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The ability to control the chirality of physical devices is of great scientific and technological importance,
from investigations of topologically protected edge states in condensed matter systems to wavefront
engineering, isolation, and unidirectional communication. When dealing with large networks of oscillators,
the control over the chirality of the bulk states becomes significantly more complicated and requires
complex apparatus for generating asymmetric coupling or artificial gauge fields. Here we present a new
approach for a precise control over the chirality of the bulk state of a triangular array of hundreds of
symmetrically coupled lasers, by introducing a weak non-Hermitian complex potential, requiring only local
on-site control of loss and frequency. In the unperturbed network, lasing supermodes with opposite
chirality (staggered vortex and staggered antivortex) are equally probable. We show that by tuning the
complex potential to an exceptional point, a nearly pure chiral lasing supermode is achieved. While our
approach is applicable to any oscillators network, we demonstrate how the inherent nonlinearity of the
lasers effectively pulls the network to the exceptional point, making the chirality extremely resilient against
noise and imperfections.
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Introduction.—Chirality is a fundamental property of
nature, and the ability to control it is of great scientific and
technological importance. In physical systems chiral modes
are typically induced by a magnetic field or by its analogs.
For example, in the quantum Hall effect, chiral edge
currents are generated by magnetic fields [1], in ultracold
atoms chiral edge states are induced by artificial gauge
fields [2–4], and the rotation direction of hurricanes,
depends on the their location on Earth, as a result of
Coriolis force. The underlying mechanism in these exam-
ples is the breaking of the system’s time reversal symmetry,
which results in an energy splitting of two, otherwise
degenerate, oppositely propagating modes.
In optics, the Faraday effect, induced by a magnetic field,

is widely used for breaking time reversal symmetry and
inducing directionality [5]. However, the required arrange-
ment is bulky and miniaturizing it to chip-scale size is
difficult. Nevertheless, thanks to gain saturation, unidirec-
tional operation of miniature ring lasers can be achieved by
asymmetric coupling between the two counterpropagating
modes [6–9]. When dealing with a large network of optical
oscillators, the control over the supermode’s chirality is done
by an asymmetric coupling between the individual oscil-
lators. For instance, synthetic magnetic fields allowed the
observation of chiral edge states in coupled waveguides
[10–13] and the generation of topologically protected chiral
edge states in laser arrays [14–16]. While the principle of
operation of these methods is intuitive and well studied,
asymmetric coupling is usually interferometrically sensitive,
requires complicated fabrication facilities, and its implemen-
tation in different physical systems is not straightforward.

In this Letter we present an approach for controlling the
chirality of a pure bulk state of an arbitrarily large network
of nonlinear oscillators, the staggered flux state [17,18], by
resorting to a non-Hermitian on-site complex potential [19–
22]. Herein, complex potential refers to the combination of
frequency detuning and relative loss between the lasers.
The complex potential generates an asymmetric energy
flow between supermodes with opposite chirality, making
one more favorable than the other. Remarkably, the
asymmetric energy flow results only from the on-site
potential while the coupling between the oscillators
remains strictly symmetric, and the “magnetic” flux
through each triangular plaquette is exactly zero, in the
spirit of the celebrated Haldane model [23,24].
To demonstrate the approach, we consider a triangular

lattice of hundreds of symmetrically coupled lasers, in which
chiral symmetry is manifested by a two-fold loss-degeneracy
of its fundamental lasing supermode. The loss-degeneracy
implies that the two supermodes are equally probable upon
lasing, and therefore the system’s chirality is zero on average.
We show that by tuning the complex potential to an excep-
tional point (EP), it is possible to reach a lasing supermode
with a nearly pure chirality. We also show that the lasers’
nonlinearity pulls the system towards the EP, making the
chiral states extremely robust to noises and disorder.
The presented approach is scalable and can be applied to

any number of lasers, to a variety of network geometries,
and to other coupled laser systems, such as diode-laser
and vertical-cavity-surface-emitting-laser (VCSEL) arrays.
Requiring only local on-site control of loss and frequency,
the method can be readily applied to force chirality on any
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physical systems of coupled oscillators, such as microwave
resonators [25], cold atom lattices [26], mechanical systems
[27], and even human networks [28].
Experimental arrangement and results.—The approach

