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We revisit the problem of extending the phase space of diffeomorphism-invariant theories to account for
embeddings associated with the boundary of subregions. We do so by emphasizing the importance of a
careful treatment of embeddings in all aspects of the covariant phase space formalism. In so doing we
introduce a new notion of the extension of field space associated with the embeddings which has the
important feature that the Noether charges associated with all extended corner symmetries are in fact
integrable, but not necessarily conserved. We give an intuitive understanding of this description. We then
show that the charges give a representation of the extended corner symmetry via the Poisson bracket,
without central extension.
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Introduction.—Classical gravitational theories are gauge
theories for which the principal symmetry is diffeomor-
phism invariance. The study of symmetry in gauge theories
has a long history going back to the seminal work of
Noether [1]. While the first Noether theorem deals with
global symmetries, Noether herself remarked that for a
gauge symmetry, defined as a local symmetry acting
differently at different spacetime points, the first theorem
gives a current associated to the symmetry that necessarily
vanishes on-shell up to total derivatives. It then follows that
Noether charges for gauge symmetries must be defined as
surface integrals of d − 2 forms, where d is the spacetime
dimension, i.e., as surface charges. Thus codimension-2
surfaces play a central role in gravity and other gauge
theories. We will refer to them here as corners [2–8] for
brevity.
The first discussion of the role of gauge symmetries and

their surface charges appeared using the Hamiltonian
formalism in the seminal work of Regge and Teitelboim
[9]. Later, Wald and others [10–12], using the covariant
phase-space formalism, and Barnich and Brandt [13], using
Anderson’s variational bicomplex [14,15], formulated the
Lagrangian analysis of gauge symmetries and their con-
served quantities. The theory of asymptotic symmetries and
surface charges following from these works has been

shown to give the same results, modulo ambiguities, as
reviewed, for example, in Ref. [16].
In any diffeomorphism-invariant classical theory on a

manifold M, in the absence of any extra structure we are
free to perform any diffeomorphism, as it corresponds to a
gauge redundancy. However, in the presence of some
geometric structure, such as a subregion of M or a corner,
some diffeomorphisms will become physical symmetries.
This is a familiar feature of other gauge theories as well,
where in the corresponding quantum theory, nontrivial
physics is involved in the gluing of subregions and is
implicated in entanglement properties. Often one addresses
such geometric structures through the mathematical con-
struction of embeddings [2,3,7]. In particular, in Ref. [7] we
explored the consequences of carefully treating such
embeddings, and found a theory-independent finite sub-
algebra of diffðMÞ, compatible with the presence of an
embedded submanifold S, whose Lie brackets close on
itself, which we referred to as the maximal embedding
symmetry, Ak ¼ ðdiffðSÞ ⨭ glðk;RÞÞ ⨭ Rk. Applied to
corners (k ¼ 2), this algebra includes the so-called
extended corner algebra [8], which in turn includes notable
subcases, such as the BMSW algebra [17], the generalized
BMS algebra [18–20], the extended BMS algebra [21,22],
as well as the original BMS algebra [23–25].
In diffeomorphism-invariant theories, a basic construc-

tion is the integration of a Noether charge density over a
corner. An important issue in this regard is integrability,
whether or not a diffeomorphism is equivalently associated
with a Hamiltonian vector field on the space of fields of
the theory and a function on field space. If integrability
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pertains, then diffeomorphisms are represented by such
functions and the algebra of charges reproduces canonically
the vector field algebra via the Poisson bracket, possibly
with central extension [26]. A separate issue is how the
possible nonconservation of charge in a given region is
associated with the flow of flux in or out of the region. As
advocated in Ref. [2], such features can be obtained in
general if one extends the field space of the theory to include
effects associated with embedded submanifolds. However,
in that and subsequent analyses, it was found that diffeo-
morphisms that do not preserve a corner are on a much
different footing than those that do: only the latter were
found to correspond to integrable charges. The nontrivial
diffeomorphisms that do not preserve a corner are its normal
translations, which appear in the R2 factor in the extended
corner symmetry A2 ¼ ½diffðSÞ ⨭ glð2;RÞ� ⨭ R2. In this
Letter we are primarily interested in generic corners that are
at finite distance, but we note that in the context of
asymptotic symmetries, it is the R2 factor that gives rise
to the so-called supertranslations, and so it is certainly of
central interest to fully understand it.
In Ref. [7] by carefully treating embeddings we found

