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We present an improved standard-model (SM) prediction for the dilepton decay of the neutral pion. The
loop amplitude is determined by the pion transition form factor for z° — y*y*, for which we employ a
dispersive representation that incorporates both spacelike and timelike data as well as short-distance
constraints. The resulting SM branching fraction, Br[z® — e*e~] = 6.25(3) x 1078, sharpens constraints
on physics beyond the SM, including pseudoscalar and axial-vector mediators.
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Introduction.—The decay of the neutral pion proceeds
almost exclusively into two photons, with the decay medi-
ated by the Wess-Zumino-Witten anomaly [1,2]. The decay
width

TP M3,
4 vy (1)

Iz’ - yy] =

depends on the pion transition form factor (TFF) at zero
momentum transfer, F,,, = F,,.(0,0), which in turn is
determined by a low-energy theorem [3-5]

iy = m =0.2745(3) GeV~', (2)
in terms of the pion decay constant F, = 92.28(10) MeV
[6]. This prediction agrees extremely well with experiment,
F,,, = 0.2754(21) GeV~" [7], despite the fact that at this
level higher-order corrections are expected [8—11]. The
second most important decay channel is the Dalitz decay
7’ — e*e”y. Combining the radiative corrections from
Ref. [12] with phenomenological input on the slope of
the TFF [13-20] gives [21]

Br[z — yy] = 98.8131(6)%, 3)

in agreement with but more precise than the direct
measurement Br[z® — yy] = 98.823(34)% [6,22-24]. The
decay 7° — 2(eTe™) is suppressed by another factor of a
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with respect to the Dalitz decay, leading to Br[z’ —
2(ete™)] = 3.26(18) x 107> [25].

Here, we are interested in the rare decay 7° — e*e™,
whose dominant contribution in the standard model (SM)
arises from the loop diagram shown in Fig. 1. Apart from a
loop factor, there is yet another chiral suppression, which is
partly lifted by logarithmic corrections. Altogether, this
leads to the scaling [26]

2 2
Br[z’ — ete7] ~ <§) e
n

e 21og2 e L 0(1078), (4
i gt e ~ 010, (@)

T

and due to the corresponding suppression the decay has
been suggested early on to search for physics beyond the
SM (BSM) [27]. Since the interference with the Z-boson
contribution, see second diagram in Fig. 1, is suppressed by
another 2 orders of magnitude [28-30], sensitivity to BSM
degrees of freedom in general requires a precision meas-
urement of Br[z® — e*e¢~], unless the BSM contribution is
enhanced in one way or another. Such an enhancement
could originate from avoiding the chiral suppression in
Eq. (4) via pseudoscalar operators, or by considering light
degrees of freedom, such as axial-vector Z’ bosons [31,32]
or axionlike particles [33-38].

e

FIG. 1.

7% — y*y* diagram (left) and a small correction from Z exchange

(right). The gray blob refers to the pion TFF.

SM contributions to z° — ete~, with the dominant
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The current best measurement by the KTeV experiment
constrains Br[z’ — e*e~] at the level of 5% [39], but the
interpretation is complicated by the fact that the result is
provided with a cut on the dilepton invariant mass, which
needs to be extrapolated to obtain the full branching
fraction. Using the latest radiative corrections from
Refs. [40,41], one finds

Br[z” — e e ][krey = 6.85(27)(23) x 107%,  (5)

significantly lower than the extrapolation Br[z" —
ete™] =7.48(38) x 1078 given in Ref. [39] based on
the radiative corrections from Ref. [42] (see also
Ref. [43]), with the difference due to the assumption of
a pointlike 7° > eTe™ vertex in Ref. [42]. We used the total
correction § = —6.0(2)% in Eq. (5), in line with the low-
energy constant ") (u = 0.77 GeV) = 2.69(10) that cor-
responds to our result for the pion TFF [40,41,44], see
below. Note that precisely due to the potentially complicated
dependence on kinematical cuts, we follow the convention to
subtract the radiative corrections from the experimental
result and use the leading order in QED as the reference
point for comparison between theory and experiment.

