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Multitime system correlation functions are relevant in various areas of physics and science, dealing
with system-bath interaction including spectroscopy and quantum optics, where many of these schemes
include an off-diagonal system bath interaction. Here we extend the enhanced time-evolving matrix
product operator (eTEMPO) algorithm for quantum path integrals using tensor networks [Phys. Rev.
Lett. 123, 240602 (2019) to open quantum systems with off-diagonal coupling beyond a single two level
system. We exemplify the approach on a coupled cavity waveguide system with spatially separated
quantum two-state emitters, though many other applications in material science are possible, including
entangled photon propagation, photosynthesis spectroscopy, and on-chip quantum optics with realistic
dissipation.
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The theory of open quantum systems remains a very active
focus of current research [1–13], since it provides answers to
manyquestions related to quantumcomputing, entanglement
and communication, and also quantum networks. The
theoretical frameworks include tensor network (TN) meth-
ods [12,14–24] and quantum path integrals [2,3,6–8,10–13].
Recently these two approaches were successfully combined
[11–13,25], exploiting their combined advantages in the
TEMPO (time-evolving matrix product operator) algorithm
[11,26] and an enhanced TEMPO (eTEMPO) algorithm
[25]. Applications so far have mainly studied a two level
system (TLS) diagonally coupled to an external bath [10–
13,25–27]. Beside these examples, many important prob-
lems remain to be studied in more detail, ranging from
exciton relaxation in photosynthetic light harvesting systems
[28–31] or nanostructures to exploit photon propagation,
entanglement, superradiance, and feedback [12,22,32–40]—
which require off-diagonal system bath coupling. Mostly
their treatment requires other algorithms, such as hierarchical
equations of motion [31,41,42], and alternative TNs
[12,22,42,43].
Here we extend the eTEMPO method to include off-

diagonal coupling as opposed to extending the TEMPO
algorithm [44]. As input, we require only the generalized
bath correlation function; in contrast to Ref. [45], where
bath degrees of freedom are included and accessible in the
network propagation, we show the effect of retardation for a
two-cavity waveguide system on the first two rungs of
photon transition. We demonstrate how the system tran-
sitions between one single generalized Jaynes-Cummings
model (JCM) to a retardation regime between two JCMs,

including a subradiant state. This manifests in a highly
nontrivial non-Markovian dynamic, whose features cannot
be captured with linearized response functions nor phe-
nomenological JCMs.
Theoretically, a typical open quantum system has system

Hs and bathHb Hamiltonian. Figure 1 shows an example of
an integrated waveguide system, which is representative of
emerging experiments with integrated semiconductor quan-
tum dot systems [46–56]. The bath is harmonic, so
Wick’s theorem holds for factorizing initial conditions
[57]. We consider a linear system-bath interaction Hsb ¼P

ijμ CijμAijBμ, where Cijμ are the system-bath coupling
constants, Aij ¼ jiishjjs (here in particular including i ≠ j),
and Bμ is a linear bath operator; for a harmonic bath,
trðBμρBÞ ¼ 0. The dynamics of the full system-bath density
matrix operator ρ obeys ∂tρ ¼ −ði=ℏÞðHs;− þ Hb;−
þHsb;−Þρ, where the subscripts −;þ; L; R convert a

FIG. 1. (a) Open quantum system coupled to a bath with
excitation transfer through the bath. (b) Example system: pho-
tonic crystal with waveguide and two cavities separated by length
L with a quantum emitter (TLS) in each cavity.
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Hilbert space operator D to a Liouville space operator [28]
with DLρ ¼ Dρ and DRρ ¼ ρD, and also D− ¼
DL −DR. Notably, the method can also include Lindblad
operators for system dynamics together withHs;−. The time
dynamics can be solved via the time ordered exponential
Uðt; t0Þ ¼ T← exp ð−ði=ℏÞ R t

t0
H−ðτÞdτÞ in Liouville space,

ρðtÞ ¼ Uðt; t0Þρðt0Þ. Our observables of interest are multi-
time correlation functions hT←A1ðt1Þ � � �ANðtNÞi with
Liouville operators A1; ...; AN .
Next, we convert the correlation function into a quantum

