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A (2þ 1)-dimensional gapped quantum many-body system can have a topologically protected energy
current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral
central charge, a quantity associated with the effective field theory of the edge. We derive a formula for the
chiral central charge that, akin to the topological entanglement entropy, is completely determined by the
many-body ground state wave function in the bulk. According to our formula, nonzero chiral central charge
gives rise to a topological obstruction that prevents the ground state wave function from being real valued in
any local product basis.
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Topological order [1,2] is an active topic of investiga-
tion today, simultaneously admitting connections to deep
mathematics and the promise of intrinsically protected
quantum devices. Well-known properties of topologically
ordered systems in (2þ 1) dimensions are anyonic exci-
tations in the bulk [3–5] and robust gapless modes on the
edge of the system [6–8], both observed in fractional
quantum Hall systems experimentally [9–11].
A remarkable observation is that the features character-

izing the low-energy excitations of a system can be
extracted from its many-body ground-state wave function.
Early examples of this observation include topological
entanglement entropy [12,13] and the entanglement spec-
trum [14]. Later work has gone on to extract other related
properties, e.g., topological S and T matrices of the anyonic
excitations [15,16].
These properties, however, do not exhaustively consti-

tute the data that define the phase of the underlying system.
A missing piece of information is the chiral central charge
(CCC), denoted as c− here. A nonzero c− implies the
presence of gapless edge excitations, so a natural place in
which the CCC appears is the physical edge of the system.
At a temperature T that is low compared with the
bulk excitation gap, the energy current I along the edge
is [8,17–20]

I ¼ π

12
c−T2: ð1Þ

A prominent physical system with nonzero CCC is the
two-dimensional electron gas in a magnetic field [6,10,11].
Besides admitting the well-known quantized electrical

response protected by U(1) charge conservation symmetry,
this system admits a quantized thermal response [8] as well,
which manifests as a unidirectional edge energy current.
This current corresponds to a nonzero c− and exists
independently of the U(1) symmetry [17–19]. More gen-
erally, the chiral central charge is an integer when the edge
admits a chiral Luttinger liquid description [7], but can be a
rational number in, for instance, pþ ip superconductors
and systems with non-Abelian anyons [18,21].
While the CCC describes a physical property of the edge,

it is also related to certain properties of the bulk. For
instance, the energy current at the edge can be related to a
2-current in the bulk, which can be computed from a
microscopic Hamiltonian [20,22]. In effective field theory
approaches, CCC appears in the gravitational Chern-
Simons term of the bulk action, which is responsible for
the framing anomaly of the underlying system [23]. This
lets us relate CCC to the topological Berry phase under
adiabatic variation of the metric [24] and the Hall viscosity
on a sphere [24–27]. Moreover, given a set of ground-state
wave functions on a torus, CCC can be computed (up to a
fixed integer) using topological S and T matrices [15] or
momentum polarization [28]. Alternatively, CCC can be
inferred from the entanglement spectrum of the bulk
reduced density matrix on a disk [14]. However, a succinct
closed-form formula that relates CCC to the ground
state entanglement of a single wave function—akin to
the topological entanglement entropy [12,13]—has been
missing.
In this Letter, we introduce a new formula that reveals a

connection between CCC and the entanglement structure
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of the bulk. Our formula is based on the modular
commutator—a new quantity expressed in terms of reduced
density matrices of a many-body wave function. We argue
that the CCC can be expressed in terms of the modular
commutator for ground states of gapped Hamiltonians, with
or without symmetries. We numerically confirm our for-
mula up to a small error attributable to finite-size effects in
our companion paper [29].
Summary of results.—For a general tripartite state

