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We consider the N particle classical Riesz gas confined in a one-dimensional external harmonic potential
with power-law interaction of the form 1=rk, where r is the separation between particles. As special limits it
contains several systems such as Dyson’s log-gas (k → 0þ), the Calogero-Moser model (k ¼ 2), the 1D
one-component plasma (k ¼ −1), and the hard-rod gas (k → ∞). Despite its growing importance, only
large-N field theory and average density profile are known for general k. In this Letter, we study the
fluctuations in the system by looking at the statistics of the gap between successive particles. This quantity
is analogous to the well-known level-spacing statistics which is ubiquitous in several branches of physics.
We show that the variance goes as N−bk and we find the k dependence of bk via direct Monte Carlo
simulations. We provide supporting arguments based on microscopic Hessian calculation and a quadratic
field theory approach. We compute the gap distribution and study its system size scaling. Except in the
range −1 < k < 0, we find scaling for all k > −2 with both Gaussian and non-Gaussian scaling forms.
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Introduction.—The Riesz gas, consisting of N particles
with long-range interactions confined in a harmonic trap, is
one of the classic examples of a strongly interacting many-
body system. The model is characterized by power-law
interaction potentials of the formVðrÞ ∼ Jr−k, where r is the
distance between two particles, J > 0 is the interaction
strength, and k > −2 (to ensure stability). Special values of k
lead us to some important models such as the log-gas
(k → 0þ) [1,2], the one-dimensional one-component
plasma (1DOCP, k ¼ −1) [3–6] and the Calogero-Moser
(CM) model (k ¼ 2) [7–10]. Experimental realizations of
this model in cold atom systems have now become possible
[11–13] and hence it is essential to have a complete
characterization of its equilibrium and dynamical properties.
The long-range nature of the interactionsmakes this difficult
but some progress has recently been made [5,6,14–24]. In
Ref. [14] the exact density profile was computed using a
field theoretic approach, thereby obtaining a generalization
of the Wigner semicircle law for the log-gas [25]. The form
of the average density profile and the scaling of its support
with increasing N was found to be nontrivial. For the 1D
one-component plasma for which the density profile is flat,
the distribution of the position of the rightmost particle was
computed exactly [6] and found to be different from the
Tracy-Widom form [26,27]. Surprisingly, the density profile
in the CM gas is identical to that in the log-gas but the edge
particle distribution takes a different (non Tracy-Widom)
form [28]. Recently, the average density profile, in the
presence of a hard wall, has also been computed exactly for
all k > −2 [29].
One of the interesting observations of Ref. [14] was on

the system-size scaling of the mean separation hΔi between

neighboring particles. This has the form hΔi ∼ N−ak , where
ak has a nonmonotonic dependence on k and can have both
positive and negative signs. For a complete characterization
it is necessary to go beyond the mean and study the
fluctuations of this quantity as well as its full distribution.
The interplay between the long-range interactions and the
confining potential makes this a fascinating and difficult
question and this is the main focus of this Letter.
The gap statistics is analogous to level spacing statistics

which has been studied in great detail in different areas such
as randommatrix theory (RMT) [30,31] and quantum chaos
[32–35]. In the context ofRMTwe recall that the equilibrium
distribution of particle positions in the log-gas (k → 0þ,
J → ∞, with Jk → J0) at inverse temperature β corresponds
to the distribution of eigenvalues of randommatrices for the
Gaussian orthogonal (GOE), unitary (GUE), and symplectic
(GSE) ensembles, corresponding to Dyson indices 1, 2, and
4 respectively. From this correspondence it is known that the
distribution of particle spacing, normalized by the mean
spacing, is given quite accurately by the Wigner surmise
(WS) [25,30,31]. Avariant of the WS has also been applied
to the CM model (k ¼ 2) [36] but to the best of our
knowledge, there are no results for other values of k and
this Letter provides a complete characterization. Needless to
mention, fluctuations at the microscopic level is an avenue
that is essentially unexplored in systems with long-range
interactions. Probing such fluctuations has now become
experimentally accessible given the recent breakthroughs in
the technology of quantum gas microscopy [37–42]. Gap
fluctuations give us a novel way to probe aspects of the
underlying interacting systems that are otherwise com-
pletely elusive to diagnostics such as density profiles.
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Our main results are the following: (i) From direct
Monte Carlo (MC) simulations, we find that the system
size scaling of the variance of the bulk gap is characterized
by a nontrivial exponent bk that fits the form in Eq. (5).
(ii) This proposed form is further validated from our results
based on a microscopic Hessian (MH) calculation and a
quadratic field theory (FT). (iii) We study the scaling
properties of the gap distributions for different k and
observe that there exists four regimes as shown in Fig. 1.
Model and definitions.—The harmonically confined

