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We propose models of twisted multilayer graphene that exhibit exactly flat Bloch bands with arbitrary
Chern numbers and ideal band geometries. The models are constructed by twisting two sheets of Bernal-
stacked multiple graphene layers with only intersublattice couplings. Analytically we show that flatband
wave functions in these models exhibit a momentum space holomorphic character, leading to ideal band
geometries. We also explicitly demonstrate a generic “wave function exchange” mechanism that generates
the high Chern numbers of these ideal flatbands. The ideal band geometries and high Chern numbers of the
flatbands imply the possibility of hosting exotic fractional Chern insulators which do not have analogues in
continuum Landau levels. We numerically verify that these exotic fractional Chern insulators are model
states for short-range interactions, characterized by exact ground-state degeneracies at zero energy and
infinite particle-cut entanglement gaps.
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Introduction.—The intrinsic topological and geometric
properties of Bloch wave functions are crucial to the
interacting phenomena in narrow-band systems such as
moiré materials [1–3] where the electrons’ kinetic energies
are quenched. The band topology enriches the possible
many-body phase diagram [4–6]. On the other hand, the
band geometry determines the actual stabilities of various
many-body states [7].
As a representative example, twisted bilayer graphene

(TBG) has two nearly flatbands of Chern number C ¼ �1
at charge neutrality. Recently, fractional Chern insulators
(FCIs) [4–6] were theoretically predicted and experimen-
tally observed in TBG flatbands [8–11]. One important
factor to the stability of FCIs in this system is due to the
ideal geometry of the flatbands in the fixed point chiral
limit [12,13], where each flatband’s Berry curvature Ωk is
nonvanishing and strictly proportional to its Fubini-
Study metric gabk by a constant determinant-one matrix
ωab [14–16]:

gabk ¼ 1

2
ωabΩk; Ωk ≠ 0 for ∀ k; ð1Þ

where a; b ¼ x, y labels spatial coordinates. The ideal band
geometry Eq. (1) implies the Bloch wave functions of the
chiral TBG (CTBG) flatbands exhibit a momentum space
holomorphic character [17,18], in analogy to the real space
holomorphic wave function in the conventional lowest
Landau level (LLL). Such exact position-momentum dual-
ity leads to the existence of model FCIs in the CTBG
flatbands as the exact zero-energy ground states of short-
range interactions which are stable against the spatial
fluctuation of band geometries [14,16].

The ideal flatbands are special cases of the Kähler band
[19–21] when the Kähler structure [22] is spatially con-
stant. There is so far a glaring lack of microscopic models
realizing ideal flatbands of high Chern numbers (high-C).
Compared with jCj ¼ 1 bands, high-C bands are topologi-
cally different [23–25] and may support many-body phases
without LL analogues [26–34]. In this work, we fill this
void and propose a systematic construction of microscopic
models with relevance to moiré materials. Our models are
based on two sheets of n-layer Bernal stacked graphene
which are twisted by a small angle and put in the chiral
limit. Our hierarchy scheme starts with CTBG as the
parent, and includes the chiral twisted double bilayer
graphene (CTDBG) as the next descendant [35–43]. We
show exactly flat bands existing at charge neutrality of our
models, and we analytically and mathematically prove their
ideal band geometry and exotic band topology. We also
numerically show that lattice-specific FCIs without LLL
analogues are stable in these ideal flatbands as they appear
as the exact zero-energy ground states of short-range
interactions, paving the way towards understanding their
stability against inhomogeneous band geometries.
Multilayer chiral model.—We consider two sheets of

n-layer Bernal stacked graphene twisted by a small angle θ,
as illustrated in Fig. 1. We focus on a single valley of the
system [44–46] and take the chiral limit [12] by keeping
only the intersublattice hopping between adjacent layers,
such that the Hamiltonian of our model takes an off-
diagonal form in the sublattice basis

Hn ¼ ðΦ† Ξ† Þ
�

Dn

D†
n

��Φ
Ξ

�
; ð2Þ
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where the basis Φ and Ξ are fully sublattice-A and B
polarized. We organize Φ (and Ξ) by layers, such that
Φ ¼ ðϕ1;ϕ2;…;ϕnÞT where ϕi ¼ ðϕb

i ;ϕ
t
iÞT contains the

sublattice-A components of the ith layer in the bottom sheet
and the ith layer in the top sheet (Fig. 1). In this basis,
we have

Dn ¼

0
BBBBBBBBBB@

D1 t1Tþ
t1T− hD t2Tþ

t2T− hD
. .
.