that the maximal embedding algebra corresponds precisely
to the set of those diffeomorphisms that become physical in
the presence of a corner and furthermore that the variation
of the charge with respect to any diffeomorphism gives
precisely δηHξ ¼ H½ξ;η�, which appears ready made for an

interpretation in terms of Poisson brackets. This result was
obtained purely geometrically without reference to the
covariant phase space formalism beyond a specification
of the Noether charge density.
In this Letter, we will show how to extend the field space

of diffeomorphism-invariant theories such that the
entire extended corner symmetry is realized by integrable
charges. This is achieved by introducing the same careful
treatment of embeddings into the covariant phase space
methodology, which leads to a natural extension of the
symplectic structure of the theory which differs from that
introduced in Ref. [2]. The intuitive picture is that one can
accommodate symmetries that “move the corner” by
systematically keeping track of variations of the embedding
map. We stress that integrability is achieved on the entire
field space (on-shell) without a need for first setting some
flux to zero. The existing literature contains many examples
where integrability is achieved only in this sense. Here we
propose a universal resolution and the consequences are far
reaching: we find that the algebra of charges associated
with the full extended corner symmetry (and thus any of
its subalgebras appropriate to any particular physical
situation) is represented in terms of Poisson brackets on
the extended phase space, without central extension. As a
further consequence, the flux is accounted for fully by the
field-space contraction of the Hamiltonian vector field
associated with the symmetry and the extended presym-
plectic potential.

Embedding maps.—In this section, we describe in detail
embedding maps. This material of course is standard but it
is important to carefully establish our notation. We are
concerned entirely here with classical diffeomorphism-
invariant theories. We thus suppose that we have a
spacetime manifold M of dimension d that we endow
locally with coordinates via the trivialization Φi∶Ui → Rd,
Ui ⊂ M, giving Φi∶p ↦ yμ. An embedded submanifold of
M of codimension k is the image of a (smooth) map
ϕk∶Sk → M, where Sk is a manifold of dimension d − k.
We introduce coordinates fσαg on Sk with the embedding
described by ϕk∶fσαg ↦ fyμðσÞg, the latter thought of as
the locus of points of the embedded manifold in M. Given
the embedding, differential forms α ∈ Γð∧d−k T�MÞ can be
pulled back to a top form ϕ�

kα ∈ Γð∧d−k T�SkÞ on Sk. Such
a form can then be integrated over Sk.
We will be interested in describing a variation of such an

embedding ϕk → ϕk þ δϕk, promoted to an arbitrary
variation from the perspective of covariant phase space.
Given such, we can then express the response of the
embedding to a diffeomorphism as a contraction
(Throughout the Letter, we use the notation iξ for the

contraction of a spacetime vector field with a differential
form and IVξ

for the corresponding contraction on field

space; here Vξ denotes the vector field on field space

associated with the spacetime diffeomorphism generated
by ξ. Similarly, Lie derivatives are denoted Lξ ¼ diξ þ iξd

and LVξ
¼ δIVξ

þ IVξ
δ.) of δϕk with a vector field on phase

space, i.e., δηϕk ¼ IVη
δϕk. Essentially, this idea was

implemented originally in Ref. [2] by writing the corre-
sponding change of the embedding coordinates as

fσαg → fyμðσαÞ þ χμðσαÞg; ð1Þ

which we interpret as defining a vector field onM, χ ∈ TM
defined at all points on the embedded manifold. Thus
we have δϕk ↔ χ and we will consequently regard χ as
a 1-form on field space, the details of which we will
review below.
Consider a (d − k)-form α½g; y�, where g collectively

denotes the fields of a theory and y denotes the coordinates
on M in which we are working. Given an embedding
ϕk∶Sk → M, we can pull back α to Sk and integrate