Riesz gas consists of N classical particles, confined in a
harmonic potential on a line and interacting with each other
via pairwise repulsion. We denote the positions of the
particles on the line by xjðj ¼ 1; 2;…; NÞ. The pairwise
repulsive interaction is taken as a power law of the distance
between the particles, and the total potential energy is given
by (∀ k > −2) [43]

EðfxjgÞ ¼
XN
i¼1

x2i
2
þ JsgnðkÞ

2

X
i≠j

1

jxi − xjjk
; ð1Þ

where J > 0 and sgnðkÞ ensures a repulsive interaction.We
consider a thermal distribution of the N particles given by
PGðx1; x2;…; xNÞ ¼ e−βE=Z, where Z is the partition
function and henceforth we set the inverse temperature
β ¼ 1. Without loss of generality, we assume that the
particles are ordered, i.e., x1 ≤ x2 ≤ x3… ≤ xN . The mean

thermal density of particles is defined as ρðeqÞN ðxÞ ¼
ð1=NÞPN

i¼1hδðx − xiÞi, where h…i denotes a thermal
average over the distribution PGðfxigÞ. For large N the
average density has been computed exactly for all
k values [14] and has a finite support in the range
½−lkNαk=2; lkNαk=2� (for k ≠ 1 [44]) where the exponent
αk ¼ k=ðkþ 2Þ for k > 1 and 1=ðkþ 2Þ for −2 < k < 1,
with lk known explicitly [14,45]. The average density

ρðeqÞN ðxÞ for large N and temperature T < N2αk is given by

the scaling form ρðeqÞN ðxÞ ¼ ðlkNαkÞ−1Fk½x=ðlkNαkÞ�, where
the scaling function FkðyÞ is known exactly [14].

The main quantity of interest here is the interparticle
separation Δi ¼ xiþ1 − xi and the normalized separation
si ¼ Δi=hΔii. The distribution of s is defined as

PNðsÞ ¼
1

N − 1

XN−1

i¼1

pðiÞ
N ðsÞ; ð2Þ

where pðiÞ
N ðsÞ ¼ hδðs − siÞi is the distribution of the ith

normalized gap. We expect that for typical fluctuations,
PNðsÞ will be dominated by the bulk gaps, but edge gap
contributions could be important for atypical s.
Results for mean and variance of the bulk gap.—We

expect that for bulk particles 1 ≪ i ≪ N − 1, the average
bulk gap should scale as hΔii ∼ Nαk=N ¼ N−ak , where
ak ¼ 1 − αk, i.e.,

ak ¼
� 2

kþ2
for k > 1

kþ1
kþ2

for − 2 < k < 1:
ð3Þ

We also expect a power-law dependence on the system size
of the gap fluctuations σ2Δi

¼ hΔ2
i i − hΔii2. In particular,

for the mid-gap corresponding to i ¼ N=2, we provide
theoretical arguments based on MH and FT (see later) for
the following conjecture:

σ2ΔN=2
∼ N−bk ; where ; ð4Þ

bk ¼

8>>><
>>>:

2 for k > 1

1þ k for 0 < k < 1

2ðkþ 1Þ=ðkþ 2Þ for − 1 < k < 0

1þ k for − 2 < k < −1:

ð5Þ

We present numerical evidence for the above conjecture in
Figs. 2 and 3 where we observe reasonable agreement

FIG. 1. Schematic phase diagram of the behavior of the gap
distribution. We find four regimes in k ∈ ð−2;∞Þ, where the gap
distribution has different scaling properties. In the region
ð−2;−1Þ ∪ ð0;∞Þ the scaling limit is achieved by using mean
and variance of gap only. The scaling function for k ∈ ð−2;−1Þ ∪
ð1;∞Þ is Gaussian whereas it is non-Gaussian in k ∈ ð0; 1Þ. In
the regime k ∈ ð−1; 0Þ we are unable to obtain a scaling limit.

