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The reaction coordinate describing a transition between reactant and product is a fundamental concept in
the theory of chemical reactions. Within transition-path theory, a quantitative definition of the reaction
coordinate is found in the committor, which is the probability that a trajectory initiated from a given
microstate first reaches the product before the reactant. Here we develop an information-theoretic origin for
the committor and show how selecting transition paths from a long ergodic equilibrium trajectory induces
entropy production which exactly equals the information that system dynamics provide about the reactivity
of trajectories. This equality of entropy production and dynamical information generation also holds at the
level of arbitrary individual coordinates, providing parallel measures of the coordinate’s relevance to the
reaction, each of which is maximized by the committor.
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Understanding the mechanism for a transition between
metastable states of a system is of fundamental interest to
the natural sciences. Reaction theories seek to derive the
rate constant from underlying system dynamics and have
led to increased insight into the reaction mechanism, the
sequence of elementary steps by which a reaction occurs.
A notable example is transition-state theory and its exten-
sions [1–3], which conceptualize the activated complex (or
transition-state species) as a key dynamical intermediate
and makes use of its properties (e.g., free energy relative
to the reactant) to derive an approximate rate constant for
large classes of reactions. The transition state is one
identifiable state along the reaction coordinate, a one-
dimensional collective variable that preserves all quantita-
tive and qualitative aspects of a reaction under projection of
the multidimensional dynamics [4,5].
Motivated by rare-event samplingmethods [6], transition-

path theory [7] was developed to quantitatively describe the
entire reaction and determine its rate constant, without
assumptions of metastability for the reactant and product
or any specific details of the reaction mechanism (e.g., the
presence of a single transition state). This statistical descrip-
tion relies on the definition of the committor function qϕ
(also called the commitment or splitting probability), the
probability that a trajectory initiated from microstate ϕ
reaches the product before returning to the reactant. The
committor maps the state space onto the interval qϕ ∈ ½0; 1�
and has been called the “true” or “ideal” one-dimensional
reaction coordinate [4,8–11]. The committor allows calcu-
lation of the reaction rate from a one-dimensional descrip-
tion [12] and identifies the transition-state ensemble as states
making up the qϕ ¼ 0.5 isocommittor surface [13].
In this Letter, we derive a novel information-theoretic

justification of the committor as the reaction coordinate.

We show how selecting the transition-path ensemble (the
set of trajectories from reactant to product) from a long
ergodic equilibrium trajectory results in entropy production
that precisely equals the information generated by system
dynamics about the reactivity of trajectories.
The components of entropy production and information

generation due to an arbitrary system coordinate are
also equal; this reveals equivalent thermodynamic and
information-theoretic measures of the suitability of low-
dimensional collective variables that encode information
relevant for describing reaction mechanisms. The commit-
tor is a single coordinate that preserves all system entropy
production and distills all system information about reac-
tivity, giving further support for its role as the reaction
coordinate.
Information-theoretic formulation of the committor as

reaction coordinate.—Consider a multidimensional system
Φ evolving according to Markovian dynamics governed by
the master equation [14] dtpðϕÞ ¼

P
ϕ0 Tϕϕ0pðϕ0Þ, where

Tϕϕ0 is the transition rate from state ϕ0 → ϕ and pðϕÞ is the
probability of state ϕ. We assume the transition rates obey
detailed balance [14], and the system is in equilibrium with
its environment so that pðϕÞ ¼ πðϕÞ, the equilibrium
probability of ϕ. We study the transition-path ensemble
(TPE), the set of trajectories that leave one subset of states
A ∈ Φ and next visit a distinct subset B ∈ ΦnA before A.
Inmost applications,A andB aremetastable states separated
by a dynamical barrier; following Refs. [15,16], we only
assume that A and B do not overlap and lack direct
transitions, i.e., Tϕϕ0 ¼ 0 for ϕ0 ∈ A and ϕ ∈ B.
The TPE can be formed by selecting from a long ergodic

equilibrium supertrajectory, the trajectory segments that
leave A and reach B before A. Transition paths are therefore

PHYSICAL REVIEW LETTERS 128, 170602 (2022)