path integral formulation [2,3,6–8,10–13]; this allows us to
develop an extended algorithm for systems with off-
diagonal system-bath coupling, based on the eTEMPO
algorithm [25]—which is a very efficient algorithm for
many quantum path integral TN implementations [11–13].
To proceed, we divide time t into intervals ΔT such that
tn ¼ nΔT with integer n. The times in the multitime
correlation function should obey ti ¼ ΔT ni with integer
ni, and we obtain hT←A1ðt1Þ…ANðtNÞi ¼ tr½OMUM−1…
U1O1U0O0ρðt0Þ�, with On ¼ Ak if tk ¼ ΔT n for any k;
otherwise On ¼ Id. Ui is defined as Ui ¼ Uðtiþ1; tiÞ. For
most path integral implementations, the Suzuki-Trotter
formula is applied to separate system and bath for the
influence functional. We use perturbation theory and the
Feynman disentanglement theorem. Perturbation theory to
a limited order fails for processes involving many inter-
actions over all times; thus, we apply perturbation theory to
the individual intervals ΔT, so to each Ui, keeping often
only one system-bath process per ΔT. For sufficient
small ΔT, compared to system-bath coupling, a nonper-
turbative result is obtained with numerical accuracy. In

general, Ui ¼ U0ðtiþ1; tiþ1
2
ÞUðiÞ

I U0ðtiþ1
2
; tiÞ, with UðiÞ

I ¼
T← exp ð−ði=ℏÞ R tiþ1

ti U0ðtiþ1
2
; τÞHsb;−U0ðτ; tiþ1

2
ÞdτÞ:

Restricting the system-bath coupling Hsb;− to first order,
perΔT [and second-order for nonvanishing bath correlation
function, as explained after Eq. (3)], yields

Ui ¼ U0ðtiþ1; tiþ1
2
ÞUsb;iU0ðtiþ1

2
; tiÞ

Usb;i ¼
�
Id −

i
ℏ

Z
tiþ1

ti

dτU0ðtiþ1
2
; τÞHsb;−U0ðτ; tiþ1

2
Þ

−
1

ℏ2

Z
tiþ1

ti

dτ1

Z
τ1

ti

dτ2U0ðtiþ1
2
; τ1Þ

Hsb;−U0ðτ1; τ2ÞHsb;−U0ðτ2; tiþ1
2
Þ
�
; ð1Þ

with the time evolution operator U0ð·; ·Þ containing solely
Hs;− andHb;−. The symmetric expansionwithU0ð·; ·Þ on the
left and right allows one to exclude (include) certain parts of
the Hamiltonian (e.g., like external optical excitation) in the
inner brackets. Including second-order contributions from
the same ΔT (cf. cumulant expansions [58]) prevents an

artificial minimum delay between system-bath interactions
and reducing ΔT dependency, and thus recovers simple

perturbation theory for weak coupling. We define U
1
2

0;iþ1
2

¼
U0ðtiþ1

2
; tiÞ and rewrite Usb;i ¼ Uð0Þ

sb;i þ Uð1Þ
sb;i þUð2Þ

sb;i, with

the kth order system-bath contribution UðkÞ
sb;i; Hsb;− contains

system A and bath operators B, so we apply

ðABÞ− ¼ AþB− þ A−Bþ. Finally, U
ðkÞ
sb;i can be written as

UðkÞ
sb;i ¼

P
l A

ðkÞ
l BðkÞ

l withLiouville systemoperatorsAðkÞ
l and

bath operators BðkÞ
l (each with a maximum k linear bath

operators).
With an initial factorizing density matrix ρðt0Þ¼ρs⊗ρb,

then

hT←A1ðt1Þ � � �ANðtNÞi

¼
X2

kM−1;…;k0¼0

X
lM−1;…;l0

trbðUb;M−1
2
BðkM−1Þ
lM−1

…Ub;1
2
Bðk0Þ
l0

ρBÞ

· trsðOMUs;M−1
2
AðkM−1Þ
lM−1

…O1Us;1
2
Aðk0Þ
l0

U
1
2

s;0O0ρSÞ; ð2Þ

holds with the bath Ub;i and system Us;i time propagation.
For initial thermal correlated ρðt0Þ, a Liouville operator Ac
can be included in O0 [59], while keeping a harmonic ρB
in Eq. (2).
To convert the expressions to a quantum path

integral, we insert Liouville space identities: Id ¼P
sL;sRðjsLihsLjÞLðjsRihsRjÞR, using an Hs eigenbasis.

