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We present the Ramsey response and radio-frequency spectroscopy of a heavy impurity immersed in an
interacting Fermi superfluid, using the exact functional determinant approach. We describe the Fermi
superfluid through the conventional Bardeen-Cooper-Schrieffer theory and investigate the role of the
pairing gap on quasiparticle properties revealed by the two spectroscopies. The energy cost for pair
breaking prevents Anderson’s orthogonality catastrophe that occurs in a noninteracting Fermi gas and
allows the existence of polaron quasiparticles in the exactly solvable heavy impurity limit. Hence, we
rigorously confirm the remarkable features such as dark continuum, molecule-hole continuum, and
repulsive polaron. For a magnetic impurity scattering at finite temperature, we predict additional
resonances related to the subgap Yu-Shiba-Rusinov bound state, whose positions can be used to measure
the superfluid pairing gap. For a nonmagnetic scattering at zero temperature, we surprisingly find
undamped repulsive polarons. These exact results might be readily observed in quantum gas experiments
with Bose-Fermi mixtures that have a large-mass ratio.
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Thanks to the unprecedented controllability recently
achieved in ultracold quantum gases, investigations on
nonequilibrium quantum dynamics in many-body systems
have progressed rapidly [1]. One such intriguing problem is
how a quantum gas medium responds to a suddenly
introduced impurity [2,3]. The quantum gas can be either
a degenerate Fermi gas or a Bose-Einstein condensate
(BEC). The impurity-medium interaction can essentially be
tuned arbitrarily via Feshbach resonance [4], and a variety
of impurities, such as Rydberg atoms [5–7] or quantum
rotor [8], can be introduced. A unique advantage of these
impurity-medium systems is that they present probably
the simplest nontrivial many-particle problem, where the
medium response can be directly measured (i.e., by
Ramsey and radio-frequency spectroscopies) and effi-
ciently calculated even in the nonperturbative strong-
coupling regime [3,9]. Consequently, they can serve as a
critical meeting point for theoretical and experimental
efforts to understand the complicated quantum dynamics
of interacting many-particle systems.
Historically, the first research of impurity-medium

systems led Landau to introduce a general concept of
polarons—quasiparticles formed by dressing the impurity
with elementary excitations of the medium [10]. The new
platform of ultracold quantum gases has enabled the

exploration of polaron quasiparticle properties in a con-
trollable and quantitative manner over the last decade, both
experimentally [11–21] and theoretically [22–42]. In par-
ticular, a number of salient features of polarons have been
predicted by approximate theories and Monte Carlo sim-
ulations, including the excited repulsive polaron with finite
lifetime [26] and the dark continuum [35] and molecule-
hole continuum [2] that separate the attractive and repulsive
polaron branches. While the repulsive polaron has been
unambiguously observed in experiments [13,14], the exist-
ence of the dark and molecule-hole continua remains
elusive due to the uncertainty in theoretical calculations.
The purpose of this Letter is to present an exact calculation
of polaron quasiparticle properties in the heavy impurity
limit and in the experimentally unexplored regime with a
Fermi superfluid medium [43–47].
Our work naturally extends the well-known exactly

solvable many-body problem of the Fermi-edge singularity
of x-ray absorption spectra in metals [48,49], which is the
first and most important example of nonequilibrium many-
body physics [50,51]. In this impurity-medium problem,
the suddenly introduced infinitely heavy impurity can
excite particle-hole pairs close to Fermi surfaces without
costing finite recoil energy [3,9]. The multiple particle-hole
excitations completely changes the many-particle states in
the limit of a large particle number. As a result, the many-
particle states with and without impurity become orthogo-
nal, i.e., Anderson’s “orthogonality catastrophe” (OC) [52].
In the context of ultracold quantum gases, the Fermi-edge
singularity has been quantitatively reexamined via the
functional determinant approach (FDA) [53–56], providing
insightful understanding of polaron physics [2,3,9].
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Unfortunately, strictly speaking, due to OC the attractive
and repulsive polarons do not exist, as indicated by the
vanishing quasiparticle residue [3,9].
Here, we propose an exactly solvable model of a heavy

