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We show that, in addition to the Unruh effect, there exist two new phenomena that are due to acceleration
in the quantum theory of the light-matter interaction. The first is the phenomenon of acceleration-induced
transparency which arises since acceleration impacts not only the counter-rotating terms in the light-matter
interaction (the cause of the conventional Unruh effect) but also the rotating wave terms. The second new
phenomenon is that the Unruh effect can be stimulated, a phenomenon that arises since not only rotating-
wave terms can be stimulated (as in conventional stimulated emission) but also counter-rotating terms. The
new phenomena are potentially strong enough to be experimentally observable.
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Introduction.—Gravity and acceleration are locally
equivalent; so says the equivalence principle. This means
that acceleration-induced quantum effects are closely
related to gravity-induced quantum effects. For example,
the well-known acceleration-induced Unruh effect [1–3] is
closely related to the Hawking effect [4–6].
In the present Letter, we demonstrate that there are two

new basic quantum effects that are caused by acceleration.
These effects bridge the conceptual gap between phenom-
ena well known in atomic physics—such as a stimulated
emission and absorption—and the Unruh effect, while
simultaneously generalizing all of them. Schematically,
the interaction between two levels of an atom and
a quantized field is described by an interaction
Hamiltonian of the form Ĥint ∝ ðσ̂− þ σ̂þÞðâþ â†Þ where
σ̂þ ¼ jeihgj raises and σ̂− ¼ σ̂†þ lowers the atomic level,
while â† and â create and annihilate field quanta respec-
tively. When the atom moves inertially in free space, and its
coupling with the field is weak, energy conservation leads
to the condition that the energy of an absorbed or emitted
photon matches the atomic energy gap. As a consequence,
in the interaction Hamiltonian the so-called counter-
rotating terms σ̂−âþ σ̂þâ† can be neglected, resulting in
the so-called Jaynes-Cummings model [7] of the form,
ĤJC ∝ σ̂−â† þ σ̂þâ, which is paradigmatic in atomic phys-
ics and quantum optics [8,9]. If the atom is accelerated by
an external agent (which of course has to invest energy),
counter-rotating terms of the form σ̂þâ† can contribute and
can lead to the excitation of the accelerated atom while
emitting a photon. This is the crux of the Unruh effect.
In the present Letter, we show, first, that acceleration not

only activates the counter-rotating terms (the conventional

Unruh effect [1,2]) but that acceleration can impact the
physics of the rotating-wave terms as well. We show that
this effect can be made so strong that it leads to the new
phenomenon of acceleration-induced transparency. Second,
we consider stimulated emission and absorption. Here, we
show that, in the presence of acceleration, it is possible to
stimulate not only the rotating wave terms (conventional
stimulation [10]) but also the counter-rotating terms. This
leads to a new phenomenon that we dub the stimulated Unruh
effect. Through the stimulated Unruh effect, the probability
for acceleration-induced counter-rotating transitions can be
vastly enhanced.This is remarkable because, in the absenceof
acceleration, the effects of counter-rotating wave terms are
conventionally only accessible in the ultrastrong coupling
regime [11].
Simplified model of the light-matter interaction.—The

basic principles underlying the two new phenomena arise
as part of all quantum field theories and can be demon-
strated already in the simplified model of the light-matter
interaction outlined above: a two-level atom with states
fjgi; jeig separated in the atom’s rest frame by an energy
gap Ω (in units of ℏ ¼ 1) interacting with a massless
scalar quantum field φ̂ðx; tÞ. The free Hamiltonian reads
as

Ĥ0 ¼ Ωσ̂z þ
1

2
∶ð∂μφ̂Þ2∶ ¼ Ωσ̂z þ

Z
ðdkÞωkâ

†
kâk

Here, σ̂z ¼ 1
2
ðjeihej − jgihgjÞ, ωk ¼ ck is the frequency of

the field mode whose annihilation or creation operators are
âk, â†k, and ðdkÞ ¼ d3k=½ð2πÞ3=2ω1=2

k � is the Lorentz
invariant integration measure and ∶ � � � ∶ represents normal
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order. Note that this simplified model captures the electro-
magnetic interaction between an atom and a single polari-
zation of the electromagnetic field when the radiation of
interest is of a wavelength long compared with the size of the
atom [9,12–14]. (Qualitative aspects of the electromagnetic
interaction arising from polarization are neglected in
this model).
The interaction between the two systems, modeled after

the minimal coupling between a charge distribution and the
electromagnetic field, is taken to be [2]