can be heuristically explained. When two coupled oscil-
lators have a small frequency detuning, they oscillate with a
phase difference that is dictated by the detuning [29].
Hence, the frequency detuning induces directionality on the
oscillators’ phase gradient. For a closed ring of oscillators,
one might attempt to achieve chirality by introducing a
frequency detuning between two oscillators to enforce a
directional phase gradient. However, in a ring, the two
oscillators are coupled both directly and indirectly (through
the other oscillators in the ring), and for uniform oscillation
amplitudes, the detuning actually induces opposite phase
gradients on these two links. Therefore the directionality is
canceled out and chiral symmetry is maintained [30]. We
thus propose to recover the directionality and break the
chiral symmetry by weakening the indirect link, by
introducing loss to one of the other oscillators [inset of
Fig. 1(b)]. We show that an introduction of frequency
detuning and loss, a complex potential, indeed induces
chirality to an oscillators network (Ref. [36]), and that pure
chirality is achieved when the complex potential is tuned to
an EP.
To demonstrate control over the chirality of an oscillators

network, we use a digital degenerate-cavity laser (DDCL)
[37] to set up a triangular lattice of 253 negatively coupled
lasers [30]. The DDCL, schematically shown in Fig. 1(a), is

comprised of a 4f telescope, an Nd:YAG gain medium, a
coupling element, and a spatial light modulator (SLM). The
detailed experimental arrangement that includes an 8f
telescope is presented in Fig. S1 in the Supplemental
Material [30]. The gain medium is pumped by a 200 μs
pulsed xenon flash lamp with a 1 Hz repetition rate. The
SLM serves as a digital mirror, enabling the generation of
laser networks with arbitrary geometry, and accurately
controlling the loss and frequency detuning of each of
the lasers separately [as in Fig. 1(b)]. The diameter of each
laser’s mirror is set to 130 μm, and the distance between
their centers is set to 300 μm. Negative and symmetric
coupling between all nearest-neighbor lasers is achieved by
placing a lens with a focal length fFF ¼ 5 m in the far-field
(FF) plane, midway between lenses L1 and L2 that form the
telescope. This insertion results in light scattered from each
laser to its neighbors, so as to couple them. Such an action
is mathematically equivalent to the well-known Talbot
coupling [38]. An external imaging configuration images
the near-field (NF) plane and its Fourier transform, the FF
plane. In each laser pulse of the DDCL, many uncoupled
longitudinal modes lase simultaneously [39]. Hence, effec-
tively, the detected NF and FF distributions in each lasing
pulse are ensemble averages over many independent
realizations of the experiment.
Typical FF and NF intensity distributions of the triangu-

lar lattice of identical lasers are presented in Figs. 1(c) and
1(d). The two degenerate lasing modes are the staggered
vortex (SV) and the staggered antivortex (SAV) modes,

FIG. 1. Experimental arrangement and lasing modes. (a) Schematic arrangement of the digital degenerate cavity laser. (b) The laser
network geometry and complex potential that were applied by the SLM. In each triangle, loss of Δα was applied to one laser, and a
detuning of �ðΔΩ=2Þ was applied to the other two lasers. The dashed purple line and curve represent the direct and indirect links
between the frequency-detuned lasers. (c) Detected far-field image of the triangular laser lattice without a complex potential (ΔΩ ¼ 0,
Δα ¼ 0). The spots marked by V (AV) correspond to staggered vortex (antivortex) lasing supermode. The presence of both the Vand AV
spots is due to the coexistence of multiple uncoupled longitudinal modes, which act as independent realizations of the same experiment.
(d) A detected near-field image of the lasers indicating local uniformity of their intensity. (e) Illustration of the two loss-degenerate lasing
supermodes of a triangular lattice of negatively coupled lasers, the staggered vortex and staggered antivortex. The circles include the
lasers’ phases in the different lattice sites, the edges connect nearest neighbors. The orange and green filling colors indicate the triangles’
vorticity.
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illustrated in Fig. 1(e). The chirality of a lasing mode is
encoded in the FF intensity distribution, provided that the
lasers intensities are locally uniform [Fig. 1(d)] [30]. The
FF of the SV (SAV) mode contains the three spots marked
by V (AV) in Fig. 1(c). We quantify the chirality c of the
lasing modes by

c ¼ IV − IAV
IV þ IAV

; ð1Þ

where IV and IAV are the average intensities of the V and
AV spots.
The loss and frequency detuning of the lasers in the array

were modulated according to Fig. 1(b) to form the complex
potential. For each triangle in the lattice we added a loss of
Δα to one of the lasers, and applied a (frequency) detuning
of � 1