impurity immersed in a Fermi superfluid medium described
by the standard Bardeen-Cooper-Schrieffer (BCS) pairing
theory [57–59]. As multiple particle-hole excitations can
be efficiently suppressed by the energy cost of pairing
breaking, Anderson’s OC is avoided and polarons acquire
nonzero quasiparticle residue. Therefore, we obtain a
benchmark theoretical model with well-defined polaron
quasiparticles, in which all the speculated characteristics of
polarons can be rigorously examined. Our results are also
highly experimentally relevant, as a BCS Fermi superfluid
(of 6Li or 40K atoms) has now been routinely realized using
Feshbach resonance at the so-called BEC-BCS crossover
and a heavy atomic species such as 133Cs can be manip-
ulated at will as impurity.
In Fig. 1, we outline an injection scheme of interest

in this Letter: the impurity is driven from a noninteracting
hyperfine state [Fig. 1(a)] into an interacting state
[Fig. 1(b)] at time t ¼ 0. The dynamical evolution at later
time, namely the Ramsey response, is then exactly calcu-
lated via an extension of the FDA, from which we extract
the spectral function. The existence of pairing gap prevents
the OC and preserves well-defined polaron quasiparticle
features in the spectral function. In addition to rigorously
confirming the remarkable characteristics of polarons, our
exact results also reveal two novel unique features related
to the Fermi superfluid medium: the resonances related to
the subgap Yu-Shiba-Rusinov (YSR) state bound to a
magnetic impurity [60–64] and repulsive polarons with
infinitely long lifetime in the case of a nonmagnetic
impurity scattering.
Theory.—The fundamental Ramsey response is the real-

time overlap function between the many-body state
with and without the impurity, SðtÞ ¼ heiĤite−iĤfti≡
Tr½eiĤite−iĤftρ̂0�, where Hi (Hf) is the many-body

Hamiltonian in the absence (presence) of the impurity
scattering and ρ̂0 is the initial state of the Fermi system
(hereafter, we use the units of ℏ≡ 1). Complementarily,
the frequency-resolved spectral function AðωÞ ¼
Re
R∞
0 eiωtSðtÞdt=π, which determines the radio-frequency

(rf) spectroscopy, can be obtained by a Fourier trans-
formation [9,65]. Since the complexity of the many-body
Hamiltonians increases exponentially with the numbers of
particles N in the system, an exact calculation of SðtÞ is
usually inaccessible. However, in the case that Hi and Hf

are both fermionic, bilinear many-body operators, the
overlap function can reduce to a determinant in single-
particle Hilbert space that grows only linearly toN [53–56]:

SðtÞ ¼ e−iω0t det½1 − n̂þ eiĥite−iĥftn̂�; ð1Þ

where n̂ is the occupation number operator, and ĥi (ĥf)
are the single-particle representatives of Hi (Hf) up to
some constant terms that ω0 compensates. For example,
Hf ¼ K0 þ ω0 þ

R
drϕ̂†ðrÞhfðrÞ ϕ̂ðrÞ, where K0 is an

unimportant constant and

hfðrÞ ¼
 
− ∇2

2m þ V↑ðrÞ − μ Δ

Δ ∇2

2m − V↓ðrÞ þ μ

!
; ð2Þ

with VσðrÞ being the potential between impurity and σ-
component fermion. Note that, here we already extend the
FDA to the case of a BCS Fermi superfluid, which is
characterized by the pairing gap Δ and chemical potential μ
to be determined by a given scattering length a between
unlike fermions, temperature T and Fermi momentum
kF ¼ ð3π2N=VÞ1=3, where V is the system volume. It is
convenient to use the Nambu spinor operators as ϕ̂†ðrÞ ¼
½c†↑ðrÞ; c↓ðrÞ�, where c†σðrÞ [cσðrÞ] being the creation
(annihilation) operator for a σ-component fermion at
position r. We also have ω0 ¼ TrV↓, which corresponds

to the phase factor in Eq. (1) with V↓ being the matrix

format of V↓ðrÞ in a complete orthogonal set of basis.
Finally, hiðrÞ can be obtained by setting VσðrÞ equals zero
in Eq. (2). In what follows, we briefly describe the
computation procedure and present our main physical
results, but relegate numerical details and additional dis-
cussions to a companion paper [66].
We consider a finite system confined in a sphere of

radius R and take the system size towards infinity, while
keeping the density constant, until numerical results are
converged [9]. We focus on the s-wave channel and use
finite-range potentials VσðrÞ whose corresponding energy-
dependent scattering length aσðEFÞ ¼ − tan ησðkFÞ=kF,
where ησðkFÞ is the s-wave scattering length between
the impurity and σ-component fermions at the Fermi
energy EF ¼ k2F=ð2mÞ. We find that numerical results