Ĥint ¼ Gμ̂ φ̂ ½xðτÞ; tðτÞ�; ð1Þ

where G is the coupling strength, μ̂ ¼ jeihgj þ jgihej, and
φ̂½xðτÞ; tðτÞ� is the field along the detector’s trajectory
xμðτÞ ¼ ðtðτÞ;xðτÞÞ in terms of its proper time τ. (This
form of the interaction here matches the dipole approxi-
mated form of the electromagnetic interaction which is
valid as long as the wavelength of all radiation involved is
longer than the typical size of the atom [14]—this is true in
all that follows.)
We are, in general, interested in the probability that an

initial state jψ ii produces a state jψfi via the interaction.
Moving to the interaction picture, the interactionHamiltonian
becomes time dependent, ĤintðτÞ ¼ Gμ̂ðτÞφ̂½xðτÞ; tðτÞ�,
where

μðτÞ ¼ eiΩτσ̂þ þ H:c:

φ̂ðx; tÞ ¼
Z

ðdkÞðe−iωktþik·xâk þ H:c:Þ:

Restricting attention to the weak-coupling regime, the tran-
sition amplitude for the process jψ ii → jψfi is (up to a
phase),

Ai→f ¼
Z

hψfjĤintðτÞjψ iidτ ¼
Z

ðdkÞAi→fðkÞ;

where

Ai→fðkÞ ¼ G
Z

dτhψfjðeiΩτσ̂þ þ H:c:Þ

× ðe−iωktþik·xâk þ H:c:Þjψ ii; ð2Þ

is the amplitude for the transition jψ ii → jψfimediated by a
field quantum of momentum k in proper time τ. Defining the
integrals

I�ðΩ;kÞ ¼
Z

dτ eiΩτ�ikμxμðτÞ; ð3Þ

the transition amplitude can be expressed as

Ai→fðkÞ ¼ G½I−ðΩ;kÞhψfjσ̂þâkjψ ii þ H:c:�
þG½IþðΩ;kÞhψfjσ̂þâ†kjψ ii þ H:c:�:

We note that in general both the rotating-wave terms (first
line) and counter-rotating-wave terms (second line) contrib-
ute, weighted by I− and Iþ respectively.
Conventional inertial absorption and emission.—

Oft-studied phenomena [10] such as spontaneous emission
(i.e., je; 0i → jg; 1ki), stimulated emission [i.e., je; nki →
jg; ðnþ 1Þki], and absorption [i.e., jg; ðnþ 1Þki →
je; nki] all arise from the rotating-wave terms when the
atom is in inertial motion (see Fig. 1). [Here, jnki ¼
ðn!Þ−1=2â†kj0i is the Fock state of the field.] Indeed in
inertial motion—given by the trajectory xμðτÞ ¼ ðγτ; γvτÞ
where γ ¼ ð1 − jvj2Þ−1=2—the emission and absorption
amplitudes,

Aje;ni→jg;nþ1iðkÞ ¼ G
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
· δ½Ω − γðωk − k · vÞ�

Ajg;nþ1i→je;niðkÞ ¼ G
ffiffiffi
n

p
· δ½Ω − γðωk − k · vÞ� ð4Þ

are nonzero only on resonance, i.e., when the excitation
energy of the atom matches the (relativistically Doppler-
shifted) energy of the photon. This implies that in inertial
motion, emission and absorption processes are strictly due
to the rotating-wave terms in the interaction. Here, the δ
distribution arises from the integral I−, which quantifies the
contribution of the rotating-wave terms.
For later reference we note that the probabilities for these

processes satisfy the Einstein relations,

jAje;ni→jg;nþ1ij2 ¼ ðnþ 1Þ × jAje;0i→jg;1ij2
jAjg;nþ1i→je;nij2 ¼ n × jAje;0i→jg;1ij2; ð5Þ

FIG. 1. Comparison between conventional first order processes
in light-matter interaction that happens in inertial motion (gray,
green, blue), and those that happen only in the presence of non-
inertial motion (black, orange, red). Shown here are the pairs of
states fjgi ⊗ jnki; jei ⊗ jnkig as the field photon number nk
increases, and the transitions between them due to the various
processes together with the terms that describe the processes.
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i.e., stimulated emission and absorption are respectively
(nþ 1) and n times more probable than spontaneous
emission.
The conventional (i.e., spontaneous) Unruh effect.—The

conventional Unruh effect [1,6] is the possibility that an
atom in its ground state which is accelerating through the
field vacuum transitions to an excited state while emitting a
photon. Let us denote the atom’s trajectory by xμðτÞ. The
amplitude for the conventional (i.e., spontaneous) Unruh
process then reads as