A½g;ϕ� ≔
Z
Sk

ϕ�
kðα½g; y�Þ: ð2Þ

Often in the literature these details are not expressed clearly
and instead integrals are expressed directly in the coordi-
nates ofM.Wewill see that keeping track of such detailswill
have important consequences for the covariant phase space
formalism. An important result that wewill use repeatedly is
Stokes’s theorem, which in the notation we are using reads
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Z
Sk

ϕ�
kðdβ½g; y�Þ ¼

Z
∂Sk

ϕ�
k−1ðβ½g; y�Þ; ð3Þ

where ∂Sk is the boundary of Sk, its embedding given by
ϕk−1∶∂Sk → M.
In Ref. [7], we made use of this formalism in a simple

setting, in which we simply integrated the Noether charge
density in this way over a corner, corresponding to the case
k ¼ 2,

Hξ ¼
Z
S2

ϕ�
2ðQξÞ ¼

Z
S2

ϕ�
2ð�diξgÞ; ð4Þ

where ξ ∈ TM is an arbitrary vector field on M and Qξ is

the Noether charge density, making no further reference to
any other aspects of the covariant phase space formalism. In
the second equality we inserted the specific representation
of the Noether charge for the Einstein-Hilbert theory. We
found that only those vector fields in the maximal embed-
ding symmetry (The tilde denotes the fact that whereas the
maximal embedding algebra is the algebra of the group
½DiffðSÞ ⋉ GLðk;RÞ� ⋉ Rk, only the group ½DiffðSÞ ⋉
SLðk;RÞ� ⋉ Rk is realized in the Einstein-Hilbert theory.)
Ãk ¼ ½diffðSÞ ⨭ slðk;RÞ� ⨭ Rk give rise to nonzero
charges. Thus all other diffeomorphisms remain pure
gauge, even in the presence of a corner. We then
showed that

δξHη ¼ −H½ξ;η�: ð5Þ

It is tempting to interpret this result as a bracket

f½Hξ; Hη�g ¼ −H½ξ;η�: ð6Þ

If this bracket were to coincide with the Poisson bracket of
the covariant phase space formalism for all Ã2 diffeo-
morphisms, then we would conclude that the symmetry is
represented on phase space without central extension.
Wewill show in the remainder of the Letter that precisely

this pertains if we correctly enlarge the field space to
include the degrees of freedom associated with embedding
maps corresponding to subregions ofM and hypersurfaces,
and extend the symplectic structure accordingly. Such a
correction is in the spirit of Ref. [2] but differs in a crucial
way. In particular, we will show that the correct extension
of the symplectic structure yields integrable charges for all
of Ã2 and furthermore, nonconservation of the charges
associated with flux is fully accounted for by the extended
symplectic structure.
Consider the variation of Eq. (2):

δA½g;ϕ� ¼ δ

Z
Sk

ϕ�
kðα½g; y�Þ: ð7Þ

Thevariation receives two contributions, one from the varia-
tion of α, and one from the variation of the embedding ϕk,

δA½g;ϕ� ¼
Z
Sk

ϕ�
kðδα½g; y�Þ þ

Z
Sk

δϕ�
kðα½g; y�Þ; ð8Þ

where as usual

δα½g; y� ≔ α½gþ δg; y� − α½g; y�; ð9Þ

while the variation of the embedding is given by

ðδϕ�
kÞðα½g; y�Þ ≔ ϕ�

kðα½g; yþ χ� − α½g; y�Þ ð10Þ

¼ ϕ�
kðLχα½g; y�Þ; ð11Þ

where we are using the notation introduced in Eq. (1). Thus

δA½g;ϕ� ¼
Z
Sk

ϕ�
kðδα½g; y� þ Lχα½g; y�Þ: ð12Þ

The variation with respect to a diffeomorphism in particular
is given by

IVη
δg ¼ LVη

g ¼ Lηg; IVη
χ ¼ −ηjϕkðSkÞ; ð13Þ

which implies in particular that δηϕk ¼ IVη
δϕk. Essentially

similar relations have also appeared in Refs. [2,27], for
example. Before moving on to covariant phase space
formalism, we consider the implication of the nilpotency
of δ,

