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Nonreciprocity is critically important in modern wave technologies, yet its general principles and
practical implementations continue to raise intense research interest, in particular in the context of broken
reciprocity based on spatiotemporal modulation. Abrupt changes in time of the electromagnetic properties
of a material have also been shown to replace spatial boundaries, supporting highly unusual wave-matter
interactions in so-called time metamaterials. Here, we introduce nonreciprocity for temporal boundaries,
demonstrating Faraday polarization rotation in a magnetoplasma with material properties abruptly switched
in time. Our findings open new opportunities for time metamaterials, yielding new avenues for
nonreciprocity with broad applicability for wave engineering.
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Since the devolvement of special relativity in the last
century, space and time have been tightly connected in our
understanding of the physical world. In metamaterials,
modulation schemes exploiting the temporal degree of
freedom have been providing a powerful framework to
manipulatewaves and realize newpossibilities beyond static
approaches [1]. As an important class, abrupt changes in
time introducing temporal boundaries offer a simple and
efficient way to break the limitations of time invariant
materials, drawing increasing attention in recent years [2–
15]. Intense research in this platform has proven fruitful,
enabling intriguing phenomena like the inverse prism [16],
temporal aiming [17], broadband absorption [18–20], uni-
tary excitation transfer [21] and extreme energy transfor-
mations [22].
Lorentz reciprocity is a fundamental constraint for wave

propagation in time-invariant linear systems described by
symmetric constitutive tensors [23], requiring that the
received signals are invariant when we swap the position
in space of sources and detectors, leading to a symmetric
scattering matrix. Breaking reciprocity is critical to realize
devices like isolators and circulators, important for wireless
communications and signal processing across a broad
spectral range from microwave to optical frequencies.
Usually, nonreciprocity can be achieved employing mag-
neto-optical and/or nonlinear materials [24–31]. As an
interesting alternative, spatiotemporal modulation as a tool
to break reciprocity has generated significant interest in
recent years [32–41]. By periodically modulating the
material properties of a system in time with an asymmetric
pattern in space, it is indeed possible to break degeneracies
and time-reversal symmetry in various platforms, offering a
viable alternative to magnetic bias and nonlinearities to
realize nonreciprocal devices.

In this Letter, we connect the research interest in
temporal boundaries and in nonreciprocity, and map the
problem of nonreciprocity from the spatial to the temporal
domain, studying the analog of nonreciprocal wave propa-
gation for time interfaces. In particular, we study wave
propagation with arbitrary polarization states in unbounded
dispersive magnetoplasma media undergoing temporal
discontinuities. To this end, we develop a general temporal
transfer matrix framework, dual to its spatial equivalent, in
which momentum rather than energy is conserved upon
temporal switching. Based on this formalism, we extend the
concept of nonreciprocity to time metamaterials, and
explore the analogue of Faraday polarization rotation in
a temporally switched unbounded medium. This approach
may simplify the realization of nonreciprocal devices in
various practical settings, eliminating the need to confine
the wave or pattern structures in space.
Faraday polarization rotation.—One of the most

classical nonreciprocal devices is the Faraday isolator,
realized by sandwiching a 45° Faraday polarization rotator
between two polarizers. Its functionality relies on the fact
that the linear polarization of a wave is rotated non-
reciprocally as it propagates in magneto-optical media,
with a handedness that is a function of the applied magnetic
bias and not of the direction of propagation. Dual to the
concept we introduce in the following, we analyze this form
of nonreciprocal polarization rotation through a standard
scattering matrix formalism, for which the scattering
matrix S in frequency domain relates the output ψo of
the Faraday rotator to its input ψ i as ψo ¼ Sψ i. Assuming
input waves that propagate along the �z directions
ψ i ¼ ½EL;i