Ajg;0i→je;1iðkÞ ¼ G
Z

dτ eiΩτþikμxμðτÞ ¼ GIþðΩ;kÞ:

For inertial motion, we have that, Iþ ¼ δ½Ωþ ck − k · v�,
which does not contribute since c > jvj always; so in inertial
motion, the above amplitude is identically zero. For non-
inertial trajectories, for example, for uniform acceleration of
magnitude a, e.g., xμðτÞ ¼ ½sinhðaτÞ=a; 0; 0; coshðaτÞ=a�,
we have that [2,6,15]

jAjg;0i→je;1ij2 ¼ G2
2π=ðΩaÞ

eΩ=ðkBTUÞ − 1
; TU ¼ a

2πkB
; ð6Þ

which is a Bose-Einstein distribution at temperature TU. An
atom uniformly accelerated through the vacuum perceives
an apparently thermal field.
We note a few key aspects. First, Iþ and therefore the

probability of the spontaneous Unruh process can be
nonzero because acceleration leads to a time-dependent
and therefore chirped Doppler shift between the atom and
the field modes. Mathematically, this phenomenon traces to
the peculiar Fourier phenomenon of “concomitant”
frequencies [16]: the Fourier transform of chirped positive
frequencies necessarily also contains negative frequencies.
Here, Iþ [see Eq. (3)] represents negative concomitant
frequencies arising in the Fourier transform of the trajec-
tory-dependent function eik

μxμðτÞ which represents a chirp of
positive frequencies. As a consequence, even for realisti-
cally accelerated trajectories that do not involve eternal
uniform acceleration, the Unruh process has a nonzero
probability.
Second, the energy required to simultaneously excite the

atom and create a photon comes from the accelerating
agent; indeed in a more complete treatment, the excitation
of the detector is accompanied by a recoil of the atom’s
center-of-mass degree of freedom [17–19]. Third, despite
it being a robust quantum feature of accelerated bodies
[20], the Unruh temperature (restoring constants) TU ¼
ℏa=ð2πkBcÞ ≈ 10 mKða=1018 m=s2Þ is, so far, too small to
make its experimental study feasible. (It is worth noting
that the term “Unruh effect” is sometimes reserved for the
class of trajectories which possess horizons or for which the
accelerated system is driven to a thermal or near-thermal
state. We will consider general trajectories and will call any

excitation of quantum systems due to noninertial motion an
Unruh effect.)
Stimulated Unruh effect.—Given the central importance

of the conventional Unruh process, we now examine
whether acceleration induces further phenomena in the
light-matter interaction and to what extent those may be
amenable to experimental observation. Deriving inspiration
from the stimulated processes that happen in inertial motion
[Eq. (4)], we now consider the possibility of stimulating an
Unruh-like process. That is, instead of the initial state jg; 0i,
we consider the state jg; nki. The interaction leads to the
following transformation:

jg; nki → G½Iþ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p je; ðnþ 1Þki þ I−
ffiffiffi
n

p je; ðn − 1Þki�:
ð7Þ

Here, the transformed state is unnormalized for brevity. The
first term (∝ Iþ) corresponds to a stimulated Unruh
process, which arises from counter-rotating terms in the
interaction, is absent in inertial motion, and does not
depend on the stimulating photon being resonant with
the atom. The second term (∝ I−) corresponds to conven-
tional (resonant) absorption, which is due to rotating wave
terms in the interaction, and therefore relies on atom-
photon resonance. The stimulated Unruh process stands in
the same relation to the conventional (spontaneous) Unruh
process in an accelerating frame, as conventional stimu-
lated emission is to spontaneous emission in an inertial
frame. Importantly, the probability of the stimulated Unruh
processes is enhanced by a factor of nþ 1 compared with
the spontaneous version

