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We study quantum annealing in the quantum Ising model coupled to a thermal environment. When the
speed of quantum annealing is sufficiently slow, the system evolves following the instantaneous thermal
equilibrium. This quasistatic and isothermal evolution, however, fails near the end of annealing because the
relaxation time grows infinitely, therefore yielding excess energy from the thermal equilibrium. We develop
a phenomenological theory based on this picture and derive a scaling relation of the excess energy after
annealing. The theoretical results are numerically confirmed using a novel non-Markovian method that we
recently proposed based on a path-integral representation of the reduced density matrix and the infinite time
evolving block decimation. In addition, we discuss crossovers from weak to strong coupling as well as from
the adiabatic to quasistatic regime, and propose experiments on the D-Wave quantum annealer.
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Introduction.—The quantum annealing (QA) device
manufactured by D-Wave Systems has made an immense
impact not only in the physics community but also in the
industrial community with the hope of developing quantum
computers and simulators [1–9]. It is known that this device
carries out QA imperfectly in the sense that the system
embedded in this device is affected by its environment
[1,10,11]. This fact raises issues regarding QA dynamics in
a thermal environment [2,12–18].
QAwas proposed as a quantum mechanical algorithm to

solve combinatorial optimization problems [19–24]. The
problem to be solved is encoded in an Ising Hamiltonian
such that the solution is given by its ground state. The
original algorithm is based on the quantum adiabatic time
evolution from a known trivial ground state of an initial
Hamiltonian to the unknown ground state of the Ising
Hamiltonian [25]. However, a system in a quantum device
cannot be free from environmental effects. Studying QA in
a thermal environment is beneficial not only for QA devices
but also to understand nonequilibrium statistical mechanics
[16,26–37].
A plausible picture of QA in the presence of a thermal

environment is quasistatic and isothermal evolution, in
which a system evolves maintaining a thermal equilibrium
state at the temperature of its environment. This picture
should be valid when the QA duration is much longer than
the relaxation time of the system. Previous studies based on
a system-bath coupling realistic in the D-Wave quantum
annealer [11,15,38,39] have suggested that the relaxation
time increases dramatically as the transverse field is
reduced. Because of this increase, the quasistatic and
isothermal evolution should fail near the end of annealing
and result in a final state with an effective temperature
higher than that of the environment. Even though this

picture has only been studied in small-sized systems, the
scalings of the physical quantities expected in the thermo-
dynamic limit have not yet been studied. In this Letter, we
develop a phenomenological theory and derive a novel
scaling relation of the energy after QA.
To study the QA of a system with an experimentally

realistic system-bath coupling, we employ a novel numeri-
cal non-Markovian method proposed by the present authors
in Ref. [40]. This method makes use of the discrete-time
path integral for a dissipative system [41] and the infinite
time-evolving block decimation (iTEBD) algorithm [42],
which enable the computation of the reduced density
matrix (RDM) in and out of equilibrium of the transla-
tionally invariant quantum Ising chain in the thermody-
namic limit. We verify the theoretical consequences on QA
in a thermal environment using this method.
Model.—We consider the dissipative quantum Ising

chain (DQIC) described by the Hamiltonian HðsÞ ¼
HSðsÞ þHB þHSB, where HSðsÞ represents the system
Hamiltonian given by the quantum Ising chain

HSðsÞ ¼ AðsÞHTF þ BðsÞHI; ð1Þ

withHTF ¼ −
P

N
j¼1 σ̂

x
j andHI ¼ −

P
N−1
j¼1 σ̂zjσ̂

z
jþ1. Here, σ̂

x
j

and σ̂zj denote the Pauli matrices for the site j, N is the
number of sites, and s is a parameter ranging from 0 to 1.
The schedule functions AðsÞ and BðsÞ are assumed to be

AðsÞ ¼ ð1 − sÞα; BðsÞ ¼ s; ð2Þ

where an exponent α > 0 in AðsÞ represents how the
transverse field goes to zero at the end of annealing.
The bath Hamiltonian is represented by the collection of
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harmonic oscillatorsHB ¼ P
N
j¼1