. .
.

tn−1Tþ
tn−1T− hD

1
CCCCCCCCCCA
;

where hD and D1 are, respectively, the Dirac Hamiltonian
of a freestanding monolayer graphene and the Hamiltonian
of CTBG [12], given by

hD ¼
�−i∂

−i∂
�
; D1 ¼

�−i∂ U−ϕ

U�
ϕ −i∂

�
: ð3Þ

Here Uϕ ¼ αðe−iq0·r þ eiϕe−iq1·r þ e−iϕe−iq2·rÞ with ϕ ¼
2π=3 and α ∝ sin−1ðθ=2Þ [12], ∂ ¼ ð∂x − i∂yÞ=

ffiffiffi
2

p
, and

the momenta q0;1;2 are illustrated in Fig. 1(c). The twist
angle θ is set as the magic angle of CTBG [12]. We only
retain the strongest tunneling in the Bernal stacking
structure [Fig. 1(b)], which couples electrons in the nth
layer sublattice A to those in the (nþ 1)th layer sublattice B
by the real tunneling strength tn [Fig. 1(a)]. Under this
assumption, the interlayer coupling matrices T� are

Tþ ¼
�
1 0

0 0

�
; T− ¼

�
0 0

0 1

�
: ð4Þ

Details of the model Hamiltonian are left to the
Supplemental Material (SM) [47].
The model Eq. (2) preserves the translation V1;2 and the

threefold rotation C3 symmetries, but it breaks the time-
reversal T and the twofold rotation C2 as they interchange
valleys [48–52]. The combination C2T is also broken by
the Bernal stacking unless n ¼ 1. Besides the lattice
symmetries, the model has two exact emergent symmetries:
the chiral symmetry σz and the intravalley inversion
symmetry I. As defined in Table I, they respectively
imply a particle-hole symmetry and an inversion symmetry
to the spectrum and eigen-wave-function. In the definition
of I , K is the complex conjugation operator and
P ¼ diag½τy;−τy;…; ð−Þn−1τy�, where τy acts on the ith
bottom and top layers. Throughout this work, we use
Pauli matrix σ for sublattice and τ for layers. Note that
the intravalley inversion I reduces to the known form
for CTBG [15] when the C2T symmetry is restored [53].
Ignoring the negligible small twist angle effect, I is
identical to the approximate unitary particle-hole
symmetry [51,54–59].
Twisted bilayer graphene.—We now proceed to demo-

nstrate the existence of ideal flatbands in our model. For the
simplest case n ¼ 1 CTBG, Refs. [12,14,15,60–64] show
that it is an exactly solvable model exhibiting jCj ¼ 1
dispersionless bands at charge neutrality with ideal band
geometry at magic angles. Its wave function has an exact
representation [15] (up to normalization) in terms of the
LLL wave function ΦLLL

k ðrÞ [65–68]:

FIG. 1. (a) Geometry of our AB-AB Bernal stacking multilay-
ered model, which consists of n layers of Bernal stacked
graphene on top and bottom sheets, respectively, with a relative
small twisted angle θ in the middle. Here the solid and empty dots
represent the A and B sublattice, respectively. (b) Illustration
of the Bernal stacking structure in three consecutive layers.
(c) The moiré Brillouin zone and some important momentum
points.

TABLE I. Exact emergent symmetries of the model, which
include the chiral symmetry σz and the intravalley inversion
symmetry I. The combination of both symmetries implies that
the spectrum is not only particle-hole symmetric but also k to −k
symmetric within the same valley. The matrices above are written
in the sublattice basis Φ and Ξ.