ρABC on a finite dimensional Hilbert space, the modular
commutator is

JðA;B; CÞρ ≔ iTrðρABC½KAB; KBC�Þ; ð2Þ

where KA ¼ − ln ρA is the modular Hamiltonian [30,31]
associated with the reduced density matrix ρA on subsystem
A. We can readily see that J is real (because ½KAB; KBC� is
an anti-Hermitian operator) and odd under complex con-
jugation (with respect to any product-state basis over the
local degrees of freedom). The latter operation corresponds
to time reversal in our physical context, meaning that it can
flip the direction of a system’s edge current. Thus, the fact
that J is odd under time reversal is a necessary property for
it to encode information about the CCC.
Plugging in a many-body ground state σ ¼ jψihψ j

satisfying the area law with a constant subcorrection term
[12,13], we relate the modular commutator [Eq. (2)] to the
edge energy current [Eq. (1)], obtaining our main result

JðA;B;CÞσ ¼
π

3
c− ð3Þ

for subsystems A, B, and C depicted in Fig. 1. Equation (3)
is insensitive to continuous deformations of the sub-
systems, so long as they remain to partition a disk.
In the rest of this Letter, we derive Eq. (3) using

theoretical tools developed in Refs. [32–34]. Using the
fact that σ satisfies the area law, we show that the state’s
modular Hamiltonian KD for a disk D can be decomposed
into a sum of local operators. From this decomposition, we
can obtain an expression for the “energy current.” The value
of the “energy current” is determined by the expectation
values of commutators of the local terms of KD, and each
nonzero contribution is shown to be of the form of the

modular commutator [Eq. (2)], up to a proportionality
constant. By viewing KD as a physical Hamiltonian
describing the same phase as that of σ, we relate KD’s
“energy current” to the physical current from Eq. (1),
yielding Eq. (3).
Markov-chain states.—An important fact about the

modular commutator is that it vanishes if the underlying
state is a quantum Markov chain [35]. Specifically, con-
sider a tripartite state ρXYZ. This state is a quantum Markov
chain if its conditional mutual information—defined as
IðX∶ZjYÞρ ≔ SðρXYÞ þ SðρYZÞ − SðρYÞ − SðρXYZÞ, where
SðρÞ ≔ −Trðρ ln ρÞ is the von Neumann entropy of ρ—is
zero. It turns out that

IðX∶ZjYÞρ ¼ 0 ⇒ JðX; Y; ZÞρ ¼ 0; ð4Þ

which can be proved via the important relation [35] [This is
true for positive definite ρXYZ. If ρXYZ has zero eigenvalues,
Eq. (5) should be replaced by KXYZρXYZ ¼ ðKXYþ
KYZ − KYÞρXYZ, meaning that the same condition holds
on the subspace spanned by the eigenstates of the nonzero
eigenvalues of ρXYZ; see the Supplemental Material [36] for
details, in particular, on the derivation of Eq. (5) for
fermions based on Refs. [35,37–40] ]:

IðX∶ZjYÞρ ¼ 0 ⇔ KXYZ ¼ KXY þ KYZ − KY: ð5Þ

Applying this relation, the modular commutator becomes
JðX; Y; ZÞ ¼ iTrðρXYZ½KXY; KXYZ þ KY �Þ. The cyclicity of
the trace then implies that this expression is zero.
Area law and modular commutator.—Now we shift our

focus to ground states of gapped quantum many-body
systems in two spatial dimensions. Such states, which we
denote as σ, are expected to obey the area law of
entanglement entropy [12,13], which means that the
following equation holds for any disk-shaped region A:

SðσAÞ ¼ αj∂Aj − γ þ � � � ; ð6Þ

where j∂Aj is the length of the perimeter of A, α is a
nonuniversal constant, and γ is the topological entangle-
ment entropy [12,13]. The remaining ð…Þ term vanishes in
the jAj → ∞ limit. While the rigorous proof of the area law
[Eq. (6)] is unknown, proofs of analogous statements in
one-dimensional gapped systems [41] and two-dimensional
locally gapped systems [42] are known.
The area law implies that the modular commutator

JðA; B;CÞ for the partition of the disk in Fig. 1 is invariant
under topology-preserving deformation of the regions.
Specifically, consider the deformations of subsystems A,
B, and C as described in Fig. 2. Deformations away from B
leaves the modular commutator invariant for the following
reason. Without loss of generality, consider a ⊂ ΛnðABCÞ
as is shown in the first row of Fig. 2. From Iða∶BjAÞ ¼ 0
and Eq. (5), we can obtain KaAB ¼ KAB þ KaA − KA;

