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We calculate the nonreciprocal critical current and quantify the supercurrent diode effect in two-
dimensional Rashba superconductors with arbitrary disorder, using the quasiclassical Eilenberger equation.
The nonreciprocity is caused by the helical superconducting state, which appears when both inversion and
time-reversal symmetries are broken. In the absence of disorder, we find a very strong diode effect, with the
nonreciprocity exceeding 40% at optimal temperatures, magnetic fields, and spin-orbit coupling. We
establish that the effect persists even in the presence of strong disorder. We show that the sign of the diode
effect changes as magnetic field and disorder are increased, reflecting the changes in the nature of the
helical state.
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Introduction.—The interplay between superconductivity,
spin-orbit coupling (SOC), and a Zeeman field leads to a
variety of magnetoelectric effects widely studied in the past
years [1–12]. One of these effects is a nonreciprocal charge
transport due to the breaking of time-reversal and inversion
symmetries [13–24]. Originally this effect was studied in
the resistive regime, when T ≳ Tc, where superconducting
fluctuations play a crucial role [14,15]. More recently, it has
been shown that nonreciprocity also manifests in the
supercurrent in noncentrosymmetric superconducting
structures and in Josephson junctions [16–18,20–23,25].
Specifically, the critical current depends on the direction of
the current flow, and hence such systems are being
suggested as superconducting diodes with potential appli-
cations in low-power logic circuits.
The nonreciprocity of the critical current can be quanti-

fied by the superconducting diode quality parameter

η ¼ ðjþc − jj−c jÞ=ðjþc þ jj−c jÞ; ð1Þ

where j�c are the critical currents in opposite directions.
It has been shown in Refs. [20–22] that η is finite in
noncentrosymetric superconducting systems in the pres-
ence of a magnetic field. Namely, the breaking of time-
reversal and inversion symmetries in such systems allows
for a formation of the helical superconducting phase, with
the order parameter modulated in the direction transverse to
the field: ΔðrÞ ¼ Δeiq0r. Therefore, Cooper pairs have a
finite momentum q0. Consequently, the depairing effect of
supercurrents flowing parallel and antiparallel to q0 is
different, leading to a direction-dependent critical current.
Importantly, the above-mentioned theoretical works

assume ideally pure superconducting structures and

disregard the effect of disorder. However, the latter is
unavoidable in realistic structures, and therefore it is
important to understand how it affects the supercurrent
diode effect. Moreover, understanding the role of disorder
will enable one to design devices based on a combination of
conventional materials.
In this Letter, we establish a microscopic theory of the

supercurrent diode effect in disordered two-dimensional
Rashba superconductors. As a base of our study, we use the
quasiclassical equations for superconductors with strong
Rashba SOC from Ref. [26], which give a full description
of the helical superconducting phase at arbitrary tem-
perature, magnetic field, and disorder. These equations
provide a straightforward framework to discuss the diode
effect, within which we readily reproduce previous results
of numerical simulations in the ballistic limit [22], and
generalize them for arbitrary disorder. Moreover, we
correct previous works based on the phenomenological
Ginzburg-Landau (GL) theory [20,21], which overestimate
the diode effect at weak fields and close to critical
temperature.
Our results elucidate the mechanisms leading to the

diode effect, and show how it evolves in the full range of
all relevant system parameters: SOC, magnetic field, tem-
perature, and disorder. Namely, the effect stems from the
competition between two helical bands in a Rashba super-
conductor, which prefer opposite modulation vectors of the
superconducting order parameter when magnetic field is
applied. Both magnetic field and SOC are required for the
diode effect; however, if either is too strong, the band
competition ceases as one helical band begins to dominate,
leading to the suppression of the effect. This means that a
substantial η exists only for some optimal magnetic field
and SOC. Disorder further complicates this picture, as it
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introduces mixing of the two helical bands. We discuss
optimal parameter regimes where the effect is strongest
(exceeding η ¼ 40% in the ballistic case). We establish that
the effect persists at strong disorder, meaning that it can be
realized even in disordered materials and hybrid systems.
Moreover, we show that the sign η changes as the magnetic
field is increased [22], and also by increasing the disorder.
The change of sign of η can be related to the change of
nature of the helical phase.
Quasiclassical theory.—The quasiclassical Eilenberger