(c)

FIG. 1. A sketch of the occupation and structure of the single-
particle dispersion spectrum of a two-component superfluid
Fermi gas with a positive chemical potential μ > 0 and the
presence of a static impurity (black dot). (a) shows the spectrum
Eν when the impurity is in the noninteracting state (black arrow
up) at zero temperature. When the impurity is in the interacting
polaron state (black arrow down), the spectrum Ẽν are shown in
(b) at zero and (c) finite temperature.
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are not sensitive to other short-range details of the
potential. Therefore, for simplicity we denote aσ ≡
aσðEFÞ hereafter [67]. Finally, for a given set of parameters
fkF; a; a↑; a↓; Tg, we can calculate Eq. (1) by finding
the eigenpairs Eν, ϕν ≡ ½ϕν;↑ðrÞ;ϕν;↓ðrÞ� for hiðrÞ and Ẽν,

ϕ̃ν for hfðrÞ. In this presentation, the occupation operator n̂
is given by a diagonal matrix with elements nνν ¼
½e−Eν=ðkBTÞ þ 1�−1, where kB is the Boltzmann constant.
Figure 1(a) gives a sketch of the occupation and structure of
single-particle spectrum Eν without impurity at T ¼ 0,
which includes a completely filled Fermi sea (filled circles
in the lower branch) and an empty one (empty circles on the
top) separated by 2Δ. The presence of impurity scattering
leads to a shift of the single-particle levels Eν → Ẽν as
shown in Fig. 1(b), where the small blue dots shows Eν for
comparison. In the case of a magnetic impurity scattering
(a↑ ≠ a↓), there also exists a subgap YSR bound state with
energy EYSR [60–63].
Ramsey response.—As reported in Fig. 2, our numerical

examples here focus on the BCS side of the crossover
kFa ¼ −2 < 0, where μ ≈ 0.85EF and Δ ≈ 0.40EF at zero
temperature. While our method applies to the whole
crossover regime, mean-field description becomes only
qualitatively reliable on the BEC side. In addition, BCS
treatment also cannot describe the gapless collective
bosonic excitations, which might become more important
and induce OC on the deep BEC side. We also focus on the
simplest case, where the impurity only interacts with the
spin-up component fermion, i.e., V↓ðrÞ ¼ 0. For compari-
son, we show also the results for kFa ¼ 0 (with μ ¼ EF and
Δ ¼ 0), where the ↑ component of medium reduces to a

noninteracting Fermi gas that couples with the impurity,
and the ↓ component being simply a spectator. These
results agree with previous studies for both zero and finite
temperature [9].
At kFa ¼ 0 and T ¼ 0, the asymptotic behavior of jSðtÞj

at large t exhibits a power-law decay jSðtÞj ∼ t−α, reflecting
Anderson’s OC and x-ray infrared singularity ϵα−1 at the
low-energy scale set by the inverse time ϵ ∼ ℏ=t [3,9,48]. In
contrast, in the presence of a pairing gap Δ ≠ 0, jSðtÞj ∼ t0

at T ¼ 0, indicating OC is prevented as the low-energy
scale is now cut by Δ [68]. At finite temperature, although
both with or without the pairing gap, jSðtÞj shows an
exponential decay at large t, such behavior appears at a
much later time for finite Δ. In particular, for nonzeroΔ the
results at T ¼ 0 and T ¼ 0.05EF=kB are almost over-
lapping at tEF ≤ 500, showing that the pairing gap can
also protect the response signal against thermal fluctuation
if kBT ≪ Δ.
More quantitatively, at nonzero pairing gap we have the

following analytic result,

Sðt → ∞Þ ≃
�
Dae−iEat; a↑ < 0;