Chiral symmetry Intravalley inversion symmetry

σz ¼
�
1

−1
�

I ¼
�
P

−P

�
σxK

fH; σzg ¼ 0 ½H; I � ¼ 0
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Φ1 ¼
�
ϕ1

ϕ0
1

�
¼

�
iGðrÞ
ηGð−rÞ

�
ΦLLL

k ðrÞ; ð5Þ

where η ¼ �1 is the intravalley inversion eigenvalue and
the k-independent GðrÞ can be interpreted as a quantum
Hall wave function in a magnetic field oppositely directed
to that of ΦLLL

k ðrÞ [15]. This connection to the LLL wave
function implies that its cell periodic wave function
e−ik·rΦ1;k is holomorphic in k ¼ ðkx þ ikyÞ=

ffiffiffi
2

p
ignoring

the normalization factor [69]. For any Bloch wave function
satisfying this property, Eq. (1) is automatically satisfied
[14,16,17,70]. The unit Chern number and ideal band
geometry thereby make CTBG an exact k-space dual of
the LLL with nontrivial curvature [16].
Twisted double bilayer graphene.—We now discuss the

first nontrivial case, i.e., n ¼ 2 CTDBG. It has been noticed
that CTDBG has two exactly flat bands at charge neutrality
[37]. Despite this observation, the wave function, topology,
and geometry of these flatbands were ignored before,
which we will analyze in detail below. Since the two
flatbands are sublattice polarized and related by I, without
loss of generality we focus on the sublattice-A flatband
wave functionΦ2 which is the zero mode ofD†

2. We denote
Φ2 as ðΦ̃T

1 ;ϕ2;ϕ3ÞT where Φ̃1 ¼ ðϕ̃1; ϕ̃
0
1ÞT is a two-

component layer spinor. Component-wisely, the zero mode
equation D†

2Φ2 ¼ 0 becomes

D†
1Φ̃1 þ t1ð0;ϕ3ÞT ¼ 0; −i∂̄ϕ3 ¼ 0; ð6Þ

−i∂̄ϕ2 þ t1ϕ̃1 ¼ 0: ð7Þ

The solutions of these equations are ϕ3 ¼ 0 [71] and Φ̃1

being annihilated by D†
1. So Φ̃1 is identical to the CTBG

wave function up to a normalization factor: Φ̃1 ¼ NkΦ1.
For Nk ≠ 0 one can rescale Φ2, so we replace Φ̃1 by Φ1 in
below. As only D†

1 depends on the twist angle, the magic
angles of CTDBG and CTBG are identical, at which the
bands at charge neutrality are exactly flat.
The only nontrivial zero mode equation for CTDBG is

Eq. (7) which governs the essential properties of band
topology, band geometry, and interacting physics through
ϕ2. To prove the ideal band geometry of the magic angle
CTDBG, we merely need to show the cell-periodic part of
ϕ2 (u1;2 ≡ e−ik·rϕ1;2) is holomorphic in k up to a normali-
zation, since Φ1, as the zero mode of CTBG, is already
proved to satisfy this condition [14]. The key observation is
that Eq. (7) only has antiholomorphic derivative ∂̄, thereby
the differential equation for u2, ð∂̄ þ ikÞu2 ¼ −it1u1,
depends only on k but not on k̄. Then ∂̄ku2 ¼ 0 follows
immediately from the fact that ∂̄ku1 ¼ 0. At momentum
points whereNk ¼ 0, the zero mode equation ð∂̄þ ikÞu2¼0
also immediately implies the k-space holomorphic property
of u2 and thus the ideal band geometry of Φ2.

Next we discuss band topology. While it is known that
the Bernal-stacking structure can support high Chern
number [37,72,73], here we provide a proof which high-
lights the analytical structure of the CTDBG flatband wave
function. For convenience, in the following we assume a
small hexagonal-boron-nitride potential μ > 0 to split the
degeneracy of the two CTDBG flatbands and meanwhile
preserve their sublattice polarization.
We start by considering the limit of zero interlayer

coupling t1 ¼ 0. In this case, in the low-energy regime
there are two exactly flat bands ðϕCTBG; χCTBGÞ originating
from the inner CTBG layers and two Dirac bands ðϕD; χDÞ
from the outermost layers. The CTBG and the Dirac
bands are degenerate at the Dirac points �K, as shown
in Fig. 2(a). In the following, we focus on the Dirac point K
to examine the gap opening mechanism as the physics at
−K is simply implied by the intravalley inversion. The K
point wave functions ðϕCTBG;ϕDÞ at energy μ are sub-
lattice-A polarized and ðχCTBG; χDÞ at energy −μ are
sublattice-B polarized [Fig. 2(a)]. We further note that
ðϕD; χDÞ are also polarized in the bottom layer. Under this
scenario, in the “(bottom, top)” layer basis we have