jAjg;ni→je;nþ1ij2 ¼ ðnþ 1Þ × jAjg;0i→je;1ij2; ð8Þ

where jAjg;0i→je;1ij2 is the probability for the spontaneous
Unruh process [which is, e.g., for the special case of
uniform acceleration, given in Eq. (6)]. This equation elicits
the well-known Einstein relation [Eq. (5)] for inertial
stimulated emission.
The scaling with photon number immediately suggests

that the experimental obstruction to observing the sponta-
neous Unruh effect can be alleviated by stimulation.
However two aspects need to be addressed. First, in order
to take advantage of the n-scaling, realistic experiments
would need to use a large mean photon number, whereas
large-n Fock states are challenging to prepare. Second, the
state transformation in Eq. (7) produces an undesirable
resonant absorption component in addition to the stimu-
lated Unruh process. (Processes of higher order in the
interaction Hamiltonian are suppressed, since they roughly
scale as some power of the first order process, which, even
with stimulation, has a less-than-unity probability in the
weak-coupling regime.) In the following we show that both
issues can be solved.
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First we show that stimulation with the desired scaling
can also be achieved with readily available states rather
than with Fock states. To see this, we represent general field
states in terms of the (over-)complete coherent state basis
[21,22] jαki ¼ eαâ

†
k−α

�âk j0i. The transition amplitude for
the stimulated Unruh process where the field is in these
basis states is (up to a phase factor),

Ajg;αi→je;βiðkÞ ¼
Ge−jα−βj2=2

ð2πÞ3=2 ffiffiffiffiffiffi
ωk

p ðαI− þ β�IþÞ:

Here jαi, jβi are nonorthogonal field coherent states:
jhαβij2 ¼ e−jα−βj2). The probability that the atom gets
excited, irrespective of the final field state in mode k, is

PαðkÞ ¼
Z

d2β
π

jAjg;αi→jg;βiðkÞj2

¼ G2

ð2πÞ2ωk
ðjαj2jIþ þ I−j2 þ jIþj2Þ: ð9Þ

In the special case α ¼ 0, i.e., if the initial field state is the
vacuum, this expression reduces to P0ðkÞ ∝ jGIþj2, i.e.,
we recover the conventional, i.e., spontaneous Unruh effect
for a general trajectory.
For an arbitrary initial field state ρ̂i ¼

R
PðαÞd2α=π,

where PðαÞ is a generalized probability distribution in the
coherent state basis [21,22], the probability that the atom is
excited on an arbitrary trajectory can be shown to be
PðkÞ ¼ R

PðαÞPαðkÞd2α=π, or explicitly,

PðkÞ ¼ G2

ð2πÞ3ωk
ðhâ†kâkijIþ þ I−j2 þ jIþj2Þ: ð10Þ

Here we have used the relation between integrals of P and
expectations of normal-ordered operators [22]. The impli-
cation is that in general—irrespective of the input field state
—the probability of the stimulated Unruh process grows
with the average photon number.
We note that the atom can get excited through three

different processes [see Eq. (10)]: (1) the spontaneous
Unruh effect (last term ∝ jIþj2)—which is challenging to
observe, (2) the new phenomenon of the stimulated
Unruh effect (∝ hâ†âijIþj2)—whose probability can be
dramatically larger, or (3) the conventional (resonant)
absorption (∝ hâ†âijI−j2). In fact, as Eq. (10) shows,
stimulation amplifies resonant and nonresonant terms
equally: the actual probability is ∝ hâ†âijIþ þ I−j2.
Excitation due to the new stimulated Unruh effect appears,
therefore, to be “contaminated” by conventional resonant
absorption. We will now continue our search for new
acceleration-induced effects in the light-matter interaction.
We will thereby find a new effect that happens to provide
means to suppress I− relative to Iþ, i.e., that will allow one

to remove the contamination of the stimulated Unruh effect
by conventional absorption.
Indeed, on one hand, it is clear that it is possible to

make I− smaller than Iþ simply by choosing the stimu-
lating field mode to be far detuned from the atomic
resonance. This is because absorption is a resonant
process whereas the Unruh process is nonresonant. In
this case, assuming a finite linewidth γ for the resonant
transition, and a detuning Δ from resonance, the proba-
bility of exciting the resonance decreases as [9]
½1þ ðΔ=γÞ2�−1 ≈ ðγ=ΔÞ−2. On the other hand, we now
demonstrate a new effect that allows not only for an
attenuation of conventional absorption but, in principle,
for its complete suppression, i.e., I− ¼ 0.
Acceleration-induced transparency.—As we now show,