Dae−iEat þDre−iErt; a↑ > 0;
ð3Þ

which fits excellently well to our numerical results, withDa
Ea, Dr, and Er being fitting parameters. At small Δ, the
coefficients jDaj ∝ ðΔ=EFÞαa and jDrj ∝ ðΔ=EFÞαr , mak-
ing the asymptotic form that agrees with the modification of
the analytic expression of SðtÞ for a noninteracting Fermi
gas medium via replacing the low-energy cutoff 1=t → Δ
[see, i.e., Eqs. (12) and (15) of Ref. [9] ]. However, our
numerical results indicate the power-law exponents αr and
αa are close to but not exactly the same as the analytical
results given in [9], see Ref. [66] for details. At T ¼ 0, Ea is
purely real and corresponds to the attractive polaron energy
that satisfies Ea ¼

P
ν nννðEν − ẼνÞ, indicating that the

attractive polaron can be regarded as the renormalization of
the Fermi sea due to the impurity level. The repulsive
polaron energy Er is in general complex, where we denote
the real and imaginary part as ReEr and ImEr.
rf spectroscopy.—One of the key observations of this

Letter is the saturation of jSðtÞj at large time, which implies
a finite polaron quasiparticle residue Z ¼ jDaj ∝ Δαa . To
check this, we calculate the frequency response AðωÞ
accurately with a Fourier transformation of SðtÞ. We choose
a large cutoff t� ∼ 500=EF, evaluate SðtÞ numerically for
t < t�, and use the fitting formula in Eq. (3) for t ≥ t�. As
shown in Fig. 3 by thick blue solid curves for zero-
temperature results, the attractive polaron is characterized
by a δ-function peak at Ea (with a small artificial width for
visibility), unambiguously confirming the existence of a
well-defined quasiparticle. The attractive polaron peak
separates with a molecule-hole continuum by a region of
anomalously low spectral weight, namely the “dark con-
tinuum.” This spectral gap has previously been shown in

10-1

100

10-1 100 101 102
10-1

100

(a)

(b)

FIG. 2. Ramsey response jSðtÞj for a magnetic impurity
scattering with (a) attractive scattering lengths a↑ < 0 and
(b) repulsive scattering lengths a↑ > 0 are shown for different
values of the scattering length a between the two-component
fermions and different temperature T; see legend.
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other polaron systems with approximate calculations,
where the anomalously low spectral weight might be an
artifact of the adopted approximations. Only recently, a
diagrammatic Monte Carlo study indicates that this dark
continuum might be indeed physical [35]. Here, the heavy
polaron spectral function is calculated via FDA, and hence
can be regarded as an exact proof of the dark continuum.
For a > 0, a Lorentzian line shape with a peak at ReðErÞ
corresponds to the repulsive polaron. The finite width
determined by ImðErÞ implies that the repulsive polaron
has a finite lifetime.
In Fig. 3, finite-temperature results are indicated by the

red thin (purple thinner) curves for kBT ¼ 0.1EFð0.15EFÞ.
Other than the expected thermal broadening, some addi-
tional surprising features show up. An enhancement of

spectral weight appears sharply at the energy Eð−Þ
YSR ¼

Ea − ðΔ − EYSRÞ below the attractive polaron. This spec-
tral feature corresponds to the decay process highlighted by
the purple arrow in Fig. 1(c), where an additional particle
initially excited to the upper Fermi sea by thermal fluc-
tuation is driven to the YSR state. For the case of kFa↑ > 0,
a feature associated with the repulsive polaron appears at