x ; EL;i
y ; ER;i

x ; ER;i
y �T , the outputs can be written as

ψo ¼ ½EL;o
x ; EL;o

y ; ER;o
x ; ER;o

y �T with the elements being the
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electric field components along the x or y axis at the left (L)
or right (R) ports, and the subscript T denotes the transpose
operation. For a 45° Faraday rotator, the components of the
scattering matrix S satisfy S31 ¼ S41 for forward waves,
while S13 ¼ −S14 for backward incidence. Clearly, these
two relationships cannot be simultaneously satisfied in a
reciprocal structure, since S ≠ ST [42]. In the following, we
aim at introducing the analog of this response in a
homogeneous medium with no spatial boundaries by using
time interfaces.
Wave evolution in temporal magnetoplasma slabs.—One

of the most common implementations of a Faraday rotator
consists of a slab of magnetized plasma in the presence of a
static magnetic field along the propagation direction. The
relative permittivity tensor

¯̄εr ¼

2
64

ε ja 0

−ja ε 0

0 0 εz

3
75;

with elements following a Drude dispersion
ε ¼ 1þ ½ω2

p=ω2ð1 − jγ=ωÞ�=½ω2
c=ω2 − ð1 − jγ=ωÞ2�, a ¼

ðω2
pωc=ω3Þ=½ω2

c=ω2 − ð1 − jγ=ωÞ2�, and εz ¼ 1−
ðω2

p=ω2Þ=ð1 − jγ=ωÞ under an ejωt time dependence
[43], where ωp is the plasma frequency, γ > 0 is the
collision frequency, and the cyclotron frequency ωc > 0

is proportional to the static magnetic field H⃗dc pointing
alongþz. The medium supports ordinary and extraordinary
waves along the z axis, with dispersion kz ¼ nþðωÞω=c0
and kz ¼ n−ðωÞω=c0 respectively, where n�ðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ε ∓ a

p
is the equivalent refractive index and c0 ¼

1=
ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
[with μ0ðϵ0Þ being the vacuum permeability

(permittivity)] is the speed of light in free space. The
difference between n� determines the circular birefrin-
gence, which controls the degree of polarization rotation
per unit length.
We consider here the time analog of a Faraday rotator, in

which the spatial boundaries of a magnetoplasma slab are
replaced by temporal interfaces obtained by abruptly
switching its material parameters. Here we neglect non-
linearities and hysteresis arising in magneto-optical mate-
rials for large field variations, as we deal with small
amplitude signals [44,45]. At each time interface the signal
frequency changes but the wave number kz is conserved.
We assume that the incident wave prior to the switching
events has kz ∈ R, hence its angular frequency ω generally
takes complex values when γ is nonzero. Associated with
each wave number kz, a material characterized by our
Drude ¯̄εr supports three pairs of complex-valued angular
frequencies, denoted by ω�

l , l ¼ 1; 2; 3 (with � indicating
the ordinary or extraordinary waves), obeying ωþ

2 ¼
−ðω−

2 Þ� and ω�
3 ¼ −ðω∓

1 Þ� with � indicating the comp-
lex conjugate operation [46]. Correspondingly, the eigen-
vectors for forward waves can be compactly written as

2
6664

Ex

Ey

η0Hx

η0Hy

3
7775 ¼

2
6664

1; 1; 1

j; −j; −j
−jnþ1 ; jn−1 ; jn−2
nþ1 ; n−1 ; n−2

3
7775
2
64
fþ1 ðtÞ
f−1 ðtÞ
f−2 ðtÞ

3
75e−jkzz þ c:c:

ð1Þ

with Ex;y (Hx;y) being the electric (magnetic) field compo-

nents and η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
being the characteristic impedance

of free space [46], where f�l ðtÞ ∝ ejω
�
l t are the time-

dependent amplitudes of forward waves, and n�l ≡
n�ðω�

l Þ ¼ kzc0=ω�
l are their refractive indices. Similarly,

for the backward waves

2
6664

Ex

Ey

η0Hx

η0Hy

3
7775 ¼

2
6664

1; 1; 1

−j; j; j

−jðnþ1 Þ�; jðn−1 Þ�; jðn−2 Þ�
−ðnþ1 Þ�; −ðn−1 Þ�; −ðn−2 Þ�

3
7775
2
64
bþ1 ðtÞ
b−1 ðtÞ
b−2 ðtÞ

3
75

× e−jkzz þ c:c: ð2Þ

with time-dependent amplitudes b�l ðtÞ ∝ e−jðω�
l Þ�t [46]. In

Fig. 1(a), we consider a lossless magnetoplasma and plot
ω�
l of the three forward waves versus the cyclotron

frequency ωc for ωp ¼ 0.8kzc0 (solid lines) and ωp ¼
0.535kzc0 (dashed lines). When ωc approaches to zero, one
of the modes approaches zero frequency ω−

2 → 0, support-
ing the helical wiggler phenomenon [47].
Upon a temporal switching event, the incident wave can

be coupled to all six modes with the same longitudinal
momentum, and in order to evaluate their coupling suitable
temporal boundary conditions are required. They can be
derived considering Maxwell’s equations in a time-varying
magnetoplasma, supplemented by the continuity equation
of the electrical charge and the dynamical equation for the
plasma current density J⃗,

FIG. 1. (a) Angular frequencies ω�
l (in units of kzc0) of forward

waves in a magnetoplasma as a function of ωc (in units of kzc0)
when ωp ¼ 0.8kzc0 (solid lines) and ωp ¼ 0.535kzc0 (dashed
lines). (b) Schematic of a temporal magnetoplasma slab.
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∂J⃗
∂t þ ½γ − ωcðtÞẑ×�J⃗ ¼ ϵ0ω

2
pðtÞE⃗; ð3Þ

where both the cyclotron frequency ωcðtÞ and the plasma
frequency ωpðtÞ may be discontinuous at a time boundary,
and ẑ denotes the unit vector. Using the method of
distribution balance [48], the physical quantities E⃗, H⃗,
and J⃗ are expected to be continuous across the time
interface. These temporal boundary conditions are consis-
tent with the results based on Laplace transform [49–52].
We proceed to investigate the wave evolution in temporal

magnetoplasma slabs involving a series of switching
events, in which we assume that both ωc and ωp may
be abruptly changed [see, for example, Fig. 1(b)]. Using
Eq. (3), the nonzero components of the current density J⃗
can be written as

1

ϵ0

�
Jx
Jy

�
¼

�
χþ1 jω

þ
1 ; χ−1 jω−

1 ; χ−2 jω−
2

−χþ1 ωþ
1 ; χ−1ω−

1 ; χ−2ω−
2

�264
fþ1 ðtÞ
f−1 ðtÞ
f−2 ðtÞ

3
75

× e−jkzz þ c:c: ð4Þ

for forward waves and

1

ϵ0

�
Jx
Jy

�
¼
� ðχþ1 Þ�ðjωþ

1 Þ�; ðχ−1 Þ�ðjω−
1 Þ�; ðχ−2 Þ�ðjω−

2 Þ�
−ðχþ1 Þ�ðωþ

1 Þ�; ðχ−1 Þ�ðω−
1 Þ�; ðχ−2 Þ�ðω−

2 Þ�
�

×

2
64
bþ1 ðtÞ
b−1 ðtÞ
b−2 ðtÞ

3
75e−jkzz þ c:c: ð5Þ

for backward waves, where χ�l ≡ ðn�l Þ2 − 1 is the effective
electric susceptibility [46]. For one set of waves
s1 ¼ ffþ1 ðtÞ; b−1 ðtÞ; b−2 ðtÞg, the complex-amplitude ratios
of the y to x component of the electric field E⃗, the magnetic
field H⃗, and the current density J⃗ are equal to j, while they
are –j for the other set s2 ¼ fbþ1 ðtÞ; f−1 ðtÞ; f−2 ðtÞg, indicat-
ing opposite polarization handedness of the supported
eigenmodes, as expected due to the circular birefringence
of the material. These two sets of eigenmodes are orthogo-
nal to each other [46]. Consider, for instance, the first set s1
with state vector ψ s1