acceleration impacts not only the counter-rotating but also
the rotating-wave terms; in fact, by choosing suitably
accelerated trajectories, one can, in principle, completely
suppress resonant absorption, I− ¼ 0, while also keeping
Iþ ≠ 0. This phenomenon may be called “acceleration-
induced transparency.” (Acceleration-induced transparency
is unrelated to the so-called electromagnetically induced
transparency [23] which is caused by destructive interfer-
ence of excitation amplitudes in a three-level atom induced
by resonant excitation with coherent field states).
To demonstrate acceleration-induced transparency, let us

assume that an atomic gap Ω and the stimulating mode’s
wave vector k are chosen. Our task is to show that there are
trajectories for which I− ¼ 0 and Iþ ≠ 0. To this end, we
consider for any trajectory xμðτÞ its “phase function”
αðτÞ ¼ kμxμðτÞ, so that I�ðΩ;kÞ ¼

R
dτ eiΩτ�iαðτÞ. The

phase functions of physical trajectories obey:
_αðτÞ > 0 ∀ τ. This is because _αðτÞ is scalar and, in an
instantaneous rest frame, it reads as _αðτÞ ¼ kμ _xμðτÞ ¼
k0 _x0ðτÞ > 0 since k0; _x0 > 0. Conversely, and more impor-
tantly, to any phase function αðτÞ obeying _αðτÞ > 0 ∀ τ,
there exists a corresponding physical trajectory. We prove
this by construction: choose a coordinate system such that
k ¼ ðk0; 0; 0; k0Þ; then the trajectory

_xμðτÞ ¼
�
1

2

�
k0
_αðτÞ þ

_αðτÞ
k0

�
; 0; 0;

1

2

�
k0
_αðτÞ −

_αðτÞ
k0

��
ð11Þ

is timelike with τ its proper time (i.e., _xμ _xμ ¼ 1). It is
straightforward to verify that this trajectory obeys
kμ _xμðτÞ ¼ _αðτÞ, i.e., that it produces the desired phase
function αðτÞ up to an irrelevant integration constant that
translates the trajectory. Notice that the trajectory is inertial
if _α is constant, and accelerating otherwise.
Our remaining task is to find examples of phase

functions αðτÞ obeying _αðτÞ > 0 ∀ τ for which I− ¼ 0
and Iþ ≠ 0. Through Eq. (11) we then obtain correspond-
ing trajectories for which the Unruh effect can be arbitrarily
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strongly stimulated while conventional absorption van-
ishes. Consider a phase function satisfying

_αðτÞ ≔ k0

8>>>>><
>>>>>:

s0 τ < 0

s0 þ s1−s0
T1

τ τ ∈ ½0; T1Þ
s1 þ s2−s1

T2−T1
ðτ − T1Þ τ ∈ ½T1; T2Þ

s2 τ ≥ T2;

ð12Þ

where the constants fsi; Tig can be chosen arbitrarily
except that we require _α > 0 and 0 < T1 < T2.
The corresponding trajectories are relatively simple.

They are initially inertial, then possess two phases of
acceleration, followed by inertial motion. In the nonrela-
tivistic regime, the trajectories further simplify, since then
the accelerations are uniform.
The question is whether among these trajectories there

are ones which exhibit acceleration-induced transparency
for some arbitrarily fixed gap Ω. To produce explicit
examples, we held the parameters s0, s2, and T1 fixed
and varied the parameters s1 and T2. In the ðs1; T2Þ plane,
we plotted the curves for which Re½I−� ¼ 0 or Im½I−� ¼ 0.
These curves intersect (see Supplemental Material [24]),
which shows that there are parameter values for which the
corresponding trajectory possesses acceleration-induced
transparency at the chosen gap Ω. This means that it is
possible, in principle, to make the stimulated Unruh
process dominate arbitrarily strongly over all conventional,
i.e., resonant, processes, at this order in perturbation theory
and for a given gap Ω.
In Fig. 2, we plot jI�ðΩÞj for such a trajectory. The plot