2
ΔΩ to the other two lasers. The detuning ΔΩ is the

phase that the light accumulates upon reflection from the
SLM in every round trip (in radians) [40]. The loss and
detuning were applied through the complex reflectivity of
the SLM for each laser R ¼ e−ΔαþiΔΩ. The values of the
detuning ΔΩ and loss Δα were varied and the chirality,
calculated from the measured FF, is presented in Fig. 2(a).
As evident, applying detuning alone (Δα ¼ 0) or loss alone
(ΔΩ ¼ 0) is not sufficient to induce chirality, in agreement
with our heuristic explanation above. We also find that
maximal chirality is obtained when the detuning and loss
are about equal (marked by the black dashed lines). Three
loss cross sections from the two-dimensional diagram are
presented in Fig. 2(b). When loss of Δα ¼ 0.15 is applied,
small detuning is already enough to break the system’s
chiral symmetry. Increasing the detuning results in the
increase in chirality up to the point Δα ≈ ΔΩ, where nearly
pure chirality is obtained. Increasing the detuning further
leads to a decrease in the system’s chirality. If instead of
loss, gain of Δα ¼ −0.15 is applied, we observe a similar
behavior but with the opposite chirality for the same
detuning. When no loss is applied (Δα ¼ 0) and only
the detuning is varied, there is no significant change in the
system’s chirality [41]. Selected FF intensity distributions
are presented as insets in Fig. 2(b). The sharp Bragg peaks
in the FF measurements indicate on a nearly perfect phase
locking of the lasers throughout the array.
Theory and discussion.—To elucidate our experimental

results, we begin by analyzing the linear part of the system.
As the lasers’ evolution is given by the nonlinear laser rate
equations (LRE) [30,42], the linear dynamics can be found
by setting the gain to zero. To simplify the analysis further,
we note that the complex potential breaks the lattice into
three sublattices, each by itself has translation symmetry.
Hence, by neglecting finite-size corrections, the lattice can
be described by an analogous system made of one unit
cell of three sites with a modified coupling coefficient
κ ¼ 3κ̃, where κ̃ is the coupling strength between two
neighboring lasers in the actual lattice. In this linear regime,

the evolution of the electric field in the cavities of one
unit cell is governed by a Schrödinger-like equation,
ðdE=dtÞ ¼ −iHE, where

H ¼

0
B@

− 1
2
ΔΩ −iκ −iκ

−iκ −iΔα −iκ
−iκ −iκ þ 1

2
ΔΩ

1
CA ð2Þ

is the Bloch Hamiltonian, and E is a column vector of the
electric field on the three sites [30]. The imaginary coupling
coefficients correspond to a dissipative (non energy-
conserving) coupling [43,44]. Without ΔΩ and Δα, the
system’s eigenmodes are the vortex, antivortex, and uni-
form phase mode. The introduction of ΔΩ or Δα breaks the
system’s invariance for rotation in ð2π=3Þ, and therefore the
vortex and antivortex modes are no longer eigenmodes of

FIG. 2. Experimentally measured chirality, induced by complex
potential. (a) The measured chirality c of the lasing mode as a
function of the applied frequency detuning ΔΩ and relative loss
Δα. Maximal chirality is obtained along the lines ΔΩ ¼ Δα,
marked by the black dashed lines. (b) Cross sections of the
chirality for varying ΔΩ at fixedΔα values [marked by the dotted
colored lines in (a)]. The measurement points are connected by
lines. Insets show typical far-field images at selected points.
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the system. The loss and frequency associated with each of
the system’s new eigenmodes are given by the imaginary
and real parts of the corresponding eigenvalues fλg, and are
presented in Figs. 3(a) and 3(b) for fixed Δα, and varying
ΔΩ. The transition of the eigenvalues from having a
degenerate imaginary part to having a degenerate real part
is attributed to the breaking of anti-parity-time symmetry
[30,45]. An EP [46], a non-Hermitian degeneracy at which
the two eigenmodes become identical, emerges when the
detuning is adjusted to specific values: ΔΩEP ≈�Δα [30].
At the EP, the two eigenmodes collapse into a nearly pure
vortex or antivortex mode [30]. The eigenmodes chirality,
calculated from their projection on the vortex and anti-
vortex modes and according to Eq. (1), is displayed in
Fig. 3(c) by the solid green line. When Δα is applied, and
ΔΩ is raised from zero, chirality emerges and increases up
to the EP, where the eigenmodes become a pure vortex or a
pure antivortex. Increasing ΔΩ further results in a decrease
in the chirality.
Juxtaposing the linear-analysis results and the experimen-

tal results reveals a very good correspondence. The linear-
analysis explains the emergence of chirality, and its behavior
as a functionof the applied complex potential.Also, evidence
of the EPs at ΔΩEP ≈�Δα, where the eigenmodes have
nearly pure chirality are present in Fig. 2(a) at the predicted
locations. Nevertheless, the experimental chirality peaks in
Fig. 2(b) are significantly broadened relative to the linear
analysis [Fig. 3(c)]. This is alsomanifested in the broad chiral
lines alongΔΩ ¼ �Δα in Fig. 2(a), where small changes in
the detuning or loss have a small effect on the chirality of the
lasing mode. We show below that this striking difference
emerges from the system’s nonlinearity.