Using the notation A ¼ P
s;p A

pLsL
pRsRðjpLihsLjÞLðjsRihpRjÞR

for expanding any operator A, we obtain hT←A1ðt1Þ � � �
ANðtNÞi ¼

P
fkgfsgfpg Iðs0; p1; s1;…; pM; sMÞtrs½ÕsMpM

…

Õs1p1
ρ̃s0p0

�, with the convention fxg ¼ x1;…; xM for
indices and with Õsnpn

¼ ðOnUs;n−1=2Þsnpn
and ρ̃s0p0

¼
ðU1

2

s;0O0ρSÞs0p0
. Without subscriptsL orR, an index includes

left and right Liouville space. We replace the index l and the

operators AðkÞ
l with indices s and p, and an according

redefinition of operator matrix elements B
ðpjsjÞ
kj

including the

free bath propagation (and indicating the interval with index
j) in the influence functional I, so that Iðs0; p1; k1;…;

pM; sM; kMÞ ¼ trBðBðpMsM−1Þ
kM−1

…Bðp2s1Þ
k1

Bðp1s0Þ
k0

ρbÞ.
Wick’s theorem holds for factorization, since the har-

monic bath is initially in thermal equilibrium (no photons).
Thus, I factorizes into expectation values of two linear bath
operators, with each linear bath operator from a different
interval ΔT or two from the same interval ΔT. We arrive at
an iterative expression for I:
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Iðs0; p1; k1Þ ¼ Es0p1k1 ;

Iðs0; p1; k1;…; sM; pMþ1; kMþ1Þ ¼ EsM;pMþ1;kMþ1
Iðs0; p1; k1;…; sM−1; pM; kMÞ

þ δkMþ1;1

XM
m¼1

δkm;1M
pmþ1sm
sM;pMþ1;kMþ1

Iðs0; p1; k1;…; sm−1; pm;−1;…; sM−1; pM; kMÞ; ð3Þ

whereEs;p;k describes the current time intervalwith zero (δsp),

two (BðpsÞ
2 ) or one system-bath interactions, and k ¼ −1 is

added to link to previous times: Es;p;k ¼ ½δspδk;0þ
δk;2trbðBðpsÞ

2 ρBÞ þ δk1;−1�. Here Mpmþ1sm
sM;pMþ1;kMþ1

describes a
process, with one interaction in the interval m (e.g., photon
emission) and one in the intervalM þ 1 (e.g., photon absorp-

tion):Mpmþ1sm
sM;pMþ1;kMþ1

¼ δkMþ1;1trbðBðsM;pMþ1Þ
1 Bðsm;pmþ1Þ

1 ρbÞ, and
depends only on the time differenceM −m for time indepen-
dent bath Hamiltonians.
Note that Mpmþ1sm

sM;pMþ1;kMþ1
contains a generalized bath

correlation function, directly connected to a generalized

spectral density for off-diagonal coupling [28], which
fully determines the system-bath interaction. The tensor
M describes a boson going into the bath at m and back to
the system at M þ 1. We discuss differences to the
quantum path integrals with diagonal coupling—the
standard influence functional [2,3,6–8,10–13,25]. For
the common case, the I depends only on one index s
per ΔT, where for the off-diagonal case it depends on
initial s and final p index and the k the number of system-
bath interactions per ΔT. We note, hitherto, most numeri-
cally exact treatments with TN focused only on diagonal
coupling.

We reformulate Eq. (3) for easier conversion to a TN:

Iðs0; p1; k1;…; sM; pMþ1; kMþ1Þ

¼
X

fk0gflgfαpgfαsg

YM
m¼1

Ẽ
αpMαsM l
sMpMþ1kMþ1

M̃
k0mαpm−1αsm−1 lm−1
pmþ1smkmαpmαsm lm

ðnÞIðs0; p1; k01;…; sM−1; pM; k0MÞδαp1 1δαs0 1δl11; ð4Þ

with modified tensors M̃ and n ¼ M þ 1 −m:

M̃
k0α0pα0sl0

pskαpαsl
ðnÞ ¼ δk;1δk0;−1δα0p;1δα0s;1δlm;1Gpslαp−1αs−1ðnÞ þ δk;k0δαpα0pδαsα0sδll0 ; ð5Þ

where GðnÞ is the double integrated system-bath correlation function [Eq. (1)] between two ΔT intervals, which are nΔT
apart. The first interaction acts on the left (right) side in Liouville space for l ¼ 1 (l ¼ 2) respectively, changing the left or
right state from αs − 1 to αp − 1. α0p=s ¼ 1 encodes no further interaction in subsequentΔT. In Eq. (5) the modified tensor Ẽ
appears as

Ẽ
αp;αsl
s;p;k ¼ ½δk;0δspþδk;2Gpsþδk;−1þδk;1ðδl;1δαp;pLþ1δαs;sLþ1þδl;2δαp;pRþ1δαs;sRþ1Þ�; ð6Þ

where the C tensor contains the system-bath correlation within the first interval ΔT.

Equation (4) is now converted to a TN, where we depict a
tensor, e.g., Tijk, as a rectangle and each index i, j, and k as
a line [cf. Fig. 2(a)], where connected indices between
tensors indicate a summation [15]. The TN depicted in
Fig. 2(b), built up from tensors Ẽ and M̃, can be contracted
by interpreting the first row as a matrix product state (MPS)
and the subsequent rows as a matrix product operator
(MPO), and applying MPOs to the MPS subsequently [15].
The TN is the TEMPO [11] implementation for the off-
diagonal case.

Because of the increased tensor rank in the off-diagonal
case, the TEMPO algorithm is highly ineffective especially
beyond a single TLS. Here we construct a TN that reduces
the index dimension and yields the original tensors after
contraction. Therefore, we design a product of 6 (and 7)
low rank and low dimensional tensors that yield M̃ð·Þ (and
Ẽ). These are also decomposed into a MPS [60] and the
resulting MPSs are connected via δ tensors to obtain the TN
of MPOs in Fig. 2(c). Further details are given in the
Supplemental Material [61].
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Following the idea fromRef. [25], that the indices on Ẽ can
be moved to the other edge of the network from Fig. 2(b)
(rotating the TN by ninety degrees), we obtain the decom-
posed TN as in Fig. 3. Then the TN (Fig. 3), including the
temporal propagation of the system from Eq. (4), is con-
tracted to obtain the expectation values. For evaluation, the
MPOs are applied row by row [Figs. 4(a)–4(c), Eq. (3) using
exactapply from itensor [65] ], thus implementing the
eTEMPO algorithm [25] variant for the off-diagonal case
in itensor (version 2.1.0 patched) [65]. Tensors in the MPS

connected to previous times are traced out, achieving a
massive reduction of computational time (cf. Fig. 4). Then a
row of blocks in the network are added to the currentMPS to
extend the covered time, if required.
Critically, our framework is capable of including both

diagonal and off-diagonal coupling and is thus applicable
to a multitude of problems, including exciton-phonon
dynamics in (coupled) nanostructures [8,66–70], photo-
synthetic pigment-protein complex [29,30,71], and
quantum optics systems including plasmonics [12,32–
36,72,73]. To demonstrate the power of our approach,
we consider a quantum network example, with on-chip
photonic propagation, fully consistent with a rigorous
Maxwell solution theory of a photonic crystal with a
waveguide and two integrated cavities [74] as depicted
in Fig. 1(b) (system parameters in Ref. [61]). This scheme
is also timely with recent experiments [75].
We assume a TLS with Hs ¼

P
li ϵil jiilhijl, in each

cavity, where ϵil is the energy of level i in system l. The
photonic crystal medium can be quantized using the
Green’s function Gðr; r0;ωÞ of the Helmholtz equation
[61,74,76]. The electric field operator is Eðr;ωÞ ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=πϵ0Þ
p R

d3r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵIðr0;ωÞ

p
Gðr; r0;ωÞ · bðr0;ωÞ, where

bðr;ωÞ are boson operators that form the bath for the path
integral approach: HB¼ℏ

R
d3r

R∞
0 dωωb†ðr;ωÞ ·bðr;ωÞ.