In the SM prediction, the imaginary part of the amplitude
due to the yy cut is determined model independently in terms
of I'[z% - yy], leading to a unitarity bound of Br[z’ —

*e7] > 4.69 x 1078 [45,46]. To obtain the real part, addi-
tional information needs to be provided on the TFF, see
Ref. [47] for a review. Chiral perturbation theory (CHPT)
only allows one to relate the dilepton decays of z° and 5",
but cannot predict Br[z® — eTe™] itself [48,49]. Further
approaches that have been pursued instead include vector-
meson-dominance TFFs [50-53] and a dispersion relation in
the pion mass squared [54—58]. However, we stress that such
a dispersion relation is model dependent, as the TFF for
unphysical masses is not observable, and the input for the
imaginary part is typically restricted to the yy cut.

More recent SM predictions include Br[z® — ete™] =
6.23(5) x 1078 [29] based on Canterbury approximants
and Brz" - eTe™] = 6.22(3) x 107 [59] (excluding Z
exchange) using Dyson-Schwinger equations [60]. The
Canterbury expansion relies on spacelike data for the pion
TFF [18,61-63] and is, in principle, systematically improv-
able, but in practice restricted due to the available data,
especially the lack thereof in the doubly virtual direction,
while for the Dyson-Schwinger approach a complete
estimate of the truncation uncertainties is challenging.
The 7° — ete™ decay is also becoming amenable to
calculations in lattice QCD [64].

In this Letter, we present a SM prediction that is based on
a dispersive representation of the pion TFF first developed
in the context of the pion-pole contribution [13—15] in a
dispersive approach to hadronic light-by-light scattering
[65-71], with further applications to hadronic vacuum
polarization [72,73]. In the dispersive approach presented

here we are able to implement constraints from all available
low-energy data, including the timelike region, to predict
the doubly virtual behavior from singly virtual data, and to
ensure a smooth matching to short-distance constraints.
The resulting SM prediction, which is as precise as we
believe can currently be achieved with data-driven meth-
ods, is then used to sharpen some of the constraints that can
be extracted from the comparison to the KTeV measure-
ment. We also clarify some technical points in the calcu-
lation of the SM amplitude, and show that a Wick rotation
to spacelike momenta is possible once a double-spectral
representation is employed for the pion TFF.

Pion transition form factor.—The pion TFF is defined by
the matrix element of two electromagnetic currents j,(x)

j / dxei (0|74, (x)7,(0)}7°(q) + ¢2))

= €uwapq q2Flr°y*y (q%’ q%)’ (6)

where we follow the sign conventions of Refs. [74-76] to
ensure consistency with the short-distance constraints and
the Z-boson contribution. This form factor has been studied
in great detail in the context of hadronic light-by-light
scattering [14,15,17,77], the key difference being that in
this case the loop integral can be Wick rotated to spacelike
momenta for an arbitrary TFF [78]. In the case of 7° —
ete™ the analogous master formula becomes more intri-
cate, so before turning to this application we first describe
the representation we will use for the normalized TFF
Fo, - (q3.43) = Fp,(q}. 43)/ Fr,, in the following. We
use the decomposition

Fropy = F(rir:’g;})*y* + F?rgfy*y + Fif)i”;, (7)
where the dispersive term accounts for the low-energy
singularities, extracted from data on e"e™ — 2z, 3x; the
second term parametrizes the small effect from higher
intermediate states and high-energy contributions, it enfor-
ces the correct normalization and is further constrained by
high-energy spacelike data; and the third term implements
the remaining short-distance constraints as expected from
perturbative QCD.

In practice, the dispersive part is written as a double-
spectral representation (exploiting the absence of anoma-
lous thresholds in this case [68,79])

disp )
FSP (g2, dx
oy (41:03) / w2 /h Y- 611 v-a)

+ (g1 < 02),
) = 0 ([Pl i)} (8)
121\/xF,, i te
with g,(s) = \/s/4 — Mz, and s,, = 9M7 or M2, depend-

ing on whether isospin-breaking corrections are included.
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The double-spectral density p(x,y) is determined by the
electromagnetic form factor of the pion, FY, and the
P-wave amplitude for y* — 3z, f;. The former is
known very precisely from eTe™ — 2z data (see, e.g.,
Refs. [80,81]), while the latter can be obtained from a
solution of Khuri-Treiman equations [82], with free param-
eters determined from ete~ — 3z data [13—-15]. The
integration cutoffs are varied between 1.8 and 2.5 GeV,
which, together with the variations of the zz phase shifts
and the conformal polynomial in the partial wave f,
defines the dispersive contribution to the uncertainty
estimate.