FIG. 1. Partition of a disk-shaped region ABC in the bulk (Λ).
Each subsystem is assumed to be sufficiently large compared
with the correlation length.
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here the vanishing of conditional mutual information
Iða∶BjAÞ ¼ 0 follows from Eq. (6). [For our purpose, it
will suffice for the size of the region a to be large com-
pared with the correlation length. However, note that
Iða∶BjAÞ ¼ 0 holds for a of smaller sizes as well, provided
that the conditioned region (A) is large. This is a conse-
quence of strong subadditivity, Iða∶BjAÞ ≤ Iðaa0∶BjAÞ.]
Therefore, JðAa; B; CÞ ¼ JðA;B;CÞ. By repeating the
same argument, one can freely deform the part of the
edges and the triple intersection point that is separated
from B.
The deformations of B also leave the modular commu-

tator invariant. To establish this fact, it suffices to consider
the deformations depicted in the second row of Fig. 2 and
show that JðA;B;CÞ ¼ JðAnb; Bb; CÞ. While the argument
in the previous paragraph does not apply directly, it does
apply after we switch the subsystems as follows. Let Λ ¼
ABCD and suppose σ ¼ jψihψ j is pure. Then it follows
from KBCjψi ¼ KADjψi that JðA; B;CÞ ¼ JðB;A;DÞ;
similarly, we can put either C or D in the middle entry
and have JðA; B;CÞ ¼ Jð·; C; ·Þ ¼ Jð·; D; ·Þ with appropri-
ate choices of the first and third entries. Thus, we can
always make the middle entry to be away from the place
that the deformation occurs. The argument in the previous
paragraph now applies. Therefore, given subsystems A, B,
and C which are topologically equivalent to Fig. 1,
JðA; B;CÞ is invariant under any smooth deformation
of A, B, or C.
Locality of modular Hamiltonian.—We now discuss the

“local” structure of the modular Hamiltonian KD of a
many-body area-law state σ on a disk-shaped region D.
The area law implies that IðX∶ZjYÞσ ¼ 0 for any “chain-
like” region XYZ, i.e., for which X, Y, and Z are simply
connected, and X and Z do not share a boundary.
Partitioning the disk D ¼ XYZ into such a region,
Eq. (5) allows us to express the modular Hamiltonian
KD using terms of smaller support. This process can

then be applied recursively to the resulting terms
fKXY; KYZ; KYg, yielding an evermore local decomposi-
tion for KD.
To take advantage of this process, let us coarse grain

the subsystem into a triangular lattice of supersites; see
Fig. 3(a). This lattice has vertices (denoted by hexagonal
unit cells at each site in the figure), edges , as well as
three-site combinations such as faces , and chainlike
regions , , … The above procedure eliminates all
terms supported on chainlike regions, leaving the faces f ∈
FðDÞ as the only source of three-site supports for the
decomposition. The decomposition also admits single-site
terms, which, due to the nature of Eq. (5), only occupy
vertices v on the interiorDint, i.e., the set of all vertices that
have no neighbors outside of D. Similarly, the remaining
two-site terms are supported on any edges e ∈ EðDÞ that
do not lie exclusively on the boundary, i.e., the set
EðDÞ=EðD∂Þ. These terms make up the decomposition

KD ¼
X

f∈FðDÞ
Kf −

X
e∈EðDÞ=EðD∂Þ

Ke þ
X
v∈Dint

Kv; ð7Þ

which is local with respect to our triangulation; examples of
each term are depicted in Fig. 3(b).
Invariance of JðA;B;CÞ under smooth deformations

implies that commutators of the above terms are 0, �J,
where we have set

ð8Þ

This reference value of the modular commutator either
stays the same or changes sign if we pick another face or
rearrange the order of the sites.
Modular current.—Because KD is local, we can define

its “energy current,” which we refer to as the modular
current. We rewrite the modular Hamiltonian [Eq. (7)] in
terms of K̃D

v , which collects all terms whose support
contains site v, multiplied by the appropriate fraction so
as to satisfy KD ¼ P

v∈D K̃D
v :

FIG. 2. First row: deformation of A to Aa, where a is a
small disk separated from B. Second row: deformations of B to
Bb; (for the rightmost figure, b ⊂ A). All cases in the second row
can be reduced to the cases in the first row by a change of
subsystem.