equation for a two-dimensional disordered Rashba super-
conductor with strong SOC, in the basis of two helical
bands denoted with the index λ ¼ �1, is [26]

vn · ∂λǧλ þ ½ðωþ iΔ̌Þτz þ σimp
λ ; ǧλ� ¼ 0: ð2Þ

Here ǧλ is the quasiclassical Green’s function in the
Matsubara representation, which is a matrix in Nambu
space spanned by the Pauli matrices τx;y;z. ω ¼ 2πTðnþ 1

2
Þ

is the Matsubara frequency, with T being the temperature.
Importantly, the two bands have the same Fermi velocity
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=mþ α2

p
, but different densities of states, νλ ¼

νð1 − λα=vÞ. Here, μ is the chemical potential, m is the
effective electron mass, α is the velocity associated with
Rashba SOC, and ν ¼ m=ð2πÞ. We introduced the deri-
vative ∂λ ¼ ∇þ iðλ=vÞðh × zÞ½τz; ·�, h is the in-plane
magnetic field, and n ¼ p=pF ¼ ðnx; nyÞ describes the
direction of the momentum at the Fermi level. The super-
conductivity is accounted for by the term Δ̌ ¼ ΔðrÞτþþ
Δ�ðrÞτ−, with τ� ¼ 1

2
ðτx � iτyÞ, where Δ is the super-

conducting order parameter. The normalization condition is
satisfied for each helical band: ǧ2λ ¼ 1.
Disorder is described by the self-energy σimp

λ given as

σimp
λ ¼

X
λ0
ð4τλ0 Þ−1½hǧλ0 i þ λλ0n · hnǧλ0 i�: ð3Þ

Here, h…i denotes averaging over n, and we introduced
τ−1λ ¼ ½1 − λðα=vÞ�τ−1, where τ−1 is the disorder scattering
rate. Note that σimp

λ stems from a simple scalar disorder
potential, which acquires the form shown in Eq. (3) upon
projection to the helical basis [26].
Equation (2) is valid for very strong SOC, so that it is

larger than all other energy scales relevant for super-
conductivity except the chemical potential: μ ≳ αpF ≫
Δ; h; τ−1. Under these conditions, interband pairing can
be neglected, and Cooper pairs can be taken to be formed in
each helical band separately. In the absence of disorder, the
two bands are decoupled, while sharing the same super-
conducting gapΔ. Any finite disorder mixes the two bands.
To proceed, we assume that the superconducting phase

varies only along the x direction, and that the Zeeman field
is applied along the y direction: h ¼ ð0; hÞ; see Fig. 1(a).
We take that ΔðxÞ ¼ Δeiqx [27], where q ¼ q0 þ δq is the

phase gradient which contains two contributions: intrinsic
modulation of the helical phase q0, and an additional phase
gradient caused by passing the supercurrent δq. Then, we
write the Green’s function as ǧλðxÞ ¼ gλτz þ f̃λðxÞτþ þ
f̃�λðxÞτ−, and we look for the solution in the form
f̃λðxÞ ¼ −ifλeiqx. The normalization condition gives
g2λ ¼ 1 − f2λ . With this parametrization, Δ, fλ, and gλ are
real quantities. The Eilenberger equation then reduces to
the following scalar equation

fλð2ωþ inxρλÞ ¼ 2Δgλ þ
X
λ0
ð2τλ0 Þ−1½gλhfλ0 i − fλhgλ0 i

þ λλ0nxðgλhnxfλ0 i − fλhnxgλ0 iÞ�: ð4Þ

Here, we introduced ρλ ¼ qvþ 2λh.
The order parameter is determined self-consistently as