The unsubtracted dispersion relation (8) only saturates
the normalization at the level of 90%, with the remainder
restored by an effective-pole contribution,

Méff
Mgff - q%)(Mgff - ‘]%)

that accounts for higher intermediate states beyond 2z,
3z as well as the high-energy part of the integrals. The
coupling g.i; follows from the normalization, while the
mass scale M is determined from a fit to the singly virtual
spacelike data [18,61-63] with Q% > 5 GeV?, to ensure
that the low-energy properties remain unaffected. The
resulting value of M. lies in the range 1.5-2 GeV,
with an uncertainty dominated by the systematic tension
between the BABAR Collaboration data [62] and the other
data sets, as well as the Brodsky-Lepage (BL) limit [83,84].
Finally, the asymptotic contribution

Fegf* (CI% CI%) = geff(

©)

Yy

- 2F 00
™ (@, a8) = / d
ﬂoy.}, (ql Q2) F 5, x(x_q%)2<x_q%)2

mry
ensures the correct asymptotic behavior for nonvanishing
virtualities, and has been derived by expressing the
short-distance constraints in terms of a dispersion relation
[14,15,85,86]. The matching point is chosen as s, =
1.7(3) GeV?, in accordance with expectations from
light-cone sum rules [85,87,88]. The resulting TFF that
emerges from the sum in Eq. (7) is illustrated in Fig. 2 for
the kinematic configuration most relevant for = ete,
demonstrating that our representation smoothly connects
the various constraints on the pion TFF.

SM prediction for n° — e*e~.—The normalized branch-
ing fraction for 7° — eTe™,

20 (2) e 1A

Br[z® — yy] M2,

B[z’ — e )

, (1)

is typically expressed in terms of the reduced amplitude

2 [ PR (g R
AP = 20 [ i T =
X Fﬂoy*y* (K2, (q — k)?], (12)

0.25f ' , : :
— 02t T :
S I @S
5]} ,/
O, / .
_ 015 — disp ]
T — eff
C%) — asym
= oh —- total ]
<]
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FIG. 2. Dispersive, effective-pole, and asymptotic contributions
to the pion TFF, using the representation from [89] with
k* = —Q?. This form factor F(—Q?) defines a single-variable
function that is closely related to the input required for a spacelike
evaluation of the loop integral, for which F 20y (-Q%,-0Q?) is
not sufficient. In particular, due to the M’ 72[0 corrections, the form
factor F(—Q?) is not normalized exactly to unity at Q> = 0. The
gray band indicates our uncertainty estimate, the horizontal
dashed line the asymptotic value 2F,/(3F,,,).

where ¢* = M2, and p is the momentum of the outgoing

electron. The only imaginary part arises from the yy cut,
which leads to

T

Im A(q*) = mlog[ye(qz)} =—17.52,
_ 1 _O-e(qz) _ 4mg
Ye(qz) = W’ Ue(qz) =4/1 —7’ (13)

and defines the unitarity bound given above.

To obtain Re .A(g?) we need to perform the integral (12)
for our representation of the pion TFF. For the dispersive
part one may write

is 2 Siv Sis ﬁ x,y
Adise(g?) =—2/ dx/ dyuK(x,y), (14)
T 4M72[ Sthr 'xy

where the integration kernel

l / 4 qzkz_(Q'k)z

7 q* k*(q —k)*[(p — k)* — mg]
Xy

x (15)

(K = x)[(g = k)* =]
can be evaluated based on standard loop functions, see
Refs. [30,89-91]. The effective-pole contribution follows
from x =y = M%;, and a similar decomposition can be
derived for A4%Y™(g?). The numerical integration over the
double-spectral function requires a stable implementation
of K(x,y) over a wide parameter range, especially in view