shows that the resonant effects described by I− tend to
dominate over the nonresonant effects described by Iþ,
except for the arbitrarily strong acceleration-induced sup-
pression of I− at the chosen value ofΩ. Notice that this plot
in effect also shows the k0 dependence. Mathematically, we
have here shown a phenomenon of Fourier theory (related
to that of concomitant frequencies [16]): by suitably
chirping positive frequencies, a single positive frequency
can always be suppressed in the overall Fourier spectrum.
Physically, this means that the amplitude for resonant
absorption, being a coherent superposition of contributions
from all parts of the trajectory, can be made to vanish for
suitable trajectories. The corresponding trajectories can be
experimentally realized, for example, by accelerating a
charged Unruh-DeWitt detector using external electromag-
netic fields (see also the Supplemental Material [24]). In
addition to the effects considered above where the accel-
erating atom starts in the ground state, it is possible to
consider the case where the atom starts in the excited state.
Variants of the stimulated Unruh effect can then be
considered with this initial condition for the atom’s internal
state. Such processes are time-reversed versions of the ones

already studied above. The amplitudes for such processes
are obtained by replacing I� → I�∓ in the equations above.
Conclusions.—We have shown that, beyond the Unruh

effect, there are two new phenomena by which acceleration
impacts the light-matter interaction: On one hand, we
showed that acceleration not only activates the counter-
rotating terms (the Unruh effect) but it also impacts the
rotating-wave terms, leading to the new phenomenon of
acceleration-induced transparency. On the other hand, we
also showed that, in the presence of acceleration, stimu-
lation can be used not only on the rotating-wave terms
(conventional stimulation) but also on the counter-rotating
terms, leading to the new phenomenon of a stimulated
Unruh-like effect.
Further, we showed that by using suitably designed

trajectories and by simultaneously stimulating, these two
new phenomena can be combined to highly enhance accel-
eration-induced counter-rotating transitions while simulta-
neously arbitrarily strongly suppressing the conventional
rotating-wave effects. While the Unruh effect is as yet
unobservable, the new findings could bring acceleration-
induced activations of the counter-rotating terms into the
range of observability, even in the weak-coupling regime.
For example, the stimulated Unruh effect can be detected

via the recoil of the emitted or absorbed photon on an
accelerated low-mass two-level system [19]. A single

FIG. 2. The two curves display jI�ðΩÞj for an example of a
trajectory of the form given in Eq. (12). The red curve is the
resonant contribution jI−j which shows the strength of conven-
tional absorption while the green curve is the nonresonant
contribution jIþj which shows the strength of Unruh-type
counter-rotating effects. Importantly, we see that the resonant
contribution dips below that of the latter (here jI−=Iþj ≈ 10−3), so
that at that frequency, the probability of resonant absorption is
∼10−6 of the stimulated Unruh process. The frequency at which
the resonant contribution dips is designed to be the detector gap
frequency. The two peaks in I− correspond to absorption at the
Doppler shifted frequencies ω0 ¼ k0s0, ω2 ¼ k0s2 that are due to
the initial and final inertial velocities of the trajectory.
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electron, whose spin state degeneracy is lifted by a
magnetic field, and whose motion can be continuously
monitored, is such a transducer. Although accelerations of
∼1020 m=s2 are possible for a trapped electron, correspond-
ing to an Unruh temperature TU ∼ 1 K, the challenge so far
has been the exceedingly small rate of the spontaneous
Unruh process [25] Γ0 ≈ 10−18=s. We have shown that, in a
scalar model of the electromagnetic interaction, the rate
scales to [Eq. (8)] Γn ¼ ðnþ 1ÞΓ0 when stimulated with n
photons on average. Thus, the accelerated motion of a
single electron trapped in a Penning trap (a combination of
a static axial magnetic field and a quadrupolar electric field)
[26], which is colocated inside a microwave cavity loaded
with photons, can serve as a potential experimental plat-
form for detecting the stimulated Unruh effect. Indeed,
state-of-the-art microwave cavities resonating at ω ∼ 2π ×
1 GHz with modest quality factors [27,28] of Q ∼ 105 can
store on average n ¼ ð4Q=ωÞðP=ℏωÞ ≈ 1015ðP=1 mWÞ
photons. That is, the stimulated counter-rotating processes
that we have described here can be made 15 orders of
magnitude more likely than the spontaneous Unruh proc-
ess, and therefore resolvable in a few hours of observation.
Finally, similar to how the equivalence principle relates

the Unruh effect to the Hawking effect, the equivalence
principle now suggests the existence of the gravity-induced
analogs of the two new phenomena that we found here,
such as, possibly, phenomena of gravity-induced trans-
parency and the stimulation of Hawking radiation. Work in
this direction is in progress.
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