E ðtÞ≡ ½fþ1 ðtÞ; b−1 ðtÞ; b−2 ðtÞ�T. At switch-
ing time ts, the temporal boundary conditions together with
Eqs. (1), (2), (4), (5) yield the simple relationship
ψ s1
E ðtþs Þ ¼ Js12;1ψ

s1
E ðt−s Þ for the instantaneous variation of

ψ s1
E ðtÞ, with matching matrix

Js12;1 ¼ ðAð2Þ
s1 Þ−1Að1Þ

s1 ;

As1 ≡
2
64

1 1 1

−jnþ1 jðn−1 Þ� jðn−2 Þ�
χþ1 jω

þ
1 ðχ−1 Þ�ðjω−

1 Þ� ðχ−2 Þ�ðjω−
2 Þ�

3
75; ð6Þ

where the superscript of AðmÞ
s1 refers to the material proper-

ties m ¼ 1; 2 before and after switching. The evolution of
the state vector ψ s1

E ðtÞ in each temporal slab within medium
m is described by ψ s1

E ðt2Þ ¼ Fs1
m ðt2 − t1Þψ s1

E ðt1Þ through
the diagonal propagation matrix

Fs1
m ðΔtÞ ¼ diagfejωþ

1
Δt; e−jðω−

1
Þ�Δt; e−jðω−

2
Þ�Δtg: ð7Þ

The total transfer matrix Ms1
tot, accounting for the evolution

of ψ s1
E ðtÞ across a series of temporal interfaces, can be

readily obtained from the cascade of J and F matrices.
Similarly, we can construct the total transfer matrix Ms2

tot

for the full evolution of the state vector ψ s2
E ðtÞ≡

½bþ1 ðtÞ; f−1 ðtÞ; f−2 ðtÞ�T for the wave set s2. Given their
relation, the total transfer matrix obeys Ms2

tot ¼ ðMs1
totÞ�,

since Js22;1 ¼ ðJs12;1Þ� and Fs2
m ðΔtÞ ¼ ½Fs1

m ðΔtÞ��.
Now we are ready to investigate the wave evolution at a

time interface. We assume excitation with a circularly
polarized wave with incident frequency ωincð¼ kzc0Þ ¼
2π × 1 GHz in free space for a typical microwave experi-
ment [49], i.e., fþ1 ð0−Þ ¼ 1 and b−1 ð0−Þ ¼ b−2 ð0−Þ ¼ 0 for
s1, and assume that the magnetic bias is abruptly switched
on at time t ¼ 0, such that the wave travels in a magneto-
plasma with normalized cyclotron frequency ω̂c ≡
ωc=ωinc ¼ 0.5 and normalized plasma frequency ω̂p≡
ωp=ωinc ¼ 0.8. To avoid numerical issues associated with
ω−
2 ¼ 0 in free space [see Fig. 1(a)], we describe free space

before the switching event as a magnetoplasma with ω̂p ¼
10−5 and ω̂c ¼ 0, and add a small uniform loss γ ¼
10−5ωinc in both media. As shown in Fig. 2(a), the
theoretical results (solid lines) match FDTD simulations
carried assuming a long finite wave pulse (symbols), and E⃗,
H⃗, and J⃗ are indeed continuous at t ¼ 0. After a sufficiently
long time, the finite forward and backward wave trains
traveling at different velocities are separated in space in
our FDTD simulations [53,54]; see Fig. 2(b) for a snapshot
at time t ¼ 33.46T inc (with T inc ≡ 2π=ωinc) and the
Supplemental Material [46] for a full animation.
In the case of excitation with arbitrary polarization states,

we need to consider the full time-dependent state vector

ψEðtÞ≡ ½ψ s1
E ðtÞ

ψ s2
E ðtÞ�, which can be used to determine the total

electric and magnetic fields with Eqs. (1)–(2) and the total
current density J⃗ with Eqs. (4)–(5). The evolution of ψEðtÞ
across multiple temporal slabs is described by the total
transfer matrix Mtot,