K(x,y) =
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of the singularity structure of f;(x,y) that needs to be
properly taken into account. As discussed in [89], we
verified the numerical stability by comparing several
different methods, in particular, a Wick rotation to space-
like momenta. Such a Wick rotation is not possible for a
completely general TFF, but does apply for the double-
spectral representation. Combining first the photon propa-
gators, the angular part of the integral can be performed
analytically with the method of Gegenbauer polynomials
[92-94], leaving an integration over a spacelike modulus.
In practice, however, we do not use this implementation
of the loop functions, as it proves numerically less viable
than other methods, including semianalytic expressions in
terms of polylogarithms [95] and the implementation from
LoopTools [96].
In the end, we find for the long-range contribution

Re A(q?)

Yyt T 10'16(5)disp(8)BL(2)asym7 (16)

with an uncertainty dominated by the systematic tensions
around the BL limit. For comparison we quote .A(g?) =
10.10(3) —17.45(1)i [59] and Re A(q?) sy = 10.08(16)
reconstructed from the decay rate given in Ref. [29]. The
full number decomposes as 10.16 = 9.184;, + 1.08. —
0.1045ym according to the three terms in Eq. (7), reflecting
the hierarchy expected from Fig. 2. Matching to CHPT

Lis[~,(¢%)] + $1og?[v.(¢*)] + 5
o.(q%)

m, 5
log—< ==+ 4 17
+3 og~ 5T (u) (17)

Re A(q2)|CHPT =

then also determines the low-energy constant y(") (n=
0.77 GeV) = 2.69(10) (see, e.g., Refs. [15,41] for the
conventions).

At this level of precision the contribution from the
asymptotic region thus needs to be included, as does the
Z-boson exchange [30]

Ny F,.Gp
Re A(q)|, \/EazF,,W 0.05(0). (18)

Adding both contributions, we obtain the SM prediction

Re A(g*)|sm = 10.11(10),
Br[z® - eTe]|gy = 6.25(3) x 1078, (19)

in a mild 1.8¢ tension with the KTeV measurement (5). In
particular, the latter implies

Re A(q2>|KTeV = 11-89J—r?.'8§’ (20)

which, in comparison to Eq. (19), can directly be used to
constrain effects beyond the SM.

Constraints on BSM physics.—The comparison between
our improved SM prediction (19) and the KTeV measure-
ment (20) sharpens the constraints on physics beyond the
SM. Writing new short-range interactions of axial-vector
and pseudoscalar type as

3 3
1 _T _ _T . _.
’CI(SS?M = CAQEV”?’S‘I‘?}’yVSe + Cpqa%qezyse, (21)

with ¢ = (u,d)”, we obtain

e (g4 Mo ¢ 22
~2F, S ama )

Re A(‘Jz) lesm =

where i = (m, +my)/2, cf. also Refs. [29,30,97]. In
particular, integrating out Z exchange in the SM gives
C, = Gr/V/2, in agreement with Eq. (18).

The limits derived from z° — eTe™ are

Cy = (=280)11% TeV=2,  Cp = (=0.108)73982 TeV~2,
(23)

where the pseudoscalar coefficient has been evaluated at
the MS scale u =2 GeV using /m = 3.4 MeV [98-103].
Assuming Cy p~1 /Afu,, the sensitivity of these limits
translates to mass scales A, ~0.1 TeV, Ap~4 TeV,
reflecting the enhancement by M o/(2v/m,7) ~ 50,
although the latter is a scale-dependent statement.
Matching onto four-fermion operators in SM effective field
theory [104,105], Eq. (23) provides constraints for

CA = (Ceu - Ced - Cfu + Cfd - 2C(f3))?

CP:

I N,

1
(C;e)qu - CI/ﬂEdq)’ (24)

While the one for C is not very stringent, the combination
of Wilson coefficients differs from the ones probed in
parity-violating electron scattering or atomic parity viola-
tion, in such a way that the resulting constraint may still be
useful to close flat directions in the parameter space,
see, e.g., Refs. [106-108].

