation operated on the isotropic exchange interaction.
While appearing reasonable, such an approximation has not
been tested in a realistic context, and its validity is still an
open question.
Ab initio electronic-structure methods have played a

leading role in understanding low-dimensional magnets
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and formulating new predictions [20–23]. Their application
to flexomagnetism is, however, still at an infancy stage and
technically challenging in the framework of density-
functional theory (DFT): Curvature breaks translational
symmetry, and its study requires, in principle, large
periodic supercells that may contain several hundreds of
atoms. The recent discovery of long-range magnetic order
in monolayers of CrI3 and other Van der Waals compounds
[24–27] provides a natural playground to study curvature-
induced effects on magnetic properties from first principles.
In addition to their practical [28] and fundamental
[22,29,30] interest, two-dimensional magnets with few
atoms per surface unit allow for the simulation of bent
geometries to be tractable (even if expensive) within DFT
[31]. Nonetheless, the few existing studies have targeted
collinear spin structures [31–33]. This is clearly insufficient
for understanding the emergence of nontrivial magnetic
states in a bent layer, which requires a fully noncollinear
treatment of the spins in the presence of curvature.
Here, we use noncollinear-spin DFT to investigate the

magnetic properties of CrI3 as a function of curvature. The
latter is incorporated by focusing on nanotube (NT)
geometries with radii (R) between 7.5 and 30 Å. By
comparing the energies of different magnetic states as
functions of R, we show that curvature leads to a crossover
between an out-of-plane (OP) magnetization for the flat
monolayer (corresponding to a radial magnetization for
large-R NTs), and a cycloidal state at larger curvatures
(smaller R), which is stabilized by an effective curvature-
induced DMI [16]. To rationalize this finding, we construct
a continuum model, whose parameters are fully determined
from first principles, in terms of the spin stiffness,
anisotropy and DMI strength, and their dependence on
curvature. We find that SOC, which largely originates from
the I atoms in CrI3, [34] has a surprisingly strong impact on
the curvature-induced effective anisotropy, which qualita-
tively departs from the assumptions of earlier models.
Methods.—Calculations are performed using the projec-

tor augmented wave [35,36] method, as implemented in
VASP [37–39]. The local density approximation is used for
the exchange correlation together with an additional
Coulomb repulsion [40] of U ¼ 0.5 eV on Cr d states.
The cutoff energy for the plane-waves basis set is 350 eV.
[41] Calculations are performed within periodic boundary
conditions, with (at least) 15 Å of vacuum separating the
repeated images of the monolayers or NTs. A 4 × 4 × 1 k-
point mesh is used for calculations on the freestanding
monolayer [42], while 4 × 1 × 1 k points are used for the
NTs. The NT structures are optimized considering collinear
ferromagnetism until forces are smaller than 3 meV=Å. We
consider ðN;NÞ armchair NTs [43] forN ¼ 4, 5, 6, 7, 8, 10,
12, 16, as illustrated in Fig. 1. This means that N units of
the cell marked with a red rectangle in Fig. 1(a) are
wrapped around the circumference. The Cr-Cr distance

is d ¼ 3.87 Å, whereby the NT radii are approximately
NR0 with R0 ¼ ð3d=2πÞ ¼ 1.85 Å. Energy calculations on
different magnetic states were performed via constrained,
noncollinear magnetic calculations, with and without SOC,
using a penalty energy for spins deviating from the desired
configuration [44–46].
Results.—Energy differences of the relaxed NTs with

collinear ferromagnetism, relative to the flat monolayer, are
reported as a function of curvature κ ¼ 1=R in Fig. 1(b).
The calculated data show a smooth monotonic behavior
with κ, confirming the accuracy of the structural relaxa-
tions. The fitted bending modulus, α ¼ 2.2 eV, is similar to
other monolayers of transition metal dichalcogenides [50].
This elastic contribution, of order 1 eV per Cr atom,
dominates by far the energetics of bending. The depend-
ence on the magnetic ordering is typically three orders of
magnitude smaller (∼1 meV=Cr), as we shall see in the
following while discussing our results with noncollinear
spins and SOC.
In Fig. 2, we show the energies of the three main spin