0 ¼ δ2A½g;ϕ� ¼
Z
Sk

ϕ�
k

�
Lδχα½g; y� þ

1

2
L½χ;χ�α½g; y�

�
;

from which we conclude

δχ ¼ −
1

2
½χ; χ�: ð14Þ

Thus χ is not an exact form in field space generally. We note
that this result resembles a property of ghosts, which is by
no means an accident. Indeed this is another sign that in the
presence of an embedding, a “vertical” degree of freedom
becomes physical. Related ideas appear in Refs. [3,28].
Covariant phase space.—In the case where one integra-

tes a Lagrangian density over all of the manifold M, no
embedding is required because the Lagrangian is a top form
on M. However, suppose we consider integrating the
Lagrangian over some subregion R of M; we will regard
that subregion as embedded in M via ϕ0∶R → M, with the
boundary of the subregion regarded as an embedded
hypersurface in M. So we write
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SR½g;ϕ� ¼
Z
R
ϕ�
0ðL½g; y�Þ: ð15Þ

Given this, we then write

δSR½g;ϕ� ¼
Z
R
ϕ�
0ðδL½g; y�Þ þ

Z
R
δϕ�

0ðL½g; y�Þ

≙
Z
∂R

ϕ�
1ðθ½g; δg; y�Þ þ

Z
R
ϕ�
0ðLχL½g; y�Þ

≙
Z
∂R

ϕ�
1ðθ½g; δg; y� þ iχL½g; y�Þ; ð16Þ

where θ is the usual presymplectic form satisfying
δL ≙ dθ. This result suggests a corresponding extended
pre-symplectic potential,

Θext:
Σ ≡

Z
Σ
ϕ�
1ðθ½g; δg; y� þ iχL½g; y�Þ; ð17Þ

where ϕ1 now embeds a hypersurface ϕ1∶Σ → M, possibly
with boundary. This extension is different than the one first
introduced in Ref. [2]. To understand its properties, we
consider the corresponding extended presymplectic struc-
ture, which can be shown to be of the form

Ωext
Σ ≔ δΘext

Σ

¼
Z
Σ
ϕ�
1ðδθ½g; δg; y�Þ

þ
Z
∂Σ

ϕ�
2

�
iχθ½g; δg; y� þ

1

2
iχiχL½g; y�

�
: ð18Þ

We then identify

Ωext
Σ ½g; δg; χ; y� ¼ ΩΣ½g; δg; y� þ Ωcor∂Σ ½g; δg; χ; y�:

Note that if embeddings are not considered as in the
standard treatment, then the result would reduce to the
first line of Eq. (18). This is only consistent, however, if we
restrict attention to diffeomorphisms that preserve the
corner ∂Σ. On the other hand, similar extended structures
were given in Refs. [2,3] but the prescription used there
differs from ours in an important way, the details of which
we will discuss below.
We now turn our attention to the question of integrability,

and so we compute

IVη
Ωext

Σ ¼ IVη
ΩΣ þ IVη

Ωcor∂Σ :

For the first term, we have the standard result

IVη
ΩΣ ¼

Z
Σ
ϕ�
1ðIVη

δθÞ ≙
Z
Σ
ϕ�
1ðdiηθ − δdQηÞ; ð19Þ

where here we have assumed that η is an arbitrary field-
independent vector field as well as the covariance of θ,