Other BSM scenarios include light axial-vector (Z') or
pseudoscalar (a) states, with minimal couplings

L= Fehr'rszy + chipsa)f.  (25)
f=eud

leading to
cli — Cd c® ol — cd c¢
CA:_(A 2A)A’ CP:<P2 P)ZP’ (26)
M 7 my; —4q
where the new particles correspond to a Z' or an axionlike
particle a, respectively. Writing the Z’ interactions in a
gauge-invariant way in general requires the introduction of
Goldstone modes, so that in Eq. (26) and below we use
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unitary gauge to make the particle content explicit. In this
way, the pole in C, cancels and the SM Z contribution is
again recovered for c% = —c4 = —c$ = g/(4cosOy). In
contrast, the pseudoscalar pole remains, and the constraints
from 7° — eTe~ then also depend on the z°—a mixing.

As an application, we consider the interplay with the
anomalous magnetic moment of the electron a,, which is
timely given the current tensions between the direct
measurement [109] and the SM prediction [110,111] either
based on the fine-structure constant measured with Cs
[112] or Rb [113] atom interferometry

Aa,[Cs] = a8 — aSM[Cs] = —0.88(36) x 10-12,
Aa,[Rb] = az™® — aSM[Rb] = 0.48(30) x 1072, (27)

corresponding to a tension of —2.5¢ and +1.60, respec-
tively. With the 5.4¢ disagreement between Refs. [112,113]
unresolved, we will concentrate here on the case of
Aa,[Cs], since a negative effect can be explained by
axial-vector or pseudoscalar mediators [114,115]

A (cq)?m2 [1 2x3m2 4+ x(1 — x)(4 — x)Mé,
e = =3 57 2.2 21 ’
4n"M, Jo mgx* + M7, (1 — x)
eN2,,2 1 3
e 87> Jo xm%xz—l—mﬁ(l -x)’ (28)

while, at the one-loop level, vector and scalar mediators
yield a positive contribution. For the axial-vector case,
the contour plot revises the previously preferred region
[32,112] according to our improved SM prediction and the
radiative corrections [40,41] applied to the KTeV meas-
urement, see Fig. 3. The parameter regions favored by
Aa,[Cs] and 7° — eTe™ partly overlap, in which case the
quark couplings CX'P—C;{’P take similar values as the
electron ones. Note that in Refs. [32,112] specific values
for the quark couplings have been assumed to show the
constraints solely on c; see these references for other
constraints on axial-vector Z' models, e.g., from e*e™
colliders [116]. We have further restricted the masses to the
parameter region below M o, and neglected the potential
n%—a mixing (as before, the pseudoscalar couplings are
evaluated at the MS scale y = 2 GeV). Figure 3 shows that
if both mild tensions were confirmed at this level, similar
regions in parameter space seem to be preferred.
Conclusions.—In this Letter, we presented an improved
SM prediction for the 7° — e*e~ decay, based on a
dispersive representation of the pion transition form factor.
This representation—which combines constraints from
7% — yy, the low-energy singularities via e*e™ — 21,37,
spacelike data for large Q?, and short-distance constraints—
allows for a reliable evaluation of the long-range y*y*
contribution, leading to a SM prediction (19) with a
precision of 0.5%. The loop integral can be reduced to
standard loop functions by means of a double-spectral

- (g - 2)6
— 7m0 5 ete

. 1e-06¢

A(ch —ch

1 10 100

I

L

1 10 100
me [MeV]

FIG. 3. 1o parameter ranges preferred by Aa,[Cs] (red) and
7% — eTe™ (blue) on the couplings of light axial-vector (upper)

and pseudoscalar (lower) mediators.

representation, for which also a Wick rotation to spacelike
momenta becomes possible. The conceptual advances pre-
sented here will also become relevant for refined predictions
of the dilepton decays of 7).

By comparing our SM prediction to the KTeV measure-
ment we then provided the corresponding constraints on
axial-vector and pseudoscalar operators, both in SM effec-
tive field theory and for light mediators. In the latter case, we
compared the (mildly) favored parameter space to the one
suggested by the anomalous magnetic moment of the
electron when contrasted to the fine-structure constant
measured with Cs atom interferometry. With our calculation
of the 7° - eTe~ width, the theoretical precision now
exceeds experiment by an order of magnitude, allowing
for concurrent advances in BSM constraints once an
improved measurement becomes available. Such efforts
are in progress at NA62 [117].
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