ψEðtfÞ ¼ MtotψEðtiÞ; Mtot ¼
�
Ms1

tot 0

0 ðMs1
totÞ�

�
; ð8Þ

where tf and ti are the final and initial observation times.
Nonreciprocity in temporal slabs.—We are now ready to

investigate the analog of Faraday rotation in temporal slabs.
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To this end, we consider the switching protocol shown in
Fig. 1(b), for which the medium switches abruptly from
free space to a magnetized plasma at time t ¼ 0, and then
back to free space at time t ¼ Δt. By employing Eq. (8), we
obtain Mtot for the evolution of ψEðtÞ from the initial time
ti ¼ 0− to the final time tf ¼ Δtþ, where the critical
submatrix Ms1

tot reads

Ms1
tot ¼ Js13;2F

s1
2 ðΔtÞJs12;1; ð9Þ

consisting of the matching matrices Jmþ1;m, m ¼ 1; 2
between subsequent media and the propagation matrix
Fs1
2 ðΔtÞ in medium m ¼ 2 for s1, see Eqs. (6)–(7). To

facilitate the analysis of temporal Faraday rotation, we
construct the complex time-dependent amplitudes Ef

xðtÞ,
Ef
yðtÞ [Eb

xðtÞ,Eb
yðtÞ] for the electric field components Ex and

Ey of forward [backward] waves from the elements of
ψEðtÞ. Based on Eqs. (1)–(2),

�
Ef
xðtÞ

Ef
yðtÞ

�
¼

�
1 1

j −j
��

fþ1 ðtÞ
f−1 ðtÞ

�
;

�
Eb
xðtÞ

Eb
yðtÞ

�
¼

�
1 1

−j j

��
bþ1 ðtÞ
b−1 ðtÞ

�
; ð10Þ

noting that in free space f−2 ðtÞ and b−2 ðtÞ are static fields
with zero frequency, hence they do not contribute to the
wave response. We can then introduce the temporal trans-
mission coefficients tL→R and tR→L, describing the

transmission through the temporal slab for excitation from
left and right, respectively, defined as

�
Ef
xðtfÞ

Ef
yðtfÞ

�
¼ tL→R

�
Ef
xðtiÞ

Ef
yðtiÞ

�
;

�
Eb
xðtfÞ

Eb
yðtfÞ

�
¼ tR→L

�
Eb
xðtiÞ

Eb
yðtiÞ

�
:

ð11Þ

Reciprocity for time interfaces is defined as

tL→R ¼ ðt�R→LÞT; ð12Þ

where the appearance of the complex conjugate is due to
our definition of time-dependent amplitudes in Eq. (10)
[see also Eqs. (1) and (2)] as compared with standard
phasors for sinusoidal electromagnetic waves [55]. We
point out that Eq. (12) is the generalization of the
reciprocity condition for time interfaces, and it is indeed
satisfied by all scenarios discussed in the recent literature
on time metamaterials, e.g., in Ref. [11] where medium 2 in
Fig. 1(b) is replaced by a dispersionless anisotropic
medium with diagonal constitutive tensors. Indeed, it is
easy to prove, based on our general formulation, that if the
temporal slab involves reciprocal media with symmetric
constitutive tensors, Eq. (12) is necessarily satisfied.
A 45° Faraday polarization rotation, ideally suited to

realize isolation in the spatial scenario, requires the
temporal transmission coefficients to obey the equalities
tL→Rð1; 1Þ ¼ tL→Rð2; 1Þ and t�R→Lð1; 1Þ ¼ −t�R→Lð1; 2Þ,
evidently violating Eq. (12) and breaking temporal reci-
procity. For the temporal slab in Fig. 1(b), the second
equality follows from the first one since, based on Eqs. (8),
(10), (11), the temporal transmission coefficients obey
tR→L ¼ t�L→R and the matrix elements of tL→R read