LVη
θ ¼ Lηθ [11] (see also Ref. [29]). Here Qη is the

Noether charge density, defined as usual by

dQη ¼ IVη
θ − iηL: ð20Þ

Next, we consider the corner contribution,

IVη
Ωcor

Σ ¼
Z
∂Σ

ϕ�
2

�
IVη

iχθ þ
1

2
IVη

iχiχL

�

¼ −
Z
∂Σ

ϕ�
2

�
iηθ þ iχIVη

θ þ 1

2
iηiχL −

1

2
iχiηL

�

¼ −
Z
∂Σ

ϕ�
2

�
iηθ þ iχ

�
dQη þ

1

2
iηL

�
þ 1

2
iηiχL

�

¼ −
Z
∂Σ

ϕ�
2ðiηθ þ iχdQηÞ ð21Þ

and so

IVη
Ωext

Σ ≙ −
Z
Σ
ϕ�
1ðδdQη þ LχdQηÞ ¼ −δ

Z
∂Σ

ϕ�
2ðQηÞ;

where we made use of Eq. (12) in reverse. Thus the charge
is integrable, and we write

IVη
Ωext

Σ ¼ −δ
Z
∂Σ

ϕ�
2ðQηÞ ¼ −δHη: ð22Þ

Thus Vη is the Hamiltonian vector field on field space

corresponding to the Hamiltonian function Hη, the latter

coinciding precisely with that appearing in Eq. (4).
Continuing in the same vein, it can be shown that

IVξ
IVη

Ωext
Σ ¼ −IVξ

δ

Z
∂Σ

ϕ�
2ðQηÞ ¼

Z
∂Σ

ϕ�
2ðQ½ξ;η�Þ ¼ H½ξ;η�;

which coincides with the result of Ref. [7]. Thus we have
the Poisson bracket

fHξ; Hηg ¼ δξHη ¼ −H½ξ;η�: ð23Þ

This proves that the charges are canonically represented,
given the choice (17). This is achieved without any
restriction on the field space, without boundary conditions
being imposed and without involvement of ambiguities that
would alter the definition of the Noether charge.
Finally, we note that Θext

Σ correctly accounts for flux.
Consider for example a “pillbox” with spacelike bounda-
ries Σ1;2 which have boundaries S1;2 and a timelike
boundary B (whose boundary is S1 ∪ S2). Then
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HξjS2 −HξjS1 ¼
Z
B
ϕ�
1ðdQξÞ ð24Þ

¼
Z
B
ϕ�
1ðIVξ

θ − iξLÞ ð25Þ

¼ IVξ

Z
B
ϕ�
1ðθ þ iχLÞ ð26Þ

¼ IVξ
Θext

B ; ð27Þ

where we used again our definition (17) applied to B. Thus
the flux of the extended symplectic form precisely accounts
for possible nonconservation of the charges. This applies to
all vector fields ξ, whether it be tangential or orthogonal.
Comparison to previous treatments.—In the usual treat-

ment, where embeddings are not considered at all, one has
ΘΣ ¼ R

Σ θ and IVη
ΩΣ ¼ −

R
∂ΣðδQη − iηθÞ as above. Thus,

one says that the charge is integrable if iηθ is either zero, or

is set to zero by imposing some condition. Note that it is
automatically zero if η is tangent to ∂Σ, but not if η is
normal. In fact, this is precisely the problem that we have
resolved by including the embedding—the charges are then
integrable for all η.
Finally, we consider the relationship of our treatment to

that of Refs. [2,3]. In fact, they chose a different extension
by making use of an ambiguity in the presymplectic form

ΘDF
Σ ¼ Θext

Σ þ
Z
∂Σ

ϕ�
2ðQχÞ ð28Þ

¼
Z
Σ
ϕ�
1ðθ þ iχLþ dQχÞ: ð29Þ

This has the property that IVη
ΘDF

Σ ¼ 0, and thus all

diffeomorphism charges have been made to vanish.
However, as we have seen, it is the presymplectic structure
Θext

Σ that gives rise to the actual Noether charges that
generate the extended corner symmetry.
Conclusions.—In this Letter, we have emphasized the

need for an interpretation in which physical symmetries are
associated with corners and we have found the description
of field space that gives rise to that interpretation. We plan
to follow up this work with a more extensive account in
which we study many of the examples of current interest
and extend the construction to field-dependent vector fields
and the corresponding modified brackets. For example, one
may anticipate that our formalism has important implica-
tions when applied to the case of black hole horizons as
well as asymptotic structures. The latter case in particular
requires modifications to account for renormalization,
which is currently under investigation.
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