0031-9007=22=128(17)=170602(6) 170602-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7066-1590
https://orcid.org/0000-0003-4815-4722
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.170602&domain=pdf&date_stamp=2022-04-29
https://doi.org/10.1103/PhysRevLett.128.170602
https://doi.org/10.1103/PhysRevLett.128.170602
https://doi.org/10.1103/PhysRevLett.128.170602
https://doi.org/10.1103/PhysRevLett.128.170602


selected based on the trajectory outcome Sþ [the next
mesostate (A or B) visited by the system] and origin S− (the
mesostate most recently visited by the system). This
partitions the supertrajectory into four trajectory suben-
sembles, each with particular s≡ ðs−; sþÞ: The forward
(reverse) transition-path ensemble is the set of trajectory
segments with s ¼ ðA;BÞ [s ¼ ðB;AÞ�, and the stationary
subensemble from A → A (B → B) has s ¼ ðA; AÞ
[s ¼ ðB;BÞ], as depicted in Fig. 1. Every trajectory seg-
ment in the forward TPE has a corresponding equally
probable time-reversed trajectory segment in the
reverse TPE.
At any time during the equilibrium supertrajectory, we

define random variablesΦ and S, respectively, denoting the
current system state and trajectory subensemble, with
pðϕ; sÞ the joint distribution that the system is currently
in state ϕ and is currently on a trajectory segment with
respective origin and outcome s ¼ fs−; sþg. Since the
system dynamics are Markovian, the trajectory outcome
and origin are conditionally independent given current
state ϕ, so the joint distribution can be factored as
pðϕ; sÞ ¼ πðϕÞpðsþjϕÞpðs−jϕÞ [15]. The conditional
probabilities of trajectory outcome and origin given current
state ϕ are

pðSþ ¼ BjϕÞ ¼ qþϕ ; ð1aÞ

pðS− ¼ AjϕÞ ¼ q−ϕ: ð1bÞ

Here, qþϕ is the forward committor, the probability that the
system currently in state ϕ will next reach B before A, and
q−ϕ is the backward committor, the probability that the
system (currently in ϕ) was more recently in mesostate
A than in B. The committors obey boundary conditions
qþϕ ¼ 0 and q−ϕ ¼ 1 for ϕ ∈ A, and qþϕ ¼ 1 and q−ϕ ¼ 0 for
ϕ ∈ B. Since the system is in equilibrium and the transition
rates obey detailed balance q−ϕ ¼ 1 − qþϕ [15], a single
committor (without loss of generality, the forward com-
mittor qþϕ ) provides information about both the outcome
and origin of the trajectory segment, so we refer to qþϕ as the
reaction coordinate.
During the equilibrium supertrajectory, the system

continually evolves from A to B and B to A, completing
a unidirectional cycle through each subensemble with
stochastic transition times depending on underlying micro-
scopic dynamics. Transition-path theory [7,16,17] derives
quantitative properties (reaction rate and free-energy differ-
ence) of the A → B reaction from the equilibrium proba-
bility flux of subensemble transitions

νS ¼
X

ϕ∉A;ϕ0∈A

Tϕϕ0πðϕ0Þqþϕ ; ð2Þ

and the respective marginal probabilities pðsþÞ and pðs−Þ:

kAB ¼ νS
pðS− ¼ AÞ ¼ νS

pðSþ ¼ AÞ ; ð3aÞ

kBA ¼ νS
pðS− ¼ BÞ ¼ νS

pðSþ ¼ BÞ ; ð3bÞ

βΔFAB ¼ ln
pðS− ¼ AÞ
pðS− ¼ BÞ ¼ ln

pðSþ ¼ AÞ
pðSþ ¼ BÞ ; ð3cÞ

where kAB (kBA) is the rate constant for the A → B (B → A)
transition, and ΔFAB ≡ FB − FA is the free-energy differ-
ence. Mesoscopic reaction properties are therefore derived
from information about the subensembles, specifically
the proportion of time spent in each subensemble and
how frequently the subensemble switches.
The reaction coordinate should be maximally informa-

tive about the current subensemble. This is precisely
quantified by mutual information, a nonlinear statistical
measure of the relationship between two random variables,
specifically quantifying the reduction of uncertainty [given
by Shannon entropyHðXÞ≡ −

P
x pðxÞ lnpðxÞ] about one

random variable from measuring another [18]:

IðS;ΦÞ≡X
ϕ; s

pðϕ; sÞ ln pðϕ; sÞ
πðϕÞpðsÞ ; ð4Þ

time

FIG. 1. Partitioning a long ergodic equilibrium supertrajectory
into subensembles based on trajectory outcome Sþ and origin S−.
Contours: example double-well potential energy. Heat map:
probability distribution pðϕjsÞ of system state conditioned on
trajectory subensemble s. Solid curves: representative trajectories
from each subensemble. The forward (reverse) TPE in the top-
right (bottom-left) panel has net flux of trajectories from A → B
(B → A). The top-left (bottom-right) panel shows the stationary
subensemble from A → A (B → B).
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where pðsÞ ¼ P
ϕ pðϕ; sÞ is the marginal probability

that the system is currently on a trajectory segment
with outcome and origin s ¼ ðs−; sþÞ. Operationally,
pðsÞ can be estimated from the proportion of time τs
spent in subensemble s during a supertrajectory of length τ,
pðsÞ ¼ limτ→∞ τs=τ. If the committor depends only
on a one-dimensional coordinate X ∈ Φ (i.e., qϕ ¼ qx),
then X is a sufficient statistic for the mutual information
between trajectory subensemble and full system state,
i.e., IðS;ΦÞ ¼ IðS;XÞ. In this sense, the committor is
the “optimal” reaction coordinate, since it is maximally
informative about the trajectory subensemble given
a measurement of system state. This is our first major
result.
Physically, the trajectory outcome and origin (and hence,

the committors) represent uncertainty in the state of the
environment. Classical mechanics assumes a constant-
energy universe (system Φ plus environment Ψ) governed
by deterministic dynamics so that the outcome and origin of
the trajectory initiated from a given state of system and
environment are deterministic (and can be determined by
integrating the state of the universe forward and backward in
time until the system reaches A or B), i.e., pðsjϕ;ψÞ is
either 0 or 1. This partitions the state space of the
universe into four quadrants corresponding to each
trajectory subensemble, with each state ðϕ;ψÞ belonging
to only one subensemble; thus, the uncertainty about the
trajectory subensemble given a state of the universe
is zero, HðSjΦ;ΨÞ≡−

P
ϕ;ψ;spðϕ;ψ; sÞlnpðsjϕ;ψÞ¼0.

In this case, the mutual information between the
universe and trajectory subensemble is the uncertainty
about the trajectory subensemble, IðS;Φ;ΨÞ ¼ HðSÞ−
HðSjΦ;ΨÞ ¼ HðSÞ; the measurement of the state of the
universe fully determines the trajectory outcome and origin.
However, we typically do not resolve the microstate of the
environment, instead coarse-graining its interaction with the
system into friction and fluctuations [14]. Measurement of
the system state alone does not fully determine the trajectory
outcome and origin, which become random variables
with positive conditional Shannon entropy HðSjΦÞ≡
−
P

s;ϕ pðϕ; sÞ lnpðsjϕÞ > 0 reflecting uncertainty in the
state of the environment that is relevant to classification of
the current subensemble.
Transition-path thermodynamics.—The joint dynamics

of ðΦ; SÞ is given by the master equation

dtpðϕ; sÞ ¼
X
ϕ0; s0

Tss0
ϕϕ0pðϕ0; s0Þ; ð5Þ

where the ðϕ0; s0Þ → ðϕ; sÞ transition rate is (see
Supplemental Material I [19])

Tss0
ϕϕ0 ¼

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Ts
ϕϕ0 ≡ Tϕϕ0

pðsþjϕÞ
pðsþjϕ0Þ ; s0 ¼ s;

Tϕϕ0pðSþ ¼ BjϕÞ;
�

ϕ0 ∈ A;ϕ ∉ A;

s0 ¼ ðA;AÞ; s¼ ðA;BÞ;

Tϕϕ0pðSþ ¼ AjϕÞ;
�

ϕ0 ∈ B;ϕ ∉ B;

s0 ¼ ðB;BÞ; s¼ ðB;AÞ;

Tϕϕ0=pðSþ ¼ Ajϕ0Þ;
�
ϕ0 ∉ A;ϕ ∈ A;

s0 ¼ ðB;AÞ; s¼ ðA;AÞ;

Tϕϕ0=pðSþ ¼ Bjϕ0Þ;
�
ϕ0 ∉ B;ϕ ∈ B;

s0 ¼ ðA;BÞ; s¼ ðB;BÞ;
−
P
ϕ00≠ϕ0
s00≠s0

Ts00s0
ϕ00ϕ0 ; ϕ¼ ϕ0; s¼ s0;

0 otherwise:

ð6Þ

The top transition does not change the subensemble and
biases transitions within subensemble s toward states with
higher probability of trajectory outcome sþ. The middle
four transitions switch subensembles and are unidirec-
tional, contributing to the probability flux νS [Eq. (2)
and Supplemental Material Eq. (S9) [19] ]. These joint
dynamics are Markovian: Since the underlying system
dynamics are Markovian, the transition rates (6) do not
depend on the trajectory origin s−, and the outcome sþ does
not induce dependence on earlier system states. Considered
alone, system dynamics are at equilibrium and microscopi-
cally reversible; adding the trajectory outcome and origin
variables (that are not functions of system state and
explicitly depend on the past and future) breaks time-
reversal symmetry, producing absolutely irreversible
trajectory-subensemble transitions and time-asymmetric
system transitions within a given subensemble.
To quantify the time asymmetry for a particular ϕ0 → ϕ

transition in subensemble s, we combine (6), Bayes’ rule,
and the equilibrium detailed-balance relation Tϕϕ0πðϕ0Þ ¼
Tϕ0ϕπðϕÞ to derive a local detailed-balance relation,

Ts
ϕϕ0pðϕ0jsÞ

Ts
ϕ0ϕpðϕjsÞ

¼ pðs−jϕ0ÞpðsþjϕÞ
pðs−jϕÞpðsþjϕ0Þ : ð7Þ

The A → A (and analogously, B → B) stationary suben-
semble has sþ ¼ s− ¼ A, and due to system detailed
balance pðS− ¼ AjϕÞ ¼ pðSþ ¼ AjϕÞ, so the rhs is unity
and detailed balance holds for transitions within stationary
subensembles. The reactive subensembles (forward or
reverse TPE) have different trajectory outcome and origin
so the rhs side differs from unity, leading to a detailed-
balance-breaking flux (and hence, entropy production)
along particular transitions within these subensembles.
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Within a fixed subensemble s, the net trajectory flux is

Jsϕϕ0 ¼ Ts
ϕϕ0pðϕ0; sÞ − Ts

ϕ0ϕpðϕ; sÞ ð8aÞ

¼ ½pðs−jϕ0ÞpðsþjϕÞ − pðs−jϕÞpðsþjϕ0Þ�Tϕϕ0πðϕ0Þ:
ð8bÞ

The second equality follows from pðϕ; sÞ ¼ pðsjϕÞπðϕÞ;
the conditional independence of sþ and s− given state ϕ,
i.e., pðsþ; s−jϕÞ ¼ pðsþjϕÞpðs−jϕÞ; and substitution for
Ts
ϕ0ϕ using (6). The stationary subensembles (A → A and

B → B) have no net flux because each trajectory segment
and its time-reversed counterpart occur at equal rates within
the same subensemble. In contrast, the forward and reverse
TPEs have net trajectory flux since each transition path and
its time-reversed counterpart occur in different subensem-
bles. (Our procedure of effectively replicating the state
space and introducing opposing fluxes in the replicas by
modification of the transition rates bears similarity to
irreversible Markov chains obeying skew detailed balance
used to speed convergence to a stationary distribution [20].)
We decompose (see Supplemental Material II [19]) the

change in joint entropyHðΦ; SÞ≡ −
P

ϕ; s pðϕ; sÞ lnpðϕ; sÞ
at steady state [21,22] into

0 ¼ dtHðΦ; SÞ ð9aÞ

¼
X
s

pðsÞ
X
ϕ;ϕ0

Ts
ϕϕ0pðϕ0jsÞ lnT

s
ϕϕ0pðϕ0jsÞ

Ts
ϕ0ϕpðϕjsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h _Σi

− 2
X

ϕ;ϕ0; sþ

Tsþ
ϕϕ0pðϕ0; sþÞ ln

pðsþjϕÞ
pðsþjϕ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

_IΦðSþ;ΦÞ

; ð9bÞ

where h _Σi ¼ P
s pðsÞ _Σs is the subensemble-weighted aver-

age of the irreversible entropy production rate _Σs conditioned
on subensemble s, which quantifies the time irreversibility of
system dynamics within that subensemble. _IΦðSþ;ΦÞ ≥ 0 is
the rate of change inmutual information between the trajectory
outcome and system state due to system dynamics in a
fixed subensemble [23]. Rearranging Eq. (9b) gives (see
Supplemental Material III [19])