tL→Rð1;1Þ¼ tL→Rð2;2Þ¼ fMs1
totð1;1Þþ ½Ms1

totð2;2Þ��g=2;
ð13aÞ

tL→Rð2;1Þ¼−tL→Rð1;2Þ¼ jfMs1
totð1;1Þ− ½Ms1

totð2;2Þ��g=2
ð13bÞ

with the matrix elements of Ms1
tot given in Eq. (9).

Consequently, 45° temporal Faraday rotation is achieved
when the figure of merit Δ≡ jtL→Rð1; 1Þ − tL→Rð2; 1Þj2
approaches zero.
In Fig. 3(a), we set ω̂c ¼ 0.7, and show the dependence

of log10Δ versus ω̂p and thickness Δt of the temporal slab
[see Fig. 1(b)]. Choosing ω̂p ≈ 0.535 and Δt ≈ 1.28T inc we
obtain Δ ≈ 0, yielding an optimal point for perfect 45°
polarization rotation [56]. Indeed, as shown in Fig. 3(b)
(see also the Supplemental Material [46] for the corre-
sponding Lissajous animation), a horizontally polarized
wave, i.e., Ey ¼ 0, is converted into a linearly polarized one

FIG. 2. (a) Time-dependent evolution of the nonzero compo-
nents (in units of V=m) of the electric field E⃗, normalized
magnetic field η0H⃗ and plasma current density J⃗=ðϵ0ωincÞ at
z ¼ 0 in the case of excitation with a circularly polarized wave
propagating in a medium that switches abruptly at time t ¼ 0
from free space to a magnetoplasma with ω̂p ¼ 0.8, ω̂c ¼ 0.5
[see colored backgrounds]. Analytical and FDTD results are
indicated by solid lines and symbols, respectively. (b) Snapshot
of FDTD simulations for Exðz; tÞ versus z (in units of 2π=kz) at
t ¼ 33.46T inc, when one forward wave (green arrow) and two
backward waves (blue and red arrows) are clearly seen. Through-
out our study, a small uniform time-independent loss γ ¼
10−5ωinc is assumed, and ωinc=ð2πÞ ¼ 1 GHz.
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with Ex ¼ Ey as it travels through the temporal slab in the
forward direction [see upper panel]. In turn, a wave
traveling in the backward direction with polarization state
Ex ¼ Ey, is converted to vertical polarization, i.e., Ex ¼ 0,
after traveling through the temporal slab (see lower panel)
[46], yielding nonreciprocity and the time analog of a
Faraday polarization rotator without the need for spatial
interfaces [57]. Quite interestingly, in both scenarios the
time-reflected waves after the temporal slab are very small
at the optimal point (see also animations in Ref. [46]),
although counterpropagating waves at different frequencies
exist within the temporal slab. In addition, at this optimal
condition the total power flow is conserved, and thus the
power of the impinging waves is fully transferred to the
transmitted waves.
Conclusions.—In this Letter, we have introduced the

concept of nonreciprocity for temporal interfaces. We
demonstrated the possibility of realizing nonreciprocal
polarization conversion in a dispersive temporal magneto-
plasma slab, and devised a temporal Faraday rotator. Quite
different from conventional nonreciprocal devices typically
suited for a narrow frequency range, our temporal slab
inherently operates through the interference of multiple
counter-propagating plane waves at different frequencies.
As confirmed by the good agreement between our theo-
retical predictions referring to unbounded media and FDTD
simulations for finite wave trains, our results hold as long as
the material is switched uniformly within the volume
occupied by the traveling signals. We envision interesting
opportunities arising as we extend this concept to higher
spatial dimensions, as well as to finite systems supporting

resonant phenomena and in the presence of non-Hermitian
features [22].
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