A more complete description of the system is obtained
by numerically solving the full nonlinear LRE. Simulations
results reveal that the lasing mode at steady state is either a
vortex or an antivortex mode, rather than a superposition of
the two, and that the outcome of varying the value of ΔΩ
for a fixedΔα is a change in the probability to get one mode
over the other [30]. The red curve in Fig. 3(c) shows the
chirality obtained from numerical simulations of the LRE
of three lasers on a triangle with the experimental param-
eters, averaged over 1000 realizations (each starts with a
different random electric field distribution) [30]. The
simulations reproduce the broad pure-chirality peaks
around the EPs, in agreement with the experimental results.

FIG. 3. Theoretical analysis. (a) and (b) The real and imaginary parts of the eigenvalues of the linear system’s minimal loss
eigenmodes as a function of ΔΩ and fixedΔα. Exceptional points, marked by the vertical purple dashed lines, emerge at ΔΩEP ≈ 1.1Δα
(for Δα ¼ 0.08κ), where a square-root splitting is apparent. The blue and orange curves correspond to the two eigenvalues ofH with the
lowest imaginary part. (c) Chirality of a three-laser system. The solid green curve presents the chirality of the minimal-loss eigenmode of
the linear system. The red circles display the chirality of the laser network, obtained from simulation of the nonlinear laser rate
equations. (d) and (e) The calculated averaged chirality of a triangular lattice with a noisy complex potential. The chirality of the
minimal-loss cold-cavity linear mode (green circles) and the chirality of the nonlinear laser network (red circles) are displayed as a
function of the standard deviation of the normal distribution from which the complex potential is drawn. In (d) Δα is held constant while
in (e)ΔΩ is constant. The mean values are displayed, and correspond to an exceptional point. The data points in (c)–(e) are connected by
a solid line.

FIG. 4. Simulation results for the effective loss Δαeff (red
circles) as a function of the applied loss Δα for a fixed ΔΩ ¼
0.085jκj and unsaturated gain of g0 ¼ 1.2g0;th, where g0;th is the
unsaturated gain at the lasing threshold. The circles’ diameter
represents the prevalence of Δαeff among the 1000 realizations.
The dashed line shows an ensemble average hΔαeffi. It is evident
that Δαeff approaches the values of ΔαEP (horizontal lines). The
lasers’ nonlinearity pulls the system to the EPs. Similar results
obtained for other values of ΔΩ and g0 [30].
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To further investigate the chiralilty’s robustness to
imperfections of the complex potential, we performed
simulations of a triangular lattice comprised of 72 lasers
with periodic boundary conditions and noisy complex
potential. In the simulations, the mean value of the complex
potential was set to an EP, and either ΔΩ [Fig. 3(d)] or Δα
[Fig. 3(e)] of each of the lasers was randomly drawn from a
normal distribution with a varying standard deviation. The
mode’s chirality was calculated similarly to Fig. 3(c) for
both the linear and nonlinear regimes. As is evident, the
chiral modes in the nonlinear system are significantly more
robust to noises in the complex potential.
The chirality’s resilience to deviations of the complex

potential from its value at the EP is a consequence of the
lasers’ nonlinearity. In the steady state, the effective loss
between the lasers is given by Δαeff ¼ Δα − ΔG, where
ΔG is the difference in the nonlinear gain between the lossy
laser and the other lasers in the triangle [30]. Simulation
results reveal that nonlinearity modifies Δαeff exactly to
bring the system to an EP, for the applied detuning (ΔαEP),
as demonstrated in Fig. 4. The nonlinearity thus provides
extreme robustness of the chirality against noises and
perturbations, making this approach appealing for practical
applications and large scale fabrication.
Conclusions.—In this work we showed experimentally

that the introduction of an on-site complex potential to a
triangular lattice of hundreds of symmetrically coupled
lasers, drives the system to a well-controlled pure chiral
supermode of staggered vortex or staggered antivortex. We
also showed that the chirality is maximized when the
complex potential is tuned to the EPs of the linear system.
At the EPs the eigenmodes of the linear system merge into
pure chiral states. Moreover, the gain nonlinearity directs
the effective relative loss between the lasers towards its
value at the EP, making the system’s chirality remarkably
resilient to loss and detuning noises. The presented
approach is scalable and can be applied to any number
of lasers, to various network geometries, and to other
physical systems. It may lead to new insights in synchro-
nization, topology of complex band structures [47,48],
novel non-Hermitian symmetries, and spin simulators [49].
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