0 ≤ h _Σi ¼ 2_IΦðSþ;ΦÞ ð10aÞ
¼ _IΦðSþ;ΦÞ − _IΦðS−;ΦÞ; ð10bÞ

where _IΦðS−;ΦÞ ≤ 0 is the rate of change in mutual infor-
mation between trajectory origin and system state due to Φ
dynamics in a fixed subensemble. These information rates
reflect the dependence of the trajectory outcome and origin
variables on the past and future states of the system: As the

system evolves, uncertainty about the outcome Sþ diminishes,
increasing the information the current system state carries
about Sþ, while uncertainty (given current system state Φ)
about the originS− increases, decreasing informationΦ carries
about the S−.
Since the stationary subensembles have no entropy

production ( _Σs¼ðA;AÞ ¼ _Σs¼ðB;BÞ ¼ 0), Eq. (10a) reduces
to an equation for a single subensemble,

0 ≤ pR
_ΣR ¼ _IΦðSþ;ΦÞ: ð11Þ

This equates the rate _IΦðSþ;ΦÞ of generating information
about the outcome with the product of the entropy produc-
tion rate of a reactive subensemble _ΣR ¼ _Σs¼ðA;BÞ ¼ _Σs¼ðB;AÞ
and that subensemble’s marginal probability pR ¼
p(S ¼ ðA;BÞ) ¼ p(S ¼ ðB;AÞ). Although the supertra-
jectory is at equilibrium with no entropy production, _ΣR
physically represents the dissipation thatwould be necessary
in a system evolving according to the TPE’s detailed-
balance-breaking transition rates [top line of Eq. (6)
for s− ≠ sþ]. Equation (11) is our second major result:
The entropy production in a reactive subensemble
equals the information generated about the reactivity of
trajectories.
When the state space Φ is continuous, we derive (see

Supplemental Material IV [19]) a Fisher-information met-
ric IðϕÞ that imposes an information geometry on the state
space [24,25]. The metric measures distance on the reaction
coordinate (committor) as the system evolves and thereby
defines a reaction-coordinate length LAB. From this, the
TPE entropy production is

_ΣR ≈
L2
AB

2τR
; ð12Þ

where τR is the mean duration of a transition path. This
relates the TPE entropy production to the squared length
between A and B along the reaction coordinate.
Bipartite dynamics.—We now demonstrate how the TPE

entropy production quantitatively measures the relevance
of an arbitrary coordinate to the reaction. We assume
bipartite dynamics [26,27], essentially that instantaneous
transitions only happen in either a one-dimensional coor-
dinate X or in all other degrees of freedom Y making up the
system state Φ ¼ ðX;YÞ:

Txx0; yy0 ¼

8>>>>>><
>>>>>>:

Txx0; y; x ≠ x0; y ¼ y0;

Tx; yy0 ; x ¼ x0; y ≠ y0;

−
P
x00≠x0
y00≠y0

Tx00x0; y00y0 ; x ¼ x0; y ¼ y0;

0 otherwise:

ð13Þ

Dynamics that do not obey the bipartite assumption
introduce further complications in unambiguously parti-
tioning the entropy production between coordinates [28].
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Combining Eqs. (1), (8a), and (9b) gives the full TPE
entropy production as a function of the forward committor,

pR
_ΣR ¼ 1

2

X
ϕ;ϕ0

Tϕϕ0πðϕ0Þðqþϕ − qþϕ0 Þ ln
qþϕð1 − qþϕ0 Þ
qþϕ0 ð1 − qþϕÞ

; ð14Þ

which splits into contributions from the two transition
types:

pR
_ΣR ¼ pR

_ΣX
R þ pR

_ΣY
R ð15aÞ

¼ 1

2

X
x; x0; y

Txx0;yπðx0; yÞðqþxy − qþx0yÞ ln
qþx0yð1 − qþxyÞ
qþxyð1 − qþx0yÞ

þ 1

2

X
x; y; y0

Tx;yy0πðx; y0Þðqþxy − qþxy0 Þ ln
qþxyð1 − qþxy0 Þ
qþxy0 ð1 − qþxyÞ

:

ð15bÞ

The same decomposition holds for the information rate
[23], so that TPE entropy production due to X dynamics is
equal to the information rate (due to X dynamics) between
Φ and Sþ:

pR
_ΣX
R ¼ _IXðSþ;ΦÞ: ð16Þ

This is our third major result: The entropy production due
to dynamics of coordinate X equals the mutual information
generated by X dynamics, thereby quantifying the
relevance of X transitions to identifying the current
subensemble and highlighting those transitions that are
“correlated” with reactive trajectories and therefore impor-
tant to the reaction mechanism.
In particular, for X� determining the committor and Y�

orthogonal degrees of freedom that are therefore not
relevant to the reaction (qxy ¼ qx), the entropy production
rate due to Y� dynamics is [simplifying Eq. (15b)]