P
k ωkb̂

†
j;kb̂j;k, where b̂j;k

and b̂†j;k are the annihilation and creation operators,
respectively, of the boson for the site j and mode k with
the frequency ωk. We use the unit ℏ ¼ 1 throughout this
Letter. As for the interaction between the system and the
bath, we assume the Caldeira-Leggett model [43,44] for
dissipative superconductor flux qubits given by

HSB ¼
XN
j¼1

σ̂zj
X
k

λkðb̂†j;k þ b̂j;kÞ; ð3Þ

where λk is a coupling constant for the mode k. We assume
the Ohmic spectral density for the bath modes

JðωÞ ¼
X
k

λ2kδðω − ωkÞ ¼
η

2
ωe−ω=ωc ; ð4Þ

where η is the dimensionless coupling constant, and ωc is
the cutoff frequency of the bath spectrum, which is chosen
to be larger than the bath temperature. We leave quantitative
study for other system-bath couplings and a non-Ohmic
bath to future work. When we mention QA, we consider
the time evolution with time t from t ¼ 0 to ta by the
Hamiltonian Hðt=taÞ.
The dynamics of the spin system is specified by the

RDM defined by tracing out the bosonic degrees of
freedom from the density matrix ρðtÞ of the full system

ρSðtÞ≡ TrBρðtÞ ¼ TrB½UðtÞρð0ÞU†ðtÞ�; ð5Þ

where TrBðSÞ stands for the trace with respect to the boson
(spin) degrees of freedom, UðtÞ is the time evolution
operator of the full system, and ρð0Þ is an initial density
matrix. We assume that ρð0Þ is the direct product of the
ground state of HSð0Þ denoted by jψ0ð0Þi and the thermal
equilibrium state of HB at the temperature TB∶ ρð0Þ ¼
jψ0ð0Þihψ0ð0Þj ⊗ e−HB=TB=ZB, where ZB is the partition
function of HB. We refer to TB as the bath temperature. We
choose the Boltzmann constant kB to be the temperature
unit throughout this Letter.
The spin state in the instantaneous thermal equilibrium at

s and temperature T is given by

ρeqS ðs; TÞ≡ TrB½e−HðsÞ=T �=Zðs; TÞ; ð6Þ

where Zðs; TÞ is the partition function of the full system.
We define the Gibbs state of HI as

ρeqI ðTÞ≡ e−HI=T=TrS½e−HI=T �: ð7Þ

Note that ρeqS ðs; TÞ at s ¼ 1 reduces to ρeqI ðTÞ because
HSð1Þ commutes with HSB and TrBe−ðHSþHSBÞ=T is inde-
pendent of σ̂zj, which is shown by introducing new boson

operators b̃j;k ≡ b̂j;k þ λkσ̂
z
j=ωk for all j and k.

Non-Markovian iTEBD.—We focus on a time-dependent
state and outline the numerical method [40] used to
compute Eq. (5). The application to the equilibrium
RDM in Eq. (6) is straightforward.
Let us apply the Trotter decomposition [45,46] with a

step size Δt ¼ t=M and the Trotter number M to UðtÞ in
Eq. (5), and perform the Gaussian integral with respect to
the bosonic degrees of freedom. The resulting discrete-time
path-integral formula of the RDM is given by

hσðMÞjρSðtÞjσðMþ1Þi ¼
X

fσðlÞj ¼�1gl≠M;Mþ1

eiS0þSinfl ; ð8Þ

where σðlÞj is the Ising-spin variable at the site j, and the
time tl is defined as

tl ¼
�
lΔt; ð0 ≤ l ≤ MÞ;
ð2M þ 1 − lÞΔt; ðM þ 1 ≤ l ≤ 2M þ 1Þ; ð9Þ

and jσðlÞi denotes the eigenstate of σzj with the eigenvalue

σðlÞj [43,47]. S0 denotes the action of the isolated spin
system.
The influence action Sinfl induced by coupling to the

bath is given by

Sinfl ¼
XN
j¼1

Xjtl−tmj<τc

l>m

κl;mσ
ðlÞ
j σðmÞ

j ; ð10Þ

where

κl;m ¼ Δt2
Z

∞

0

dωJðωÞ cosh½ω=ð2TBÞ − iωðtl − tmÞ�
sinh½ω=ð2TBÞ�

:

ð11Þ

Note that τc in Eq. (10) is the memory time cutoff
introduced to reduce the computational cost.
The key idea of our method is to represent the part of

expSinfl associated with a site j in terms of a matrix product
state (MPS) as follows:

exp

� Xjtl−tmj<τc

l>m

κl;mσ
ðlÞ
j σðmÞ

j

�

≈
Xχt
fμj;lg

ϕ
ðj;0ÞSð0Þj
μj;0 ϕ

ðj;1ÞSð1Þj
μj;0;μj;1 ϕ

ðj;2ÞSð2Þj
μj;1;μj;2 � � �ϕðj;MÞSðMÞ

j
μj;M−1 ; ð12Þ

where SðlÞj ≡ ðσðlÞj ; σð2Mþ1−lÞ
j Þ denotes the composite vari-

able, and χt is the bond dimension which controls the
precision of the approximation in this MPS representation.
The tensors ϕðj;lÞ are given by recursive application of the
singular value decomposition [40,48]. Using Eq. (12) in
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Eq. (8), we obtain a tensor network representation for
the RDM:

hσðMÞjρSðtÞjσðMþ1Þi

≈
X

fSðlÞj ;μj;lgl≠M

eiS0

YN
j¼1

ϕðj;0ÞSð0Þ
μj;0

�YM−1

l¼1

ϕ
ðj;lÞSðlÞj
μj;l−1;μj;l

�
ϕ
ðj;MÞSðMÞ

j
μj;M−1 : ð13Þ

Having obtained this tensor network representation, the
iTEBD algorithm can be applied to implement the sum with

respect to fSðlÞj ; μj;lgl≠M and compute local quantities
taking N → ∞ and using the translational invariance in
space [42].
Phenomenological theory.—Let us assume a finite bath

temperature TB > 0. In the limiting case of ta → ∞, QA in
this thermal environment leads to the quasistatic and
isothermal process. Accordingly, the final state of the spin
system is described by ρeqS ð1; TBÞ ¼ ρeqI ðTBÞ. When ta is
finite, the spin system approximately maintains thermal
equilibrium as long as the relaxation time of the spin system
is shorter than the annealing timescale. However, in the
case of ½HSð1Þ; HSB� ¼ 0, it is known that the relaxation
time grows infinitely with s → 1. Therefore, the quasistatic
and isothermal evolution must fail before QA ends, and the
spin state is expected to be frozen at a time t� ¼ s�ta
[15,38]. We refer to t� or s� as the freezing time. To develop
a scaling theory for the freezing time, we employ the
quasistatic-freezing approximation as follows. The quasi-
static-freezing approximation assumes that the spin state is
frozen when the changing rate with t of the instantaneous
relaxation time of the spin system exceeds unity. Writing
the instantaneous relaxation time at s ¼ t=ta as τrelðsÞ, the
freezing time is then determined by

_τrelðs�Þ ¼ 1; ð14Þ

where the dot denotes differentiation by t. τrelðsÞ is now
estimated from the transition rate γðsÞ. Using Fermi’s
golden rule, the latter is given, up to an s-independent
factor, as

γl;mðsÞ ∝ ηjhψ lðsÞj
X
i

σ̂zi jψmðsÞij2; ð15Þ

where jψ lðsÞi and jψmðsÞi are the lth and mth eigenstates
of HSðsÞ, respectively. When s is close to 1, jψ lðsÞi is
written within the first order of AðsÞ as jψ lðsÞi ≈ jψ lð1Þiþ
AðsÞPm≠l½hψ lð1ÞjHTFjψmð1Þi=ðEl − EmÞ�jψmð1Þi, where
Em denotes an eigenenergy of BðsÞHI . Using this and
noting that

P
i σ̂

z
i is diagonal with the basis fjψmð1Þig, one

finds that Eq. (15) is proportional to ηAðsÞ2. Therefore, the
scaling of relaxation time is obtained as

τrelðsÞ ≈ γl;mðsÞ−1 ∼ η−1AðsÞ−2 ∼ η−1ð1 − sÞ−2α: ð16Þ

Using this in Eq. (14), the scaling relation of s� is obtained
as follows:

ð1 − s�Þ ∼ ðηtaÞ−1=ð2αþ1Þ: ð17Þ

Now, the quasistatic-freezing approximation implies
that the RDM after the freezing time is approximately
replaced by that of the instantaneous thermal equilibrium
at s ¼ s�, namely, ρSðtÞ ≈ ρeqS ðs�; TBÞ for t > s�ta.
Moreover, ρeqS ðs�; TBÞ can be approximated by the Gibbs
state ρGibbsS ≡ e−HSðs�Þ=TB=TrS½e−HSðs�Þ=TB � for sufficiently
weak η, and the latter is approximated as ρGibbsS ≈
ρeqI (TB=Bðs�Þ)þO(Aðs�Þ) near s� ¼ 1. Therefore,
neglecting the O(Aðs�Þ2) and O(AðsÞAðs�Þ) terms for
α > 1

2
, the energy of the spin system for t > s�ta is

estimated as [49]

hHSðt=taÞit ≈ Bðt=taÞhHIieqI;TB=Bðs�Þ; ð18Þ

where h·it and h·ieqI;T represent the expectation values with
respect to ρSðtÞ and ρeqI ðTÞ, respectively. Therefore, the
energy of the spin system approaches the thermal expect-
ation value of HI at the temperature TB=Bðs�Þ as s → 1.
For general α > 0, expanding ρGibbsS in series of ð1 − s�Þ
and ð1 − s�Þα perturbatively, one obtains hHSð1Þita ≈
hHSð1ÞieqI;TB

þ c1ð1 − s�Þ þ c2ð1 − s�Þ2α [49], where c1
and c2 are coefficients independent of s�. Keeping the
leading term and applying Eq. (17), the excess energy of
the final state is obtained as

Eexc ≡ hHSð1Þita − hHSð1ÞieqI;TB
∼ ðηtaÞ−b; ð19Þ

with

b ¼ minf1; 2αg=ð2αþ 1Þ: ð20Þ

Note that the excess energy decays the fastest when α ¼ 1
2
.

Equations (19) and (20) are valid for DQIC in any
dimension, any lattice, and non-Ohmic spectral densities
as well.
Numerical results.—Figure 1(a) shows the energy

expectation value per site of the time-dependent state
during QA and that of the instantaneous thermal equilib-
rium as functions of the rescaled time s. After the initial
relaxation, the system maintains thermal equilibrium until a
certain time s�, when the quasistatic and isotheral evolution
fails and the energy deviates upward from that of the
instantaneous equilibrium state. This behavior is perfectly
consistent with the quasistatic-freezing picture mentioned
above. To evaluate the freezing time s� and identify the
final energy hHIita, we focus on the Kullback-Leibler (KL)
divergence DKL of the final state and the Boltzmann
distribution of HI as a measure of the distance between
the two. Because this quantity is not accessible for the
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RDMs of the entire spin system when using our method, we
instead consider the RDMs of eight spins given by ρ8 ≡
Tr8̄ρSðtaÞ and ρeq8 ðTÞ≡ Tr8̄ρ

eq
I ðTÞ to define DKLðTÞ≡

Tr8½ρ8( log ρ8 − log ρeq8 ðTÞ)�, where Tr8 and Tr8̄ denote
the trace with respect to the eight adjacent spins and the
other spins, respectively. We show DKLðTÞ in Fig. 1(b).
DKLðTÞ has a sharp minimum at a certain T labeled T�.
This implies that the RDM after QA is approximated by the
Gibbs state of HI with the temperature T�. In addition, as
shown in Fig. 1(a), the curve of hHSðt=taÞit is indistin-
guishable from the line of shHIiI;T� near s ¼ 1. Assuming
T� ¼ T=s�, this result implies Eq. (18) and that s�
determined by T=T� is consistent with the freezing time
when the quasistatic evolution fails [see the vertical line in
Fig. 1(a)]. Figure 1(c) shows the excess energy as a
function of the annealing time ta for η ¼ 0.18 and
TB ¼ 1. It can be seen that the excess energy decays as
a power law for large ta with an exponent denoted by b that
depends on α. Figure 1(d) shows the α dependence of the
exponent b. There is excellent agreement between the
numerical results and the theoretical prediction.
Figure 2 shows the η dependence of Eexc scaled by t1=3a

for TB ¼ 1, α ¼ 1, and various ta. It can be seen that Eexc
is nonmonotonic with respect to η. The decreasing
behavior of Eexc with increasing η in the weak-coupling
regime is consistent with Eq. (19), while its increasing
behavior in the strong-coupling regime (η≳ 0.4) is not
described by the phenomenological theory mentioned
above. This failure of the theory arises from the pertur-
bative argument used for the relaxation time in Eq. (15).
The existence of the optimal strength in the system-bath
coupling to reduce Eexc is first revealed by our numerical
method based on a nonperturbative formulation. Note that
the scaling of Eexc by ta is valid even in the case of strong
coupling.