(a) (b)

FIG. 3. (a) A disk D and its partition into Dint and D∂ . (b) A
disk D (blue) and the one-site terms Kv (yellow), two-site terms
Ke (orange), and three-site terms Kf (green) in the local
decomposition [Eq. (7)] of modular Hamiltonian KD.
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K̃D
v ¼

8>>><
>>>:

1
3

P
f∶v∈f

Kf − 1
2

P
e∶v∈e

Ke þ Kv; v ∈ Dint

1
3

P
f∶v∈f;
f∈FðDÞ

Kf − 1
2

P
e∶v∈e;

e∈EðDÞnEðD∂Þ

Ke; v ∈ D∂ : ð9Þ

The modular current from site u to v is then simply

fDuv ≔ ih½K̃D
u ; K̃D

v �i; ð10Þ

quantifying the noncommutativity of the modular
Hamiltonian terms.
The modular current has properties analogous to that of

the energy current of some local Hamiltonian at finite
temperature [20]. For instance, fDuv vanishes for any pair of
points u; v ∈ D which are sufficiently far apart. Moreover,
the current is conserved:

X
v∈D

fDuv ¼ 0: ð11Þ

Lastly, one can explicitly show that the bulk modular
current vanishes: fDuv ¼ 0 for u; v ∈ Dint; see the
Supplemental Material [36] for details.
Since the modular current vanishes in the bulk of the

disk, nontrivial current flows only along the edge. We
define the edge modular current Iσ to be a sum of fDuv over
u ∈ L and v ∈ R, where L;R ⊂ D lie on opposite sides of a
cut perpendicular to the boundary. This current is insensi-
tive to the choice of regions L, R, as long as they are
sufficiently large. Since there is no current deep enough in
the bulk, nonzero contributions only come from sites that
are at most two sites away from the edge. Moreover,
because the current flows between nearby sites and is
conserved, it suffices to consider only a few sites along the
edge. For the cut depicted in Fig. 4, nonzero contribu-
tions only come from fa; b; cg ⊂ L and fx; y; z; wg ⊂ R,
yielding

Iσ ¼
X
u∈L

X
v∈R

fDuv ¼
1

4
J: ð12Þ

The choice of regions depends on the decomposition of
KD, and a coarser decomposition requires even smaller
regions.
Chiral central charge.—We now relate Iσ to c− by

viewing KD as a physical Hamiltonian describing the same
phase as that of the state σ. First, σD ¼ e−KD can be viewed
as a thermal state of the local Hamiltonian

P
v∈D K̃D

v ¼
KD with the temperature T ¼ 1. Second, e−

P
v∈D

K̃D
v ¼ σD

obeys an entanglement area law in D, and is indistinguish-
able from the ground state σ over the same region, an
indication of low temperature for a system with a bulk
energy gap.(Let us remark on a subtlety. Ground states
of realistic gapped many-body systems would satisfy

e−
P

v∈D
K̃D

v ¼ σD only approximately. In order for our
argument on low temperature to work, the size of the
hexagon-shaped subsystems partitioning D must be suffi-
ciently large compared to the correlation length, yet smaller
than the radius of D. Furthermore, in order to make the
error in the local decomposition sufficiently small, the size
of the subsystems we use must implicitly depend on the
size of D. Understanding this dependence is left for future
study.) Third, the temperature is high enough so that the
edge correlation length is small compared with the length
of the disk. (In other words, the temperature is low as far as
the bulk is concerned, and the temperature is high from the
perspective of the edge.) This is the right temperature
range for which we can apply Eq. (1); see, e.g., Ref. [20],
Appendix D.2.
Now, we can make a nontrivial but a reasonable physical