Δ ln
T
Tc

þ πT
X
ω>0

X
λ

�
Δ
ω
−
�
1 − λ

α

v

�
hfλi

�
¼ 0: ð5Þ

Here, Tc is the critical temperature of the superconductor in
the absence of a magnetic field. Finally, the current along
the x direction is given as

j ¼ −4πTiv
X
ω>0

X
λ

νλhnxgλi: ð6Þ

Importantly, jðq0Þ ¼ 0—there should be no supercurrent
flowing in the equilibrium [28].
Eqs. (4)–(6) are a starting point for studying the diode

effect. First, ΔðqÞ should be calculated self-consistently
from Eqs. (4) and (5) for all values of q where Δ is finite.
Next, using ΔðqÞ obtained this way, one should calculate
jðqÞ from Eq. (6). Then, the critical currents in the two
directions are determined as jþc ¼ max½jðqÞ� and j−c ¼
min½jðqÞ�. Finally, the diode quality factor η is obtained by
replacing j�c obtained this way in Eq. (1).
Ballistic case.—Before discussing the diode effect, it is

first useful to understand the evolution of the helical phase
in magnetic fields. The two helical bands with λ ¼ �1

prefer opposite modulation vectors: qλ0v ¼ −2λh. At low
magnetic fields, both bands contribute to helical super-
conductivity, which yields a modulation vector q0v≈
2ðα=vÞh. This regime is known as a long-wavelength or
“weak” helical phase [28]. As the magnetic field is
increased, the band with the higher density of states begins
to dominate, whereas the contribution from the other band
is suppressed. Therefore, at a strong-enough field only one
band contributes, and the modulation vector becomes
q0v ≈ 2h. This is a short wavelength or “strong” helical
phase” [28]. The crossover from a “weak” to “strong”
phase is illustrated in Fig. 1(b). Note that if the two bands
have similar densities of states, at α=v ≪ 1, the so-called
stripe phase might stabilize instead of the strong helical
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phase at high fields. The stripe phase is beyond the scope of
the present work (see also the footnote in Ref. [27]).
In the absence of disorder, the two helical bands are

decoupled, and we readily find the solution of the
Eilenberger equation [Eq. (4)] as fλ ¼ 2Δ=A and gλ ¼
ð2ωþ inxρλÞ=A, whereA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ωþ inxρλÞ2 þ 4Δ2

p
. The

Fermi surface averages that enter Eqs. (5) and (6) can be
found analytically (see the Supplemental Material [30]).
The critical current and the diode quality factor are then
readily calculated following the procedure described below
Eq. (6). Several examples of the self-consistent calculation
of ΔðqÞ, jðqÞ, and η are shown in Fig. 2.
The upper left panel of Fig. 2 shows the situation with

h ¼ 0 and no helical phase. A phase gradient due to the
supercurrent introduces depairing, and ultimately leads
to a phase transition to the normal state. The upper right
panel of Fig. 2 depicts a situation where h is sufficiently
low so that the superconductor is in the “weak” helical
state, whereas two lower panels depict a situation with the
“strong” helical state. In these three panels, the current
has a zero at q ¼ q0 due to the intrinsic modulation of the
helical phase, and all three show nonreciprocity of the
critical current. The shape of ΔðqÞ and jðqÞ in the “weak”
and “strong” state is markedly different, leading to the
different behavior of the diode effect. Namely, the effect is
negative in the “weak” state (jþc < jj−c j, η < 0) and positive
in the “strong” state (jþc > jj−c j, η > 0).
In Fig. 3, we plot the diode quality factor η for every

point in the h − T phase diagram for different strengths of
SOC. The black curve in the plots corresponds to the upper
critical field hc2. At temperatures close to Tc, the diode
effect vanishes up to linear order in h. We demonstrate this
analytically using the GL theory in the Supplementary
Material [30]. This result is in contrast with Refs. [20] and
[21], which do not take into account all relevant terms in the
q expansion of the GL free energy, and consequently find a
finite effect in this regime.