ϕCTBG ¼ ðϕ1;ϕ0
1ÞT; ϕD ¼ ð1; 0ÞT;

χCTBG ¼ ðχ1; χ01ÞT; χD ¼ ð1; 0ÞT: ð8Þ

We then turn on an infinitesimal t1 and use the
perturbation theory to study the change of band structure
and wave functions. As the t1 terms couple adjacent layers
of opposite sublattices, the perturbation matrix elements
within the four low-energy bands are

hϕCTBGjTþjχDi ≠ 0; hχCTBGjT−jϕDi ¼ 0; ð9Þ

where details of Eq. (8) and Eq. (9) can be found in the SM.

FIG. 2. High-C bands generated by the “wave function ex-
change” mechanism. In (a) and (b), we show the sublattice
polarization properties of the CTBG (black circles) and Dirac
wave functions (red triangles) before and after turning on an
infinitesimal interlayer coupling t1, respectively, where the solid
(empty) markers represent sublattice-A (B) polarization, respec-
tively. The Dirac wave function interchanges with the CTBG
wave function at �K, which punctures a zero to CTBG wave
function and increases the Chern number by one.
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Equation (9) implies that χCTBG and ϕD are unperturbed
at K, but ϕCTBG and χD start to repel each other immedi-
ately after turning on t1. The net result is that a band gap is
opened and the CTBG and Dirac bands at positive energy
are effectively “exchanged” at K [Fig. 2(b)], leavingΦ2;K to
be ð0; 0; 1; 0ÞT . We find that Φ2;K remains ð0; 0; 1; 0ÞT for
arbitrary t1 ≠ 0 because the flatband energy stays at μ
independent of t1. On the other hand, Eq. (6) dictates that
first two components ofΦ2 are identical to the CTBG wave
function up to a normalization factor Nk. Thus our analysis
shows Nk must be zero at K; how fast Nk decays to zero
when k approaching K is determined by jt1j.
This “wave function exchange” increases the flatband

Chern number by one. The Chern number measures the
discontinuity of the Bloch wave function which resides
either at the boundary or in the bulk of the Brillouin zone
[74,75]. Since C is an invariant, it is sufficient to work with
an infinitesimal jt1j. In this case, the CTDBGwave function
is identical to the CTBG wave function except near the
Dirac points. One can choose the Brillouin zone boundary
to avoid the Dirac points such that the boundary contri-
bution to C is determined by CTBG wave function which
equals to one. The vanishing ofNK is equivalent as stating a
pole singularity of the Dirac component ϕD at K, which
increases the Chern number by one following Refs. [17,18].
We therefore proved the CTDBG flatband has Chern
number two.
Hierarchy scheme.—The discussion of CTDBG (n ¼ 2)

can be straightforwardly generalized to arbitrary n. Given
the zero mode wave function Φn−1 of Hn−1, the zero mode
of Hn must exist at the same magic angle, whose ansatz
can be written as ΦT

n ¼ ðΦT
n−1;ϕn; 0 Þ and the zero-mode

equation generalizing Eq. (7) is

−i∂̄ϕn þ tn−1ϕn−1 ¼ 0: ð10Þ

Since Eq. (10) only has antiholomorphic derivatives, the
cell-periodic part of ϕn is a holomorphic function of k as
that of ϕn−1 is. We therefore prove the ideal band geometry
of Φn from the hierarchy construction. The band topology
can also be analyzed by the same method. Starting with
tn−1 ¼ 0, ti¼1;…;n−2 ≠ 0, the Hn at the magic angle consists
of two sublattice polarized flatbands originating from Φn−1
which are degenerate with the two outermost freestanding
Dirac bands at Dirac points. Finite but infinitesimal jtn−1j
splits the degeneracy and “exchanges” the Φn−1 with the
Dirac band leaving Φn;K to be ð0;…; 0; 1; 0ÞT . This does
not alter the boundary contribution to C but generates an
unavoidable bulk pole singularity and increases C by one.
We therefore prove the Chern number of our flatband
equals to the number of layers and all the flatbands
have ideal band geometry satisfying Eq. (1). These results
do not require infinitesimal ti¼1;…;n, because Chern
number is a topological invariant and the ideal geometry