assumption; if two local Hamiltonians with a bulk energy
gap have the same bulk reduced density matrix, then their
energy currents at the boundary at a temperature that is low
compared with the bulk gap both obey Eq. (1), independent
of other microscopic details. This expression is determined
completely by the temperature and the CCC of the edge
theory [20] and cannot change unless the bulk undergoes a
quantum phase transition. As is observed in the previous
paragraph, the “temperature” T ¼ 1 lies in the right
temperature range. Using Eq. (1) and identifying the energy
current to the edge modular current [Eq. (12)], we arrive at
our main result:

J ¼ π

3
c−: ð13Þ

Discussion.—In this Letter, we propose a new formula
for the chiral central charge (CCC). The formula is based on
the modular commutator J, a new quantity that is expressed
in terms of reduced density matrices and that is odd under
time reversal (i.e., complex conjugation with respect to a
local basis). Compared with other similar works in this
direction [15,28,43], the main advantage of our formula is
that it can be directly computed from a single ground-state
wave function. Together with the prior work that estab-
lished a connection between ground-state entanglement and

FIG. 4. The calculation of the edge modular current Iσ
[Eq. (12)]. The computation result of all the nonvanishing
contribution from modular currents passing through a specific
cut is summarized (see the Supplemental Material [36] for
details).
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the anyonic data [12–15,32,44], our result strengthens the
idea that all the universal properties of (2þ 1)-dimensional
gapped quantum phases may be encoded in a single ground
state. Our formula is thus a useful addition to the existing
toolkit for diagnosing topological properties of quantum
many-body systems.
Aside from drawing a deep connection between ground

state entanglement and the CCC, our result [Eq. (13)] also
has an intriguing implication for the intrinsic sign problem
[45]. Specifically, if our formula for the CCC is correct for
all gapped systems in (2þ 1) dimensions, then a system
with nonzero CCC cannot have a parent Hamiltonian which
is sign-problem free. This is because a sign-problem free
Hamiltonian necessarily admits a ground state with non-
negative coefficients in a local product basis, for which the
CCC would be zero because J is odd under complex
conjugation. Thus, a rigorous proof of our formula will lead
to a microscopic proof that such systems have an intrinsic
sign problem; no local Hamiltonian free of the sign
problem can have ground states with nonzero c−. This
corroborates recent arguments pointing to a similar con-
clusion [46–48].
A curious fact is that the modular commutator did not

possess any ultraviolet-divergent contributions in our
calculation. Whether this is a general property of the
modular commutator or something specific to gapped
phases in (2þ 1) dimensions is unclear. Perhaps field-
theoretic calculations of our result can shed light on this
problem.
For future work, it will be interesting to find analogs of J

that are suitable for resolving symmetry-protected topo-
logical invariants that can be obtained from the ground-
state wave function, e.g., Refs. [49–59].
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Note added.—After completion of our work, we became
aware of the independent work of Liu et al. [60] and Siva
et al. [61] which considered a different entanglement
measure to extract properties of the ungappable edge
degrees of freedom.
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[51] J. Haegeman, D. Pérez-García, I. Cirac, and N. Schuch,
Order Parameter for Symmetry-Protected Phases in One
Dimension, Phys. Rev. Lett. 109, 050402 (2012).

[52] I. Marvian, Symmetry-protected topological entanglement,
Phys. Rev. B 95, 045111 (2017).

[53] K. Shiozaki, H. Shapourian, and S. Ryu, Many-body
topological invariants in fermionic symmetry-protected
topological phases: Cases of point group symmetries, Phys.
Rev. B 95, 205139 (2017).

[54] H. Shapourian, K. Shiozaki, and S. Ryu, Many-Body
Topological Invariants for Fermionic Symmetry-Protected
Topological Phases, Phys. Rev. Lett. 118, 216402 (2017).