states that we focus on in this Letter. They are magnetized
either along the azimuthal direction φ̂ (Eφ), the radial
direction r̂ (Er), or with all spins parallel to a direction
perpendicular to ζ̂ (E⊥). All energies are relative to the axial
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FIG. 1. (a) Monolayer CrI3 (Cr,blue; I, purple) with black lines
showing the primitive 8 atom unit cell (2 Cr and 6 I) while the red
lines show the doubled unit cell, N of which are used to construct
ðN;NÞ NTs. (b) Calculated energy (per Cr) as a function of
curvature. (c) N ¼ 6 NT from above and (d) side. (e) Supercell
strip for a spin spiral with wavelength equal to the circumference
of the N ¼ 6 NT, seen from above and (f) side, with arrows
showing the magnetic moments mi ¼ ½0;− sinðqyiÞ; cosðqyiÞ�.
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state with spins aligned along the ζ̂ axis of the NT. In the
large R limit we recover the known ground state of the flat
monolayer, which is ferromagnetic with OP magnetization.
This state is stabilized by an effective magnetic anisotropy
constant K0 ¼ EIP − EOP ¼ 0.75 meV, defined and calcu-
lated as the energy difference between in plane (IP) and OP
magnetization in the flat monolayer. [51] This corresponds
to the energy difference between either azimuthal or axial
(IP) magnetization and radial (OP) magnetization, in the
small curvature limit. In the same limit, Eφ tends to zero, as
the azimuthal and axial one states become degenerate,
while Er approaches −K0, and E⊥ tends to −K0=2 for
reasons clarified shortly. At smaller R, Eφ decreases
slightly and then increases again, overall remaining higher
in energy than the other two spin states. Meanwhile, Er
increases monotonously with curvature, as the angle
between neighboring spins (and hence the exchange
energy) increases. Interestingly, E⊥ decreases, eventually
leading to a crossover between the two spin configurations
at κ ≈ 0.07 Å−1, where Er ¼ E⊥. At larger curvatures,
Er > E⊥, with the latter state becoming the lowest in
energy among those considered here.
The possibility for curvature to profoundly affect mag-

netism, even leading to new chiral or topological magnetic
structures, has been pointed out before [2,9]. The magnetic
crossover shown in Fig. 2 is indeed reminiscent of those
discussed in Ref. [16], for the opposite sign of K0. To
facilitate the discussion of our results in the context of
existing continuum models, we project our magnetic
configurations onto a cylindrical (locally orthogonal) coor-
dinate system [see Fig. 1(c)], where (ζ, φ) span the
tangential plane of the NT surface, and r is normal to it.

Within the (ζ, φ, r) system, the “radial” and “azimuthal”
magnetization states correspond to constant values of either
mr or mφ, while the “perpendicular” state shows a periodic
out-of-phase modulation of mr and mφ along the tube
circumference. More precisely, the latter state acquires
the mathematical form of a spin cycloid, where mi ¼
½0;− sinðqyiÞ; cosðqyiÞ� with propagation vector q ¼ 1=R;
an illustration is provided in Figs. 1(e)–1(f). The equal
mixture of azimuthal and radial spin components in the
perpendicular state explains why E⊥ tends to −K0=2 in the
large-radius limit. Remarkably this also means, based on
the results of Fig. 2, that curvature leads to a transition to a
cycloidal magnetic ground state in the curvilinear frame of
the bent surface.
In order to understand the origin of such a behavior, we

consider the following continuum energy density,

ε¼ A½∂φmα�2 þKφm2
φ þKrm2

r þD½mr∂φmφ −mφ∂φmr�;
ð1Þ

where A, Kα, and D are the spin stiffness, anisotropy, and
DMI parameters, ∂φ ¼ ð1=RÞð∂=∂φÞ, and mα ¼ mαðφÞ is
one of the three curvilinear components of the magnetiza-
tion density. [52] Note that all parameters in Eq. (1) depend
on curvature, e.g., A ¼ Aðκ ¼ 1=RÞ. To extract this
dependence from our DFT calculations we fit Eq. (1), at
each R, to the calculated energies of the three magnetic
states in Fig. 2. The azimuthal and radial anisotropy
constants are trivially provided by Kφ ¼ Eφ and
Kr ¼ Er. Separating the remaining two parameters (A
and D) is computationally more involved, since their
contributions to the energy of the perpendicular state,
E⊥ ¼ Aκ2 −Dκ þ 1

2
ðKr þKφÞ, are linearly dependent.

