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We analytically compute the full counting statistics of charge transfer in a classical automaton of
interacting charged particles. Deriving a closed-form expression for the moment generating function with
respect to a stationary equilibrium state, we employ asymptotic analysis to infer the structure of charge
current fluctuations for a continuous range of timescales. The solution exhibits several unorthodox features.
Most prominently, on the timescale of typical fluctuations the probability distribution of the integrated
charge current in a stationary ensemble without bias is distinctly non-Gaussian despite diffusive behavior of
dynamical charge susceptibility. While inducing a charge imbalance is enough to recover Gaussian
fluctuations, we find that higher cumulants grow indefinitely in time with different exponents, implying
singular scaled cumulants. We associate this phenomenon with the lack of a regularity condition on
moment generating functions and the onset of a dynamical critical point. In effect, the scaled cumulant
generating function does not, irrespectively of charge bias, represent a faithful generating function of the
scaled cumulants, yet the associated Legendre dual yields the correct large-deviation rate function. Our
findings hint at novel types of dynamical universality classes in deterministic many-body systems.
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Introduction.—The central limit theorem (CLT) is one of
the bedrock accomplishments of probability theory. In the
standard formulation, the CLT asserts that sums of random,
independent, identically distributed variables converge
towards the normal distribution when the sample size
becomes large. Validity of the CLT however transcends
uncorrelated processes, as it applies for macroscopic
fluctuating observables in a wide array of dynamical
processes in nature, including classical or quantum deter-
ministic dynamical systems which typically exhibit highly
nontrivial temporal correlations. It appears as though the
CLT only ceases to hold away from equilibrium, i.e., upon
breaking reversibility at the microscopic level.
Another hallmark result of statistical analysis is the large

deviation principle (LDP) [1–3], stipulating that atypically
large (rare) fluctuations are exponentially unlikely. In this
regard, the main object of interest is a dynamical partition
sum, the moment generating function (MGF) of the process
also known as the full counting statistics (FCS). The rate
function describing large deviations can be inferred from
the logarithm of MGF. In spite of many important cases
where MGF can be computed explicitly [4–14], there are
virtually no explicit results available when it comes to
genuinely interacting many-particle systems governed by
deterministic and reversible microscopic evolution laws,
whether in or out of equilibrium.
A recent numerical study [15] has found robust signature

of anomalous dynamical fluctuations in the integrable

Landau-Lifshitz ferromagnet, hinting that lack of ergodic-
ity can play a pivotal role and may lead to inapplicability of
the CLT. The precise microscopic mechanism leading to
such an unconventional behavior has not been identified
however. In this Letter, we report major progress on this
question. We compute the exact FCS for a simple model of
interacting charged degrees of freedom governed by a
reversible deterministic equation of motion in a stationary
equilibrium state. By deducing the late-time behavior of
cumulants in a closed analytic form, we encounter two
novel regimes of dynamical behavior characterized by
divergent scaled cumulants of transferred charge.
Current fluctuations on typical and large scale.—We

consider an infinitely extended deterministic dynamical
many-body system with charge conservation. The time-
integrated current density, JðtÞ ¼ R

t
0 dτjðτÞ, where jðτÞ is

the charge-current density (at the origin) propagated by
time τ, can be viewed as a dynamical fluctuating observ-
able, measuring the net transferred charge between two
halves of the system in the time interval t for each particular
initial configuration. Obtaining the FCS of JðtÞ amounts to
computing the MGF [3,16]

GðλjtÞ≡ heλJðtÞi≡
Z

dJPðJjtÞeλJ; ð1Þ

corresponding to a Laplace transformation of the normal-
ized (time-dependent) current distribution PðJjtÞ of JðtÞ,
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computed with respect to a stationary equilibrium measure.
The formal variable λ ∈ C is commonly known as fugacity
(or counting field). Owing to detailed balance we have the
symmetry PðJjtÞ ¼ Pð−JjtÞ, implying GðλjtÞ ¼ Gð−λjtÞ.
The associated cumulant generating function (CGF),
logGðλjtÞ ¼ P∞

n¼0 cnðtÞλn=n!, encodes an entire hierarchy
of connected n-point dynamical correlation functions of
time-integrated current densities

cnðtÞ ¼
Z

t

0

Yn
k¼1

dτkhjðτnÞjðτn−1Þ � � � jðτ1Þic: ð2Þ

Assuming that, for asymptotically large times, the MGF
grows as GðλjtÞ ≍ exp ½tαFðλÞ�, we introduce the scaled
CGF