[55] H. Tasaki, Topological Phase Transition and Z2 Index for
S ¼ 1 Quantum Spin Chains, Phys. Rev. Lett. 121, 140604
(2018).

[56] K. Shiozaki, H. Shapourian, K. Gomi, and S. Ryu, Many-
body topological invariants for fermionic short-range
entangled topological phases protected by antiunitary sym-
metries, Phys. Rev. B 98, 035151 (2018).

[57] S. Bachmann, A. Bols, W. De Roeck, and M. Fraas, A
many-body index for quantum charge transport, Commun.
Math. Phys. 375, 1249 (2020).

[58] Z.-P. Cian, H. Dehghani, A. Elben, B. Vermersch, G. Zhu,
M. Barkeshli, P. Zoller, and M. Hafezi, Many-Body Chern
Number from Statistical Correlations of Randomized
Measurements, Phys. Rev. Lett. 126, 050501 (2021).

[59] H. Dehghani, Z.-P. Cian, M. Hafezi, and M. Barkeshli,
Extraction of the many-body chern number from a single
wave function, Phys. Rev. B 103, 075102 (2021).

[60] Y. Liu, R. Sohal, J. Kudler-Flam, and S. Ryu, Multi-
partitioning topological phases by vertex states and quantum
entanglement, Phys. Rev. B 105, 115107 (2022).

[61] K. Siva, Y. Zou, T. Soejima, R. S. K. Mong, and M. P.
Zaletel, A universal tripartite entanglement signature of
ungappable edge states, arXiv:2110.11965.

PHYSICAL REVIEW LETTERS 128, 176402 (2022)

176402-6

https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.101.045137
https://doi.org/10.1103/PhysRevLett.114.016805
https://doi.org/10.1103/PhysRevLett.114.016805
https://doi.org/10.1103/PhysRevB.91.165306
https://doi.org/10.1103/PhysRevB.91.165306
https://doi.org/10.1103/PhysRevB.90.014435
https://doi.org/10.1103/PhysRevB.90.014435
https://doi.org/10.1103/PhysRevLett.115.086801
https://doi.org/10.1103/PhysRevLett.115.086801
https://doi.org/10.1103/PhysRevB.100.104512
https://doi.org/10.1103/PhysRevB.100.104512
https://doi.org/10.1103/PhysRevB.88.195412
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1016/j.aop.2020.168164
https://doi.org/10.1103/PhysRevB.103.115150
https://doi.org/10.1103/PhysRevLett.126.141602
https://doi.org/10.1142/S0129055X03001576
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.176402
https://doi.org/10.1142/S0129055X03001606
https://doi.org/10.1063/1.1666274
https://doi.org/10.1063/1.1666274
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://arXiv.org/abs/2103.02492
https://doi.org/10.1103/PhysRevB.91.125303
https://doi.org/10.1103/PhysRevB.91.125303
https://doi.org/10.1103/PhysRevResearch.2.023132
https://doi.org/10.1103/PhysRevResearch.2.023132
https://doi.org/10.1063/1.4936216
https://doi.org/10.1126/sciadv.1701758
https://doi.org/10.1103/PhysRevResearch.2.043032
https://doi.org/10.1103/PhysRevResearch.2.043032
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevLett.109.050402
https://doi.org/10.1103/PhysRevB.95.045111
https://doi.org/10.1103/PhysRevB.95.205139
https://doi.org/10.1103/PhysRevB.95.205139
https://doi.org/10.1103/PhysRevLett.118.216402
https://doi.org/10.1103/PhysRevLett.121.140604
https://doi.org/10.1103/PhysRevLett.121.140604
https://doi.org/10.1103/PhysRevB.98.035151
https://doi.org/10.1007/s00220-019-03537-x
https://doi.org/10.1007/s00220-019-03537-x
https://doi.org/10.1103/PhysRevLett.126.050501
https://doi.org/10.1103/PhysRevB.103.075102
https://doi.org/10.1103/PhysRevB.105.115107
https://arXiv.org/abs/2110.11965