Figure 3 clearly illustrates the two regimes of the diode
effect, driven by the “weak” and “strong” helical phases,
depicted with orange and purple colors, respectively. These
results are in good qualitative agreement with the numerical

FIG. 2. Superconducting gap (in black) and the supercurrent (in
red), calculated self-consistently from Eqs. (5) and (6), respec-
tively. Both quantities are plotted as a function of the phase
gradient, for different values of the magnetic field. We normalize
the curves with Δ0 and j0, which are are the values of the
superconducting gap and the critical current at T ¼ h ¼ 0. We set
α=v ¼ 0.25 and T ¼ 0.01Tc. Note that at high fields (two lower
panels), the self-consistency condition yields two solutions for
ΔðqÞ. The solution centered around q0ð−q0Þ, plotted with a full
(dashed) line, predominantly comes from the helical band with a
higher (lower) density of states. The solution around q0 is more
stable (it minimizes the free energy [29]), and it is the only one
relevant for our calculation.

FIG. 3. Diode quality factor η for a ballistic superconductor,
calculated for every point in the h − T phase diagram at different
strengths of spin-orbit coupling.

FIG. 1. (a) Schematic representation of the setup considered in
this work. The current flows in the x direction, and the Zeeman
field lies along the y direction. If the conditions for the diode
effect are satisfied, the supercurrent jS can flow in one direction,
whereas only a regular Ohmic current jN can flow in the other.
(b) Helical modulation vector q0 calculated in the vicinity of the
upper critical field hc2, as a function of magnetic field, for
different strengths of spin-orbit coupling. At low fields q0 ≈
2ðα=vÞh (“weak helical phase”), whereas at high fields q0 ≈ 2h
(“strong helical phase”).
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study of Ref. [22]. Figure 3 also showcases that the
competition of two helical bands is a crucial ingredient
for the diode effect. Namely, if one helical band becomes
dominant, while the other one is fully suppressed, the diode
effect disappears. One of the ways this can happen is by
increasing the magnetic field—after the crossover to the
“strong” phase, one band dominates. Another way is by
increasing spin-orbit coupling—at large values of α=v, one
band will have a much larger density of states than the
other. In fact, at α=v ¼ 1, only one helical band exists, and
the diode effect disappears. Therefore, too large SOC and
too large magnetic field both lead to the suppression of the
diode effect, as illustrated in Fig. 3.
Note that the coefficient η can have nonmonotonic

dependence on the temperature at some fixed magnetic
field, as shown in Fig. 4. This can be explained by noticing
that the diode effect is strongest close to the field h� at
which the crossover between the “weak” and “strong”
helical phase happens, combined with the fact that h�
slightly reduces by increasing the temperature. Similar
nonmonotonic behavior of ηðTÞ was measured in a recent
experiment in a few-layer NbSe2 [23].
Systems with disorder.—As established in the previous

discussion in the ballistic limit, the competition between
two helical bands upon applying the magnetic field is the
driving force behind the diode effect. Very strong disorder
mixes the bands, and therefore it suppresses this com-
petition and the diode effect. By increasing disorder, the
“strong” helical phase gets suppressed, and for αpF ≫
τ−1 ≫ Δ; h, only the “weak” phase exists in the whole
phase diagram, with the modulation vector q0 ¼ 4αh=
ðα2 þ v2Þ. This is illustrated in Fig. 5, where we plot q0

for different values of disorder. In the following discussion,
we explore the crossover from the strong diode effect in the
ballistic case, to its vanishing at sufficiently strong disorder.
We examine the diode effect at arbitrary disorder in the