FIG. 2. Mean (left) andvariance (right) ofmidgap as a function of
system size for k ¼ 2(orange filled circle), 1.5(blue circle), 0.5(red
square), 0þ(black filled square), −0.5(blue upward triangle),
−1(green downward triangle), and −1.5(red asterisk). Solid lines
correspond to their corresponding power-law fitting [Eq. (5)]. The
slopes in (a) are ak ¼ 0.5; 0.57; 0.6; 0.5; 0.33; 0;−1 and in (b) are
bk ¼ 2; 1.97; 1.42; 1; 0.63; 0;−1, for decreasing k. These are
consistent with Eqs. (3) and (5) as elucidated in Fig. 3. The error
bars are negligible [45]. In (a) the data for k ¼ −1.5 is scaled by a
factor 500. ∼108 MC samples are used for the computations.
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between the numerically obtained exponent (MC) and the
conjectured values. We believe that the slight deviations
from the predictions for few values of k are due to finite size
effects, since the error bars are small (see Ref. [45] for
discussion of error bars). We verified that the above scaling
in Eq. (5) also holds for other gaps deep in the bulk.
Interestingly we find that for−1 ≤ k ≤ 0, the ratio σΔi

=hΔii
as well as PðiÞ

N ðsÞ are weakly dependent on i (for large N
and i in the bulk; see Sec. III of Ref. [45]).
Results for distribution of gap.—The distribution of the

normalized gap s in Eq. (2) is a well-studied object in RMT
[46–50] where one of the important results is on the
universal form of PNðsÞ given by the WS. For the
distribution of eigenvalues of the random matrices belong-
ing to the three Gaussian ensembles, with Dyson indices
1,2,4 (which for our log-gas corresponds to βJ0 ¼ 1, 2, 4),
it is known that PN→∞ðsÞ is in fact accurately described by
P2ðsÞ≡ PN¼2ðsÞ (which is basically the WS) and is given
by Refs. [25,30] P2ðsÞ ¼ A0sβJ0e−B0s2 , (for log-gas), where
A0 and B0 are constants. From our simulations we in fact
find that the WS for the log-gas is quite accurate for all
βJ0 > 1. We now examine the distribution PNðsÞ for other
values of k. Interestingly, we find that for k ¼ −1 (as also
for log-gas) the distribution converges very fast as can be
seen in Figs. 4(b) and 4(d). On the other hand, for other
values of k there is no convergence. In particular for the CM
model (k ¼ 2), our findings [45] are thus in disagreement
with the generalized version of WS proposed in Ref. [36].
For generic values of k, as seen in Fig. 4, the distribu-
tions PNðsÞ do not show convergence with N. Hence, we
look at the distribution of the following natural scaling
variable

s̃j ¼
Δj − hΔji

σΔj

: ð6Þ

The distribution of this quantity defined as P̃Nðs̃Þ ¼
½1=ðN − 1Þ�PN−1

i¼1 hδðs̃ − s̃iÞ, is computed numerically for
different values of k and N. In Fig. 5 we plot P̃Nðs̃Þ for
k ¼ −1.5;−0.5, 0.5, and k ¼ 1.5. We find that P̃Nðs̃Þ tends
to a Gaussian form with zero mean and unit variance in
the limit N → ∞, except in the range −1 ≤ k ≤ 1.
Interestingly, in the range −1 < k < 0, we do not see
convergence with N [Fig. 5(b)]. In the range 0 < k < 1
relative fluctuations die out withN in which case one might
expect a Gaussian scaling form. Surprisingly, even though
the MH nicely predicts the correct scaling exponent bk the
scaling form of the distribution is non-Gaussian [Fig. 5(c)].
We now present the theoretical arguments which
support the conjecture in Eq. (5)—based on MH and FT
calculations.
Microscopic Hessian (MH).—Computing analytically

the variance of the gap for generic values of k is hard
(except for k ¼ −1 and k → 0). Here we use the micro-
scopic Hessian method [51,52] to estimate the variance
for large N for all values of k. At zero temperature, the
system will be in the ground state characterized by the
configuration of positions yi and corresponding gaps
ΔGS

i ¼ yiþ1 − yi. Since the system is at low temperature,
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FIG. 3. Comparison of the exponents ak and bk (symbols)
obtained from simulations (MC), from MH and FT calculations,
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we expect that the Hessian of the microscopic Hamiltonian
Eq. (1) about the ground state would approximately capture
the behavior of the fluctuations of the gap. The joint
distribution of fluctuation of gaps δΔi ¼ Δi − ΔGS

i will be
of the form

PMHðfΔigÞ ∼ e−
β
2

P
N
i;j¼1

HijδΔiδΔj ; ð7Þ
where the Hessian of the system about the ground state is
Hij ¼ ½∂2E=∂Δi∂Δj�GS [45]. The variance of the gap
σ2Δi