EðþÞ
YSR ¼ ReðErÞ − ðEYSR þ ΔÞ, as indicated by the green

arrow in Fig. 1(c): an additional particle decays from the
YSR state to the lower Fermi sea. These features can be
better observed in the whole spectrum of a↑ across a
resonance, as shown in Fig. 4 for different temperatures.
The YSR features are negligible at kBT ¼ 0.05EF, and the
spectrum in Fig. 4(a) is almost the same as zero-temper-
ature results. This shows the protection against finite
temperature provided by the pairing gap. The YSR features
become apparent in Fig. 4(b) at kBT ¼ 0.15EF and shows
broadening at kBT ¼ 0.2EF. We emphasize that this range
of temperature is accessible for current experiments.
The polaron spectrum can be applied to measure the
superfluid gap Δ and EYSR. In particular, we notice, on

the positive side a↑ > 0, if Ea, ReðErÞ, Eð−Þ
YSR, and E

ðþÞ
YSR can

all be measured accurately, we have 2Δ ¼ Ea þ ReðErÞ −
Eð−Þ
YSR − EðþÞ

YSR that does not depend on EYSR. Since this
formula only relies on the existence of the gap and a
midgap state, we anticipate it can be used to measure Δ
accurately for a Fermi superfluid that cannot be quantita-
tively described by the BCS theory.
Finally, we discuss briefly our observations for the case

of a nonmagnetic impurity scattering with a↑ ¼ a↓, where
the YSR features are absent as expected. Interestingly,
we also discover that the repulsive polaron exhibits itself as
a δ-function peak in the spectral function at zero temper-
ature. We believe the underlying physics might be due to
the gapless density fluctuations in the Fermi superfluid
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FIG. 3. The spectral function AðωÞ at kFa ¼ −2 for different
temperature (see legend) and different scattering length a↑ < 0 in
(a) and a↑ > 0 in (b).

FIG. 4. The spectral function AðωÞ at kFa ¼ −2 as a function of a↑ for different temperature: kBT ¼ 0.05; 0.15; 0.2EF for (a), (b), and
(c), respectively. The black dashed (dotted) curves show the attractive (repulsive) polaron energy and the red dashed (dotted) curves

show EðþÞ
YSR (Eð−Þ

YSR) at finite temperature.
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excited by the perfect balance of the two scattering lengths.
As a result, the impurity couples to phonon excitations of
the superfluid and forms a long-lived repulsive polaron. For
more details, we refer to the companion paper [66].
Experimental realization.—Our predictions can be

readily confirmed by immersing heavy 133Cs impurities
in a BCS Fermi superfluid of 6Li atoms routinely observed
near a broad Feshbach resonance B0 ≃ 832 G. The two
interspecies broad resonances located nearby at 843 and
889 G [69] allow us to independently control the 133Cs-6Li
scattering lengths a↑;↓. Both magnetic and nonmagnetic
impurity scatterings can therefore be realized by tuning the
magnetic field [66]. The finite mass effect should be
negligible due to the large mass ratio [66]. Otherwise,
one can also further suppress the finite mass effect by
applying a deep optical lattice to localize the impurity [3,9].
Conclusions.—We have calculated the response func-

tions of driving a heavy impurity in a BCS superfluid from
noninteracting to interacting hyperfine states. Because of
the existence of a pairing gap in the superfluid, the OC is
prevented and genuine polaron quasiparticles exit. The
underlying physical reason is apparent: exciting particle-
hole pairs in this system requires an energy cost for Cooper-
pair breaking, and hence multiple particle-hole excitations
are energetic unfavored. We emphasize that our FDA can
support this conclusion since it is essentially exact, unlike
some approximations such as extended Chevy’s ansatz
[22,26] or T-matrix method [2,36] that allow only a few
particle-hole excitations. In this respect, our calculation can
be regarded as an exact theoretical model of polarons.
Many features of the spectrum structure, such as the
existence of a δ-function peak for the attractive polaron
and a dark continuum, are rigorously confirmed to be
universal. The pairing gap also protects the polaron against
thermal fluctuation, preserving clear polaron features in
response functions at a finite temperature kBT ∼ Δ.
Furthermore, we discover that the polaron spectrum
can be applied to measure the background superfluid
excitation spectrum, such as the pairing gap Δ.
Interestingly, in the case of a magnetic impurity, the polaron
spectrum at finite but low temperature has sharp features
that can be used to measure the subgap YSR bound state.
For nonmagnetic impurity, we predict the existence of a
long-lived repulsive polaron.
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[11] André Schirotzek, Cheng-Hsun Wu, Ariel Sommer, and
Martin W. Zwierlein, Observation of Fermi Polarons in a
Tunable Fermi Liquid of Ultracold Atoms, Phys. Rev. Lett.
102, 230402 (2009).