GL regime, close to the phase transition to the normal state.
This approach is valid for any T, as long as h is sufficiently
strong so that the Δ ≪ T. In order to construct the GL free
energy, we solve the Eilenberger equation [Eq. (4)] close to
the phase transition. We may expand fλ up to third order in

Δ: fλ ≈ fð1Þλ þ fð3Þλ , and gλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2λ

q
≈ 1 − 1

2
ðfð1Þλ Þ2. The

GL free energy is then

Fq ¼ αqΔ2 þ βq=2Δ4 ð7Þ

where αq ¼ ν lnðT=TcÞ þ 2πT
P

ω>0½ðν=ωÞ − ð1=2ΔÞ ×P
λ νλhfð1Þλ i� and βq ¼ −2πT

P
ω>0

P
λð1=2Δ3Þνλhfð3Þλ i

(see Sec. S2 in the Supplemental Material [30]). The order
parameter is determined by minimizing the free energy
with respect to Δ, which gives Δ2 ¼ −αq=βq. From here,
we find the optimal free energy Fopt

q ¼ −α2q=ð2βqÞ. Finally,
the current is given as

j ¼ 2
∂Fopt

q

∂q
: ð8Þ

Figure 6 shows the values of η at different values of
disorder calculated from Eq. (8). The upper left panel
corresponds to the ballistic case, and agrees with the results
of Fig. 3 obtained from the full self-consistent calculation.
Notably, the diode effect qualitatively changes behavior as
disorder is increased—it goes from positive to negative.
This can be understood as a consequence of the crossover

FIG. 4. Diode quality factor as a function of temperature, for
different values of the magnetic field, at α=v ¼ 0.25.

FIG. 5. Helical modulation vector q0 calculated in the vicinity
of hc2, as a function of magnetic field, for different strengths of
disorder. We set α=v ¼ 0.1. At strong disorder, τ−1 ≫ Δ; h, we
have q0 ≈ 4αh=ðα2 þ v2Þ.

FIG. 6. Diode quality factor in the disordered case, calculated in
the GL regime at different strengths of disorder at α=v ¼ 0.1. The
full black line is the phase transition line hc2ðTÞ, whereas at the
dashed line the condition ΔðTÞ ¼ T is satisfied. Between the two
lines T > Δ holds—this is the region of validity of the GL theory.
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from the “strong” to the “weak” helical phase as disorder is
increased, which correspond to η > 0 and η < 0, respec-
tively, as established previously. The diode effect at τ−1 ¼
10Tc reaches a sizeable value of η ≈ −7%. Further increas-
ing disorder (τ−1 > 10Tc) leads to a qualitatively similar
picture as in the lower right panel of Fig. 6, but with smaller
η. In the Supplemental Material [30], we present an analysis
of η in a broader disorder range. For example, we find η as
large as ∼ − 0.25% at τ−1 ¼ 100Tc. Note that the results
obtained within the GL theory are only a lower bound of the
effect, which likely reaches higher values beyond the GL
regime.
Conclusion.—In summary, based on quasiclassical for-

malism, we establish a theory of the diode effect in Rahsba
superconductors with arbitrary disorder. In the ballistic
limit, we explore the whole phase diagram of helical
superconductivity, and identify the conditions that maxi-
mize the diode effect. In the presence of disorder, we
identify a new regime of the diode effect, which is
qualitatively different from the ballistic limit, and show
that a substantial diode effect exists even at strong disorder.
Moreover, we show that the sign of the quality factor η is
related to the nature of the helical state: η > 0 in the
“strong” state, and η < 0 in the “weak” state. A possible
device to experimentally study the effect is a 2D super-
conductor with strong SOC in a heterostructure with a
ferromagnetic insulator such as EuS [31–33], which indu-
ces a sizeable exchange field in the superconductor (a few
Tesla) necessary to obtain a large diode effect. Moreover,
such a device is compatible with applications in super-
conducting electronics and spintronics, as it does not
require applying external magnetic fields.
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