¼ ðβHÞ−1ii can thus be obtained by inverting the matrix
H numerically. As seen in Fig. 3, the exponent bk
calculated using MH theory matches with the MC result
[Eq. (5)] except in the regime −1 < k < 0. This is perhaps
not surprising since our conjecture suggests that in this
regime, the relative fluctuation of the gap, σΔi

=hΔii ∼
Nðak−bk=2Þ does not decrease with system size—in fact over
the range of N considered we see them increasing (see inset
of Fig. 3). Next, we discuss the FT calculation.
Field theory (FT).—As discussed in Ref. [14] the Reisz

gas for largeN can be described by a free-energy functional
Σ½ρN � ¼ E½ρN � − β−1S½ρN � corresponding to a macroscopic
density profile ρNðxÞ, where E½ρN � is the energy and
S½ρN � ¼ −N

R
dxρN logðρNÞ is the entropy functional.

The form of the energy functional depends on k, being
local for k ≥ 1 and nonlocal for −2 < k < 1 [14,45]. We
use this action to compute the fluctuations of the bulk gap.
The probability of a density profile ρN is [53]

P½ρN � ∼ e−βδΣ; with δΣ ¼ Σ½ρN � − Σ½ρðeqÞN �; ð8Þ

where ρðeqÞN is mean thermal density. For a given macro-
scopic density profile ρNðxÞ, the gap between two con-
secutive particles at position x is Δ̄ ¼ ½NρNðxÞ�−1. Note

that this definition of the gap is different from the gap Δ
defined earlier [above Eq. (2)] from the microscopic
position configuration. The gap Δ̄ is a coarse-grained
version of Δ averaged over many microscopic configura-
tions consistent with the macroscopic density ρNðxÞ. As the
density profile ρNðxÞ fluctuates, the separation Δ̄ also
fluctuates. We expect that for large N, the fluctuation of
Δ̄ and Δ would have the same scaling with respect to N.
We first find the distribution of the fluctuation δρNðxÞ

around the equilibrium profile ρðeqÞN ðxÞ. Writing ρNðxÞ ¼
ρðeqÞN ðxÞ þ δρðxÞ in the expression of the action δΣ½ρN � in
Eq. (8) and expanding to quadratic order in δρðxÞwe get the
distribution of the fluctuation profile δρðxÞ (see Ref. [45]
for details). Note the action δΣ now becomes an explicit

functional of δρðxÞ and ρðeqÞN ðxÞ. The probability distribu-
tion of the fluctuation δΔ̄ of the gap, defined as
Δ̄ ¼ hΔ̄i þ δΔ̄, is obtained by using the relation

δΔ̄ ≈ −
δρðxÞ

NðρðeqÞN ðxÞÞ2
; ð9Þ

which can be obtained from Δ̄ ¼ ½NρNðxÞ�−1.
ForN (large but finite) particles there are (N − 1) number

of gap variables. In order to find the joint distribution of these
(discrete) gap variables from the field theory description, we

need to discretize δΣ½δρ; ρðeqÞN �. To do so, we discretize the
integral in the action δΣ along the equilibrium positions fyig
[45]. Recall that the microscopic Hessian was computed
about this position configuration in Eq. (7) earlier. Note that
fyig, also the minimum energy configuration, leads to the

equilibriummacroscopic density ρðeqÞN ðxÞ that corresponds to
mean gaps hΔ̄ii ¼ 1=NρðeqÞN ðyiÞ. Also note that for large-N,
hΔ̄ii ≈ ΔGS

i . We emphasize that this discretization of the
density profile is different from the original microscopic
position description of the system.
We replace the integrals in the expression of δΣ asR lN