[12] Y. Zhang, W. Ong, I. Arakelyan, and J. E. Thomas, Polaron-
to-Polaron Transitions in the Radio-Frequency Spectrum of
a Quasi-Two-Dimensional Fermi Gas, Phys. Rev. Lett. 108,
235302 (2012).

[13] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P.
Massignan, G. M. Bruun, F. Schreck, and R. Grimm,
Metastability and coherence of repulsive polarons in a
strongly interacting Fermi mixture, Nature (London) 485,
615 (2012).

[14] Marco Koschorreck, Daniel Pertot, Enrico Vogt, Bernd
Fröhlich, Michael Feld, and Michael Köhl, Attractive
and repulsive Fermi polarons in two dimensions, Nature
(London) 485, 619 (2012).

[15] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M.Walraven,
R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap,
and E. Demler, Ultrafast many-body interferometry of
impurities coupled to a Fermi sea, Science 354, 96 (2016).

[16] Ming-Guang Hu, Michael J. Van de Graaff, Dhruv Kedar,
John P. Corson, Eric A. Cornell, and Deborah S. Jin, Bose
Polarons in the Strongly Interacting Regime, Phys. Rev.
Lett. 117, 055301 (2016).

[17] Nils B. Jørgensen, Lars Wacker, Kristoffer T. Skalmstang,
Meera M. Parish, Jesper Levinsen, Rasmus S. Christensen,
Georg M. Bruun, and Jan J. Arlt, Observation of Attractive

PHYSICAL REVIEW LETTERS 128, 175301 (2022)

175301-5

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1038/nature12592
https://doi.org/10.1038/nature12592
https://doi.org/10.1103/PhysRevLett.114.243003
https://doi.org/10.1103/PhysRevLett.114.243003
https://doi.org/10.1103/PhysRevResearch.2.023021
https://doi.org/10.1103/PhysRevResearch.2.023021
https://doi.org/10.1103/PhysRevLett.114.203001
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11151
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055301


and Repulsive Polarons in a Bose-Einstein Condensate,
Phys. Rev. Lett. 117, 055302 (2016).

[18] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico,
A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G.
Roati, Repulsive Fermi Polarons in a Resonant Mixture of
Ultracold 6Li Atoms, Phys. Rev. Lett. 118, 083602 (2017).

[19] Zhenjie Yan, Parth B. Patel, Biswaroop Mukherjee, Richard
J. Fletcher, Julian Struck, and Martin W. Zwierlein, Boiling
a Unitary Fermi Liquid, Phys. Rev. Lett. 122, 093401
(2019).

[20] Z. Z. Yan, Y. Ni, C. Robens, and M.W. Zwierlein, Bose
polarons near quantum criticality, Science 368, 190 (2020).

[21] Gal Ness, Constantine Shkedrov, Yanay Florshaim, Oriana
K. Diessel, Jonas von Milczewski, Richard Schmidt, and
Yoav Sagi, Observation of a Smooth Polaron-Molecule
Transition in a Degenerate Fermi Gas, Phys. Rev. X 10,
041019 (2020).

[22] F. Chevy, Universal phase diagram of a strongly interacting
Fermi gas with unbalanced spin populations, Phys. Rev. A
74, 063628 (2006).

[23] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Normal
State of a Polarized Fermi Gas at Unitarity, Phys. Rev. Lett.
97, 200403 (2006).

[24] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Normal
State of Highly Polarized Fermi Gases: Simple Many-Body
Approaches, Phys. Rev. Lett. 98, 180402 (2007).

[25] M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaron-to-
molecule transition in a strongly imbalanced Fermi gas,
Phys. Rev. A 80, 053605 (2009).

[26] Xiaoling Cui and Hui Zhai, Stability of a fully magnetized
ferromagnetic state in repulsively interacting ultracold
Fermi gases, Phys. Rev. A 81, 041602(R) (2010).

[27] Charles J. M. Mathy, Meera M. Parish, and David A. Huse,
Trimers, Molecules, and Polarons in Mass-Imbalanced
Atomic Fermi Gases, Phys. Rev. Lett. 106, 166404 (2011).