FðλjtÞ≡ t−α logGðλjtÞ; FðλÞ≡ lim
t→∞

FðλjtÞ; ð3Þ

which may be viewed as a “dynamical free energy” of the
process. We stress that exponent α is intrinsic to the system.
In nonequilibrium processes, such as current-carrying
steady-states arising in boundary-driven systems, or in
stochastic systems with an intrinsic asymmetric drift,
one finds ballistic scaling with α ¼ 1. For ergodic diffusive
systems in equilibrium, such as the simple symmetric
exclusion processes [6], one instead has α ¼ 1=2.
In this study, we focus exclusively on equilibrium states

where, by detailed balance, odd moments vanish,
h½JðtÞ�2n−1i ¼ 0, while variance h½JðtÞ�2ic ∼ t1=z sets the
scale of typical fluctuations JðtÞ ∼ t1=2z governed by the
dynamical exponent z ≥ 1. Probabilities of atypically large
fluctuations on a timescale tζ, in the range 1=2z < ζ ≤ 1,
can be quantified in terms of the rescaled current
J ðtÞ ¼ t−ζJðtÞ. Assuming that the probabilities of meas-
uring atypical values of the current J are exponentially
suppressed, we anticipate that

P½J ðtÞ ¼ j� ≍ exp ½−tvðζÞIζðjÞ�; ð4Þ

where IζðjÞ, with j≡ limt→∞ t−ζJðtÞ, is the LD rate
function, and vðζÞ the associated “speed” that depends,
in general, on the adjustable scale parameter ζ. In the
context of LD theory, one is typically interested in the
largest deviations corresponding to a ballistic scaling
exponent ζ ¼ 1, with the associated speed vðζÞ ¼ ζ.
Fluctuations within the range of scales 1=2z < ζ < 1 are
commonly referred to as “moderate deviations.” Scaled
CGF FðλÞ is not just a formal object: for λ ∈ R it represents
a convex function that takes a distinguished role in LD
theory. Provided FðλÞ is everywhere differentiable on its
domain, the Gärtner-Ellis theorem [3] states that its
Legendre transform, IðjÞ ¼ maxλ½λj − FðλÞ� provides the
rate function IðjÞ≡ Iζ¼1ðjÞ, quantifying probabilities of
exponentially rare events.

Now we touch a delicate but pivotal point. In the
literature devoted to applications of LD theory, it is
commonly understood that FðλÞ provides the generating
series for the scaled cumulants sn ¼ limt→∞ t−αcnðtÞ when
expanded around λ ¼ 0, sn ¼ ðd=dλÞnFðλÞjλ¼0. At the
technical level, however, faithfulness of FðλÞ hinges on
interchangeabilty of the limit t → ∞ and the series expan-
sion of FðλjtÞ. Indeed, there is no reason to a priori assume
(i) that the sequence of analytic function FðλjtÞ converges
necessarily to an analytic limiting function FðλÞ nor
(ii) that, assuming FðλÞ is analytic, its expansion coeffi-
cients yield scaled cumulants sn. As we argue next, not only
are both of these scenarios viable, but they lead to certain
profound physical consequences.
Evading the central limit theorem.—Before considering

our model, we explain how robustness of the CLT is in fact
deeply rooted in analytic properties of GðλjtÞ. Whenever
there exists a disc DðrÞ of radius r > 0 centered at λ ¼ 0,
such that FðλjtÞ are uniformly bounded on DðrÞ for all
times t, and FðλÞ exists, then—proven in a theorem by Bryc
[17] assuming α ¼ 1 (see also Ref. [18])—the central limit
theorem holds as a consequence of finite scaled cumulants
sn (ensured by Vitali’s convergence theorem). To put it
simply, an irregular (i.e., nongeneric) behavior can only
be achieved when Bryc’s analyticity conditions are not
fulfilled.
With this in mind, we now imagine a system of