A dipole coupling dðiÞ
ij for the i emitter at position ri to the

bath constitutes the system-bath interaction Hsb ¼P
nij jiinhjjndðnÞ

ij ·
R∞
0 dωEðrn;ωÞ þ H:a:. The correlation

function Cnm
ijklðτÞ¼ð1=ℏπϵ0Þ

R
dωe−iωτdðnÞ

ij ·Im½Gðrn;rm;ωÞ�·
d�ðmÞ
kl characterizes the system-bath coupling and dynamics

and therefore is also present in the decomposed tensors G

[61] via GnmðĩÞ
ijkl ¼ −

R tĩþ1
tĩ dτ1

R
τ
tĩ
dτ1eiðϵi−ϵjÞτ2þiðϵk−ϵlÞτ1×

Cnm
ijklðτ2 − τ1Þ and Gnmðĩ j̃Þ

ijkl ¼ −
R tĩþ1
tĩ dτ1

R tj̃þ1

tj̃ dτ1×

eiðϵi−ϵjÞτ2þiðϵk−ϵlÞτ1 Cnm
ijklðτ2 − τ1Þ.

For our example system shown in Fig. 1(b), the
TLSs are chosen resonant with the cavity modes. We
excite the TLSs by a few-fs pulse described by

FIG. 3. TN for hT←A1ðt1Þ…ANðtNÞi. On the right edge of the
TN the MPS decomposed system propagators Us;m−1=2
[cf. Eq. (2)] are connected to the indices s and p. The majority
of the network is constructed from the decomposed M̃ and Ẽ
tensors. An initial MPS is at the bottom.

FIG. 4. (a) Application of next MPO to the current MPS
(initially a dummy MPS) (b) repeated until all tensors of ΔT
are contracted, then (c) removal of the current interval, and
extension for future intervals. (a) Repeated, until finished.

FIG. 2. (a) Tensors Ẽ and M̃ depicted as rectangle and indices.
(b) TN for the influence functional from Eq. (4). (c) Decom-
position of the Ẽ and M̃ into seven matrix product operators
(indices are connected with delta tensors).
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Hext ¼
P

l d · EðtÞeiωltj2ilh1jl þ H:a:. The pulse does not
excite the photons directly. A Fourier transform of the TLS
polarization is shown in Fig. 5(a). Reference [77] the low
intensity plot (linear spectrum) shows modified Rabi
splitting between peaks 1 and 2 (cf. Ref. [74]) and the
upper state [Eq. (2)] shows a lifetime broadening due to a
transfer process to a lower state (e.g., state 1). A longer
delay (increasing L, with the same phase) between the TLS
affects the upper state, caused by an intercavity transfer of
photons. So the long intercavity delay turns the upper state
to a subradiant state with reduced broadening. Thus, the
two cavities do not act as a single effective JCM model
anymore; this is also true for the upper state in the higher
rungs of the JCM ladder, which we study below.
For nonlinear excitation, shown also in Fig. 5(a) (0.45π,

half excited), we observe additional (negative) peaks 3 and 4.
A comparison to the energies in the single and double
quantum function, in Fig. 5(b), indicates that these match
well with transitions between the first and second rung of the
JCM ladder. The single and double quantum function give
the coherences of a system between ground state and single
or double excitation states (respectively) [78–81] and allows
for a direct inspection of their energies (see the Supplemental
Material [61] for more details on our quantum correlation
functions). Other (positive) contributions between the first
and second rung are overlapping with resonances 1 and 2,
which slightly affect their line shape. The negative peaks 3
and 4 appear only in our nonlinear solution, showing
complex interference effects beyond weak excitation.

Although the origin of such line shapes are hard to identify,
they may be related to an excitation transfer process [61].
The time dynamics of densities in Fig. 5(d) shows the typical
Rabi oscillations. Furthermore correlations between the two
TLS densities [Fig. 5(d)] allow access to complex entangle-
ment properties.
We highlight that for many example systems, the bath

correlation time is longer than the simulation time—a
notoriously difficult test for the numerical complexity
without augmenting the density matrix [8], yielding sim-
ulation times of days or weeks depending on the bath
correlation time and excitation. Overall the example dem-
onstrates the potential for eTEMPO algorithms where off-
diagonal coupling is important to include.
In summary, we have provided a generalized version of

the eTEMPO algorithm [25] to include off-diagonal sys-
tem-bath coupling, opening the route for numerically exact
treatment of off-diagonal system-bath coupling in exciton
migration (e.g., coupled nanostructures, photosynthesis) or
quantum light propagation in plasmonics and photonic
networks. In particular, we have shown how delay and
round trip coherence alter the JCM-like behavior.
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