So far, we have focused on slow QA in a thermal
environment with a finite temperature and have discussed
the consequences of freezing near the end of annealing.
Here, we comment on two situations where the dynamics
is governed by a quantum phase transition (QPT) at zero
temperature, assuming the absence of a thermal phase
transition at finite temperature. The first is the case of
weak coupling and short annealing time. When the
system-bath coupling is sufficiently weak, i.e., η ≪ 1,
QA drives the spin system in the same way as a closed
system as long as ta is not large, as demonstrated by the
proximity of filled and empty circles in Fig. 3. In this
case, the QPT governs the dynamics and gives rise to the

(a) (b) (c) (d)

FIG. 1. (a) Energy expectation values hHSðt=taÞit and hHSðsÞieqs;TB
per spin of the time-dependent state ρSðtÞ and the instantaneous

thermal equilibrium state ρeqS ðs; TBÞ, respectively, as functions of the rescaled time s for ta ¼ 200 and η ¼ 0.18 at TB ¼ 1. We fixed
α ¼ 1. The dashed line and the solid vertical line indicate ð1=NÞhHIita t=ta and s� ≡ TB=T�, respectively, where T� is determined by the
minimization of the Kullback-Leibler (KL) divergence. (b) KL divergence DKLðTÞ between the final state after QA and the Gibbs state
of HI with temperature T. See the main text for a detailed definition. (c) Excess energy Eexc per spin from the thermal expectation value
after QA as a function of ta for various α. Lines indicate the best power-law fits Eexc ¼ at−ba to the data for ta > 100 with the fitting
parameters a and b. (d) Exponent b as a function of α. The numerical results (symbols) are compared to the theoretical prediction shown
by the solid line. The parameters used in the numerical simulations are ωc ¼ 5, τc ¼ 10, Δt ¼ 0.05, and N → ∞. The bond dimensions
are up to 128.

FIG. 2. Excess energy per spin after QA scaled by t−1=3a as a
function of η for TB ¼ 1, α ¼ 1, and various ta ranging from 50 to
1000. With increasing ta, the data collapse into a single non-
monotonic curve, which implies Eexc ∼ t−1=3a for large ta. The
inset shows the data rescaled by ðηtaÞ−1=3. The constancy of
the data with large ta near η ¼ 0 corresponds to Eq. (19). The
parameters in the numerical simulations are the same as those in
Fig. 1.
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Kibble-Zurek scaling (KZS) [50–52] of the residual
energy to the ground state after QA. For larger ta, the
system is thermalized, and the QPT no longer affect
the dynamics as shown by the overlap of squares with
the dashed line in Fig. 3. The crossover from the KZS
regime to the large ta regime is accompanied by a
nonmonotonic change in the residual energy when TB is
sufficiently high [53]. The second is the case of
medium coupling and low temperature, where the
dynamics is governed by a QPT of the dissipative
system at TB ¼ 0. In this case, KZS with a modified
exponent [40] is observed. When the temperature is not
low and/or ta is much larger, however, the spin system
is not influenced by a QPT and the quasistatic-freezing
picture is valid because the timescale of QA is beyond
the characteristic time in the quantum critical region
[53]. A recent experimental study suggests that systems
realized in the D-Wave device should be in a situation
with a medium η and a low TB [36]. Therefore, if one
performs experiments with still longer ta or higher TB,
the scaling of the excess energy given by Eqs. (19) and
(20) should be observed.
Summary.—We studied QA in a thermal environment.

The simulation using the non-Markovian iTEBD not only
confirmed the phenomenological theory for weak system-
bath coupling but revealed a nontrivial behavior of the
excess energy after QA in the regime beyond weak
coupling. The findings presented here will be beneficial
in designing and evaluating QA devices. Other system-bath
couplings, non-Ohmic baths, and other driven DQICs are
open to numerical study with the non-Markovian iTEBD
method.
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