interacting ballistically propagating quasiparticles, where
it is expected (e.g., based on generalized hydrodynamics
[13,19]) that MGF, cf. Eq. (1), grows asymptotically with
dynamical exponent α ¼ 1. If the model admits a Z2 parity
symmetry (e.g. charge conjugation) under which the charge
current flips sign then, by analogy with quantum spin
chains [20–22], the charge Drude weight (in a parity-
invariant equilibrium state) identically vanishes, and charge
transport is governed by a subballsitic dynamical exponent
z > 1. Recalling that c2ðtÞ ∼ t1=z, in this scenario scaled
cumulants sn cannot correspond to coefficients of FðλÞ (in
fact, sn need not even exist). Interestingly, however, as we
are about to demonstrate next, even ballsitic charge trans-
port (i.e., α ¼ z ¼ 1) does not by itself guarantee faithful-
ness of FðλÞ. To substantiate our claims, we explicitly
compute the FCS for the charge-current fluctuations in a
classical deterministic cellular automaton of hard-core
interacting charged particles introduced and studied
earlier in Refs. [23–25]. We first give a closed-from
solution for the FCS and subsequently discuss its most
salient features.
Cellular automaton with solvable FCS.—We consider a

reversible cellular automaton introduced in Ref. [23],
realized as a space-time circuit composed of elementary
two-body maps. Each lattice site ðl; tÞ ∈ Z × Z is occu-
pied with one of three “species” of particles taking values in
Q ¼ f0;þ;−g, representing a particle of positive (þ) or
negative charge (−), and a charge-neutral vacancy (0).
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The local two-particle propagatorΦ∶Q ×Q → Q ×Q acts
simply as a permutation (i.e., no interaction) whenever
the sum of charges is nonzero, ð0; qÞ ↔ ðq; 0Þ for
q ∈ f0;þ;−g, while oppositely charged particles repel
each other and thus retain their initial positions, ðq; q0Þ ↔
ðq; q0Þ for q; q0 ∈ f�g. The dynamics consists of brick-
work application of Φ, as depicted in Fig. 1.
Dynamical properties of such an automaton are distinctly

nonergodic; a phase-space trajectory cannot explore the
entire phase space: besides conservation of total charge,
it possesses an exponentially large number of conserved
quantities (related trivially to the fact that vacancies are
inert). The exact charge Drude weight and the diffusion
constant have been computed in Ref. [24].
Our central result is an explicit computation of the MGF

which is outlined below. The ensemble average in GðλjtÞ
can be computed in a two-stage “nested” way: for every
“frozen” sublattice Σ ⊂ Z of occupied sites at t ¼ 0 we
perform an average over all possible charge configurations
fqlg, and subsequently average over all sublattices Σ. Let
Λ� ⊂ Σ denote the sublattices of charged particles at t ¼ 0
that move from the right to the left half (respectively,
vice versa) during time interval ½0; 2t�. The integrated
current through the origin corresponds to the total trans-
ferred charge, JðtÞ ¼ P

l∈Λ−
ql −

P
l∈Λþ ql. We make the

following observations: (a) particle worldlines cannot
cross each other, implying in particular that at most one
of the subsets Λ� can be nonempty, (b) the signed
number of worldlines crossing the origin is given by the
difference between the number of vacancies passing
through the origin from the left or right up to time 2t.
Introducing a separable invariant probability measure
PðfqlgÞ ¼

Q
l pðqlÞ, with pð�Þ ¼ 1

2
ρð1� bÞ, pð0Þ ¼

ρ̄ ¼ 1 − ρ corresponding to densities of particles and
vacancies, we derived (see Ref. [26] for details) the
following exact double-sum representation for the MGF:

GðλjtÞ ¼
Xt

l;r¼0

�
t
l

��
t
r

�
ρ̄lþrρ2t−l−r

Y
ε¼�

½μεðλÞ�dεðl;rÞ; ð5Þ

where μ�ðλÞ≡ coshðλÞ ∓ b sinhðλÞ, dεðl; rÞ≡ ½jl − rj þ
εðl − rÞ�=2, and b ∈ ½0; 1Þ is the “charge bias.” In the
following, we systematically carry out an asymptotic
analysis of GðλjtÞ.
Dynamical free energy and cumulants.—Performing

asymptotic analysis on FðλjtÞ, see Eq. (3), for α ¼ 1,
λ ∈ R, we inferred the following scaled CGF

FðλÞ ¼ log ½1þ Δ2ðμb þ μ−1b − 2Þ�; ð6Þ

with μb≡coshλþjbjsinhjλj and Δ2≡ρð1−ρÞ∈ ½0;1=4�.
We stress, importantly, that FðλÞ does not provide (irre-
spectively ofb) the generating series for scaled cumulants sn.
As already announced, we find (regardless of b) that all
scaled cumulants sn>2 are singular. We deduced the follow-
ing asymptotic behavior [30]

c½b�2n>2ðtÞ ∼ tn−1=2; c½0�2nðtÞ ∼ tn=2; ð7Þ

and succeeded in obtaining a compact generator of

cumulant asymptotics, c½b≥0�n ðtÞ ≍ ðd=dλÞnF ½b≥0�ðλÞjλ¼0

with exp ½F ½b≥0�ðλÞ� ¼ P
ε¼� expða2εÞ½1þ erfðaεÞ�, where

a� ≡ t1=2Δ½1
2
ð1 − b2Þλ2 � bλ� for b ∈ ½0; 1Þ.