−lN dx →
P

i½1=NρðeqÞN ðyiÞ� and evaluate the integrand at
points fyig. After some simplifications we get the follow-
ing joint distribution of the gap variables fδΔ̄ig to leading
order in N (see Ref. [45] for details):

PFTðfδΔ̄igÞ ∼ e−
β
2

P
N
i;j¼1

MijδΔ̄iδΔ̄j ; where ð10Þ

Mii ¼

8>><
>>:
JζðkÞkðkþ1ÞNkþ2½ρðeqÞN ðyiÞ�kþ2 for k> 1

2JNkþ2½ρðeqÞN ðyiÞ�kþ2 for 0<k< 1

N2β−1½ρðeqÞN ðyiÞ�2 for −2<k< 0;

Mij ¼
(
0 for k> 1;

JN2sgnðkÞ ρ
ðeqÞ
N ðyiÞρðeqÞN ðyjÞ

jyi−yjjk for −2<k< 1.
ð11Þ

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

P̃
N
(s̃
)

s̃

k = −1.5

10−5
10−3
10−1

-4 -2 0 2 4

N = 64
N = 128
N = 256
N = 512

0

0.1

0.2

0.3

0.4

0.5

-1 0 1 2 3 4

P̃
N
(s̃
)

s̃

k = −0.5

N = 64
N = 128
N = 256
N = 512
N = 1024

0

0.1

0.2

0.3

0.4

-2 -1 0 1 2 3 4 5

P̃
N
(s̃
)

s̃

k = 0.5

N = 64
N = 128
N = 256
N = 512
N = 1024

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

P̃
N
(s̃
)

s̃

k = 1.5

10−5
10−3
10−1

-4-2 0 2 4

N = 64
N = 128
N = 256
N = 512
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For the diagonal term, it is interesting to note [45] that, for
−2 < k < 0, the contribution from entropy is dominant
whereas, for k > 0, the contribution from energy is dom-
inant. The variance of Δ̄ is given by hδΔ̄2

i i ¼ ðβMÞ−1ii .
Assuming that the inverse of the dominant term of the
matrix M [see Eqs. (28) and (29) in Ref. [45]] dictates the
scaling of the variance we arrive at the conjecture in Eq. (5).
We also compute the variance from a direct numerical
inversion of the matrixM and as seen in Fig. 3 we find very
good agreement with the conjecture in Eq. (5) for all k
values. The deviation from the MC results are possibly due
to statistical errors, slow equilibration and finite-size
effects.
Conclusions.—In this Letter, we have studied the nearest

neighbor gap statistics for a harmonically confined Riesz
gas, in particular the variance and the distribution. The
variance of the bulk gap is characterized by the exponent bk
for which we conjecture a form, Eq. (5), for the k
dependence. We provided support for this through direct
MC simulations, and numerics based on small fluctuations
theories such as microscopic Hessian and quadratic field
theory. We studied the normalized gap distribution, PNðsÞ
and find a convergence, with N, for k ¼ 0þ;−1. For other
values of k, PNðsÞ does not converge with increasing N.
This leads us to study s̃i [gap normalized by fluctuations,
see Eq. (6)]. As summarized in Fig. 1, for −2 < k < −1
and k > 1 we found that the scaling form of P̃Nðs̃Þ is
Gaussian while for all other k values, we find strong non-
Gaussian behavior. In fact, for −1 < k < 0, we found that
there is no convergence with N. Moreover in this regime,
the fluctuations are of the same order as the mean, leading
to the failure of the Hessian theory. Remarkably, the
quadratic field theory approach is able to predict the
expected scaling exponent even in this regime. It is worth
reemphasizing that the analytical microscopic treatment of
fluctuations is extremely difficult. We have proposed two
different analytical approaches which are able to success-
fully capture the main features seen by direct simulations:
(i) mapping between the microscopic variables and the
coarse-grained macroscopic density field. This provides an
enormous simplification for the otherwise intractable and
highly nonlocal microscopic model. (ii) Hessian approxi-
mation which results in an all-to-all connected Harmonic
network and provides a powerful tool for tackling long-
ranged systems. Some interesting outstanding problems
include understanding of the non-Gaussian behavior,
including large deviations, of the gap distribution and its
analytical derivation for special cases such as the 1DOCP
(k ¼ −1), CM (k ¼ 2) and hard rods (k → ∞).
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