(By symmetry, A and Dκ are both even functions of κ.)
To extract also AðκÞ and DðκÞ, we additionally per-
form calculations for cycloidal states of the form m ¼
cosðnφÞr̂ − sinðnφÞφ̂, with integer values n > 1, consistent
with 2π periodicity in φ. (n ¼ 0 and n ¼ 1 correspond to
the radial and perpendicular magnetization states, already
described.) This procedure allows us to uniquely resolve
AðκÞ, DðκÞ, and KðκÞ at the discrete set of curvatures
considered in our DFT calculations. For practical purposes,
we then interpolate these data with appropriate low-
order polynomials of κ (See Fig. 3 and the Supplemental
Material [46]), which yields the continuous curves plotted
in Fig. 2.
The resulting separate energy contributions Aκ2,Dκ, and

Kα from the effective spin stiffness; DMI; and anisotropy
parameters are plotted as functions of curvature in Fig. 3(a).
This decomposition allows us to clarify the physical origin
of the cycloidal ground state obtained at larger κ. The
increase in the spin stiffness energy with curvature leads to
an increase in the energy cost of the spin cycloids, relative
to a FM state. A nonzero D (linear in κ), however, also

FIG. 2. Energies E⊥, Eφ, and Er, relative to Eζ , as functions of
curvature κ, for the different states schematically represented in
the insets, with magnetization along ê⊥⊥ζ̂, φ̂, and r̂, respectively.
Solid lines show energies from the continuum model discussed in
the text. The dashed line shows the energy of a two-domain state
[46] and red diamonds show the corresponding DFT energies.
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develops with curvature, favoring the crossover to the n ¼
1 cycloidal state. Both the curvature-inducedD and the flat-
layer anisotropy K0 are essential to stabilizing states with
n > 0 [46]; the latter only occurs with SOC. Note that the
largest contribution to the energy comes from the DMI
term, with Dκ ≈ 1 meV=Cr at κ ≈ 0.1 Å−1. Thus, the value
of D reaches almost 1 meV=Å, similar to the interfacial
DMI of a surface of Fe on W [20,53]. For the flat,
centrosymmetric CrI3 monolayer, the DMI arises as an
interaction between second neighbors, estimated to 60 μeV
or even smaller [54,55], whereas electric field (E) induced
DMI between nearest Cr neighbors was reported to be
14 μeV for Ez ≃ 1.55 V=nm [54]; both values are orders of
magnitude smaller than the effective, curvature-induced
DMI energy found here.
With the parameters of Eq. (1) at hand, we can calculate

the stationary states, minimizing the continuum energy
functional [46]. This confirms the transition from the radial
to the “perpendicular” magnetization state at large curva-
tures. However, at small curvatures a qualitatively different
behavior is seen; the “perpendicular” (n ¼ 1 cycloid) state
evolves into two domains with opposite radial magnetiza-
tions, and the energy goes to −K0 linearly, instead of
−K0=2 quadratically, as shown by the red dashed line in
Fig. 2. For the largest RNTs, we performed additional DFT
calculations for the predicted spin configurations (red
diamonds in Fig. 2), confirming the predictions of the
model with excellent accuracy.
Earlier phenomenological studies [2,14–16] showed the

appearance of effective anisotropy and DMI terms in
curvilinear magnets, consistent with our findings.
Remarkably, such effects were predicted even in the

absence of SOC. To check whether such assumptions
are reliable in our case, in the following, we benchmark
the model of Ref. [16], which we have adapted to our
specific geometry [46], against our first-principles results.
Consistent with the conclusions of Sheka et al. [16], we
find that the coefficients of Eq. (1) are no longer indepen-
dent in the absence of SOC, but enjoy the following
relationships [46]:

D̄ ¼ 2Āκ; K̄ ¼ K̄r ¼ K̄φ ¼ Āκ2: ð2Þ

(Overline symbols indicate quantities defined and calcu-
lated without SOC.) Our results of Fig. 3(a) manifestly
violate such conditions: Neither the effective anisotropies
nor the DMI appear to be related to the spin stiffness energy
in any obvious way. To clarify the role of SOC in this
unexpected behavior, we have repeated all our first-
principles calculations without SOC, and followed the
same postprocessing procedure to extract Ā, D̄, and K̄
as functions of curvature; the energies Āκ2, D̄κ, and K̄ are
shown in Fig. 3(b). Without SOC, we find that Eq. (2)
exactly holds within numerical accuracy. This is not
unexpected as the energy no longer depends on the global
quantization axis, but only on the relative angle between
neighboring spins. This implies an exact degeneracy
(Er ¼ Eφ ¼ En¼2 ¼ Āκ2) between the “radial,” “azimu-
thal,” and n ¼ 2 cycloidal states on one hand, and between
the “axial” and “perpendicular” states (Eζ ¼ E⊥ ¼ 0) on
the other. These combined facts prove that the aforemen-
tioned violation [Fig. 3(a)] of Eq. (2) is entirely due to
SOC. From Eq. (1), one finds [46] that εn < εn−1 if
D > ð2n − 1ÞAκ. Specifically, εn¼2 < εn¼1 if D > 3Aκ.
This can be compared to the above relation D̄ ¼ 2Āκ,
whereby a SOC enhancement of D by 50%, relative to A,
could stabilize the n ¼ 2 state, in materials with
strong SOC.
The above analysis reveals an impact of relativistic

effects on the curvilinear spin Hamiltonian, far more
profound than previously believed. Existing models [14–
16] limit their account of relativistic effects to including a
curvature-independent anisotropy constant K0, while any
impact of SOC on effective anisotropy and DMI inter-
actions is systematically neglected. Our results show that
the DMI is reduced in magnitude by around 30% by SOC,
while the two anisotropy constants Kφ and Kr display a
very different curvature dependence in the presence of
SOC, in stark disagreement with the nonrelativistic rela-
tionships of Eq. (2). Remarkably, our calculated Kφ is

FIG. 3. Energy contributions Aκ2,Dκ, andK, from the effective
exchange; DMI; and anisotropy terms, with SOC in (a) and
without SOC in (b). Lines show fits to even, sixth order
polynomials.

TABLE I. Fitted leading order coefficients (energy per Cr) for the curvature dependence of spin stiffness, anisotropy, and DMI. [56].

A0 (meVÅ2) [A0 (meVÅ2)] A2 (eVÅ4) K0 (meV) Kr;2 (meVÅ2) Kφ;2 (meVÅ2) D1 (meVÅ2)

No SOC 49.9 42.9 4.9 0 49.9 49.9 99.9
With SOC 48.1 40.7 4.8 0.75 17.7 −90.4 63.4
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opposite in sign to what would result from the physics of
isotropic exchange alone. This shows that SOC needs to be
included in the calculation of the effective anisotropy of
bent layers, as its neglect might lead to qualitatively wrong
physical answers. For a quantitative comparison, in Table I
we list the lowest-order fitted coefficients of AðκÞ, KαðκÞ,
andDðκÞ, with and without SOC. Clearly, the spin stiffness
(A0 and A2) is not substantially affected by SOC. The
effective DMI, D̄1 ¼ 2Ā0 ¼ 99.9 meVÅ2=Cr is increased
compared with D1 ¼ 63.4 meVÅ2=Cr with SOC. The
leading order change in Kφ, would correspond to Ā0 ¼
49.9 meVÅ2=Cr in the view of earlier models, in clear
contrast to the value of −90.4 meVÅ2=Cr found from our
DFT calculations including SOC.
Conclusions.—We have used noncollinear magnetic

DFT calculations, with and without SOC, to investigate
the interplay of curvature and magnetism in monolayer
CrI3. In addition to revealing a crossover between two spin
states of distinct symmetry, our calculations demonstrated
that the effects of SOC are essential to consider for a
quantitatively (and sometimes even qualitatively) accurate
description of the flexomagnetic coupling parameters, and
to stabilize the cycloidal ground state of the curved system.
The obvious question is whether these conclusions are
specific to the material considered here, or whether they are
relevant to a broader range of systems. We can’t give a
definite answer at this stage, but we can certainly speculate
on how effective the present strategy may be in studying
other cases. The main limitation we see in this context is
related to computational power: While adapting our method
to other 2D layers appears straightforward, the study of
thicker membranes may be out of reach at present, due to
the costly NT geometry. A way forward may be provided
by the so-called cyclic DFT method, [57] which allows for
calculating bent structures at a significantly lower computa-
tional cost; whether such an approach is effective in
noncollinear spin structures, however, remains to be seen.
An alternative possibility would be treating curvature
perturbatively via flexural phonons, analogous to the
ongoing efforts in the theory of flexoelectricity [58]; this
could possibly allow one to work with the primitive cell of
the flat crystal, with considerable savings in computer
power. An exploration of these promising avenues, together
with the discussion of other related physical effects going
beyond the Hamiltonian of Eq. (1), will be an exciting topic
for future studies.
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