_ΣY�
R ¼

X
x; y; y0

Tx; yy0πðx; y0Þðqþx − qþx Þ ln
qþx ð1 − qþx Þ
qþx ð1 − qþx Þ

ð17aÞ

¼ 0: ð17bÞ

Therefore, _ΣX�
R ¼ _ΣR. This is additional confirmation that

the committor is the reaction coordinate, in that it provides
a thermodynamically complete coarse-grained representa-
tion of the transition-path ensemble, fully accounting for its
entropy production [22].
We illustrate with overdamped dynamics in a double-

well energy landscape [Fig. 2(a); details in Supplemental
Material V [19] ]. To exemplify the typical situation where
the reaction coordinate is not known a priori and coor-
dinates are thus chosen based on convenience or intuition,
fixed system coordinates ðx; yÞ lie at an angle θ to the
correct reaction coordinate, the linear coordinate passing

through both energy minima. For θ ¼ 0°, X is the reaction
coordinate, Y is an orthogonal bath mode [29], and X
dynamics fully capture the TPE entropy production
without Y contribution. Figure 2(b) shows that as the
underlying energy landscape is rotated relative to system
coordinates, the X-coordinate entropy production decreases
and Y-coordinate entropy production increases, with equal
contribution at θ ¼ 45°. The entropy production for each
coordinate is proportional to the squared Euclidean dis-
tance between A and B projected onto each coordinate
_ΣX
RðθÞ ∝ cos2 θ and _ΣY

RðθÞ ∝ sin2 θ.
Discussion.—We have derived the information thermo-

dynamics of a system undergoing reactions between dis-
tinct state-space subsets A and B, making a fundamental
connection between transition-path theory, information
theory, and stochastic thermodynamics. Partitioning a long
ergodic equilibrium trajectory into reactive and nonreactive
subensembles results in entropy production for system
dynamics in the reactive subensembles (physically repre-
senting the dissipation needed to implement the detailed-
balance-breaking transition rates of the TPE), which in turn
identifies transitions that are relevant to the overall reaction
mechanism. This rigorous equality between TPE entropy
production and informativeness of dynamics also holds
for an arbitrary coordinate, revealing parallel stochastic-
thermodynamic and information-theoretic measures of the
relevance of collective variables to the system reaction that
are each maximized by the committor.
This work has implications for the identification of

important collective variables and analysis of reaction
mechanisms. While the committor provides a microscopi-
cally detailed reaction coordinate that maps each system
microstate to a scalar value, it does not immediately
identify physically meaningful collective variables (e.g.,
internal molecular coordinates) that are relevant to the
reaction [4,5,30]. Our results have indicated that relevant
coordinates are identified by entropy production in the
transition-path ensemble; thus, partitioning the entropy
production between multiple relevant collective variables

(a) (b)

FIG. 2. (a) Double-well energy landscape (purple) with fixed x
axis (red solid) and y axis (blue solid), and rotated reaction
coordinate (black dashed). Gray contours: forward committor.
(b) Share of TPE entropy production due to coordinate X (red
dots) and Y (blue dots), as a function of reaction-coordinate angle
θ. Red solid: cos2 θ. Blue solid: sin2 θ.
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for which one has physical intuition can provide a low-
dimensional model that allows increased insight into the
reaction mechanism.
More concretely, this connection we have established

between transition-path theory and stochastic thermody-
namics suggests a novel method for rigorously grounded
inference of reaction coordinates: generate an ensemble of
transition paths using transition-path sampling [6,31] or
related algorithms [32–34]; estimate entropy production
along chosen coordinates [35–37] or identify linear combi-
nations of coordinates producing the most entropy using
dissipative components analysis [38]; use these most
dissipative coordinates to enhance sampling of transition
paths, and through further iteration identify system coor-
dinates producing the most entropy in the transition-path
ensemble and hence of most relevance to the reaction.
Machine-learning approaches to solve for high-dimensional

committor coordinates [39–41] or find low-dimensional
reaction models that retain predictive power [42,43] are active
areas of research [44]. The information-theoretic and thermo-
dynamic perspectives on reactive trajectories described in this
Letter provide guidance to the development of data-intensive
automatedmethods to infer thesemodels and their correspond-
ing reaction mechanisms.
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