[28] Richard Schmidt, Tilman Enss, Ville Pietilä, and Eugene
Demler, Fermi polarons in two dimensions, Phys. Rev. A
85, 021602(R) (2012).

[29] Steffen Patrick Rath and Richard Schmidt, Field-theoretical
study of the Bose polaron, Phys. Rev. A 88, 053632 (2013).

[30] Aditya Shashi, Fabian Grusdt, Dmitry A. Abanin, and
Eugene Demler, Radio-frequency spectroscopy of polarons
in ultracold Bose gases, Phys. Rev. A 89, 053617 (2014).

[31] Weiran Li and S. Das Sarma, Variational study of polarons
in Bose-Einstein condensates, Phys. Rev. A 90, 013618
(2014).

[32] Peter Kroiss and Lode Pollet, Diagrammatic monte carlo
study of a mass-imbalanced Fermi-polaron system, Phys.
Rev. B 91, 144507 (2015).

[33] Jesper Levinsen, Meera M. Parish, and Georg M. Bruun,
Impurity in a Bose-Einstein Condensate and the Efimov
Effect, Phys. Rev. Lett. 115, 125302 (2015).

[34] Hui Hu, An-Bang Wang, Su Yi, and Xia-Ji Liu, Fermi
polaron in a one-dimensional quasiperiodic optical lattice:
The simplest many-body localization challenge, Phys. Rev.
A 93, 053601 (2016).

[35] Olga Goulko, Andrey S. Mishchenko, Nikolay Prokof’ev,
and Boris Svistunov, Dark continuum in the spectral
function of the resonant Fermi polaron, Phys. Rev. A 94,
051605(R) (2016).

[36] Hui Hu, Brendan C. Mulkerin, Jia Wang, and Xia-Ji Liu,
Attractive Fermi polarons at nonzero temperatures with a
finite impurity concentration, Phys. Rev. A 98, 013626
(2018).

[37] L. A. Peña Ardila, N. B. Jørgensen, T. Pohl, S. Giorgini,
G. M. Bruun, and J. J. Arlt, Analyzing a Bose polaron across
resonant interactions, Phys. Rev. A 99, 063607 (2019).

[38] B. C. Mulkerin, X.-J. Liu, and H. Hu, Breakdown of the
Fermi polaron description near Fermi degeneracy at unitar-
ity, Ann. Phys. (N.Y.) 407, 29 (2019).

[39] Jia Wang, Xia-Ji Liu, and Hui Hu, Roton-Induced Bose
Polaron in the Presence of Synthetic Spin-Orbit Coupling,
Phys. Rev. Lett. 123, 213401 (2019).

[40] Felipe Isaule, Ivan Morera, Pietro Massignan, and Bruno
Juliá-Díaz, Renormalization-group study of Bose polarons,
Phys. Rev. A 104, 023317 (2021).

[41] Renato Pessoa, S. A. Vitiello, and L. A. Peña Ardila, Finite-
range effects in the unitary Fermi polaron, Phys. Rev. A 104,
043313 (2021).

[42] Kushal Seetharam, Yulia Shchadilova, Fabian Grusdt,
Mikhail B. Zvonarev, and Eugene Demler, Dynamical
Quantum Cherenkov Transition of Fast Impurities in Quan-
tum Liquids, Phys. Rev. Lett. 127, 185302 (2021).

[43] Yusuke Nishida, Polaronic Atom-Trimer Continuity in
Three-Component Fermi Gases, Phys. Rev. Lett. 114,
115302 (2015).

[44] Wei Yi and Xiaoling Cui, Polarons in ultracold Fermi
superfluids, Phys. Rev. A 92, 013620 (2015).

[45] M. Pierce, X. Leyronas, and F. Chevy, Few Versus Many-
Body Physics of an Impurity Immersed in a Superfluid of
Spin 1=2 Attractive Fermions, Phys. Rev. Lett. 123, 080403
(2019).

[46] Hui Hu, Jia Wang, Jing Zhou, and Xia-Ji Liu, Crossover
polarons in a strongly interacting Fermi superfluid, Phys.
Rev. A 105, 023317 (2022).
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