follows directly from the holomorphic property of the zero-
mode equations.
Exact fractional Chern insulators.—We now examine

the interacting physics in the ideal flatband of our model.
As the pertinent band is exactly flat, we drop the kinetic
energy and project the interaction into the ideal flatband.
The band filling factor ν is defined as N=ðN1N2Þ for N
electrons and N1, N2 unit cells in the two primitive
directions of the moiré pattern. As the many-body
Hamiltonian preserves the total momentum, each eigenstate
can be labeled by its total momentum ðK1; K2Þ. In TBG, it
has been numerically demonstrated that the C ¼ 1 flatband
at the charge neutrality can host the lattice Laughlin FCIs at
ν ¼ 1=3 [8–10]. In particular, the model ν ¼ 1=3 Laughlin
state was found to be the exact zero-energy ground state at
the chiral limit for the short-ranged two-body repulsive
interaction Hint ¼

P
i<j δ

00ðri − rjÞ [76].
In high-C Bloch bands, robust FCIs were reported across

various models [26–34]. Remarkably, in our ideal flat-
bands, we observe exact (2nþ 1)-fold degenerate zero-
energy ground states for Hint, separated by a finite energy
gap to excitations [Figs. 3(a) and 3(b) for n ¼ 2 and n ¼ 3].
Their particle-cut entanglement spectra (PES) [4], defined

FIG. 3. Energy spectra and particle-cut entanglement spectra
(PES) demonstrating exact model FCIs. (a) and (b): Energy
spectra of the repulsive interaction Hint ¼

P
i<j δ

00ðri − rjÞ in
the C ¼ n ideal flatband at filling fraction ν ¼ 1=ð2nþ 1Þ,
where (a) is for n ¼ 2 (CTDBG) and (b) is for n ¼ 3 (chiral
twisted double trilayer graphene, CTDTG). An (2nþ 1)-fold
exactly degenerate ground states at zero energy are clearly
observed. Lattice sizes ðN1; N2Þ ¼ ð2nþ 1; NÞ are given in the
legends. The red dashed lines mark the zero energy and are used
to guide the eyes. (c) and (d): PES for N ¼ 8 and N ¼ 6

particles. The grey levels above ξc ¼ j lnð2−53Þj ≈ 36.7 are
machine noises. The number of low-energy PES levels is
17710 and 3248 in (c) and (d) respectively, agreeing with
the FCI quasihole counting [26,27].
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as the entanglement between subsystems of NA and N − NA
particles, are displayed in Figs. 3(c) and 3(d). The counting of
low PES levels agrees with the expectation from FCI quasi-
hole excitations. The high PES levels appear only above the
machine error cutoff ξc ≈ 36.7, strongly suggesting an
infinite PES gap and the exact zero modes are model
FCIs. See the SM for studies away from the chiral limit.
Discussions.—There are a couple of open questionswhich

deserve future studies. We noticed that the model FCIs are
intrinsic to the outermost Dirac layer: further projectingHint
into theϕn component ofΦn changes the energies of excited
states but leaves the exact degenerate zero-energy ground
states and the PES unaffected. This means ϕn alone could
exhibit a “color-entangled” feature [28] which remains
challenging to uncover analytically from the zero mode
equation Eq. (10). Furthermore, a thorough understanding of
the origin of the exact model FCIs is still lacking. Exact
model FCIs were also reported in the numerical studies of
onsite interacting bosons in theKapit-Mueller model [77,78]
and its variations [31]. Considering the band geometry of the
Kapit-Mueller model is also ideal [79], we anticipate the
ideal geometry is the fundamental origin of the frustration
free nature of these lattice-specific interacting Hamiltonians.
Studying the projected density algebra is an interesting future
direction [80–84].
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