Typical fluctuations and CLT.—We first examine fluc-
tuations of JðtÞ on the “typical timescale,” associated
with scaling exponent ζtyp ¼ 1=2z. To this end, we explic-
itly compute cumulants κnðtÞ characterizing the time-
dependent distribution P1=2zðJ jtÞ. Recalling a theorem
by Marcinkiewicz [31], stating that the Gaussian distribu-
tion is the unique distribution with finitely many nonzero
cumulants, the CLT applies if and only if limt→∞ κnðtÞ ¼ 0

for all n > 2. From the scaling relation κnðtÞ ¼ t−n=2zcnðtÞ
we readily deduce the scalings κ½b�n>2ðtÞ ∼ t−1=2 and

κ½0�n>2ðtÞ ∼ t0. For a finite bias b > 0, all the higher

cumulants κ½b�n>2ðtÞ of the distribution P½b�
1=2zðJ jtÞ decay

with time, yielding a Gaussian asymptotic profile,
PtypðjÞ≡ limt→∞PζtypðJ ¼ jjtÞ, where ζtyp ¼ 1=2

P½b�
typðjÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

j2

2σ2

�
; σ2 ¼ 2ðbΔÞ2: ð8Þ

Upon switching off the bias, b ¼ 0, typical fluctuations
occur on a scale ζtyp ¼ 1=4, where we inferred a non-
Gaussian profile characterized by finite cumulants

κ½0�n ¼ limt→∞ κ½0�n ðtÞ < ∞, with the following integral rep-
resentation [26] (see Fig. 2)

P½0�
typðjÞ ¼

1ffiffiffi
2

p
πΔ

Z
R
du exp

�
−
�
u2

2Δ

�
2

−
j2

2u2

�
: ð9Þ

FIG. 1. Coordinate frame (time vertical, space horizontal) of a
deterministic chargedhard-core lattice gas (red:þ particles, blue:−
particles, while thin black lines indicate vacancies). Example of a
light cone (pyramid) section of a typical trajectory, for which initial
data on a saw of 4t subsequent links uniquely determine the
transport through the midpoint (dashed line) for all times times
from 0 to 2t.
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Explicitly, P½0�
typðjÞ ¼ ð2ΔÞ−1=2M1=4ð

ffiffiffiffiffiffiffiffiffi
2=Δ

p jjjÞ, where
MνðxÞ≡P∞

k¼0ð−xÞk=fk!Γ½ð1 − νÞ − νk�g is the M-
Wright function [32]. The associated MGF reads explicitly
G½0�ðηÞ ¼ ew

4ð1þ erfw2Þ ¼ E1=2ðw2Þ, where w2 ¼ η2Δ=2
and EνðxÞ ¼

P∞
k¼0 x

k=Γð1þ νkÞ is the Mittag-Leffler
function [note that G½0�ðηÞ ¼ exp ½F ½0�ðηt−1=4Þ�].
Large deviation principle.—What remains is to charac-

terize fluctuations on the largest scale ζ ¼ 1. Since FðλÞ is
strictly convex and differentiable in its entire domain λ ∈ R
for all values of b, the Gärtner-Ellis theorem ensures that
the Legendre transform is involutive [3], and that IðjÞ
corresponds to a unique strictly convex and differentiable
LD rate function IðjÞ [whose Legendre transform yields
back FðλÞ].
In the general case with finite bias, the leading-order

behavior near λ ¼ 0 reads F½b�ðλÞ ¼ ðbΔÞλ2 þOðjλj3Þ,
implying a quadratic rate function for perturbatively small
j, I½b�ðjÞ ¼ ðj=2bΔÞ2 þOðj4Þ. At b ¼ 0, the behavior is
markedly different; owing to the absence of the leading
order terms in SCGF, F½0�ðλÞ ¼ ðΔ=2Þ2λ4 þOðλ6Þ, we find
I½0�ðjÞ ¼ ð3=4Þðj2=ΔÞ2=3 þOðj2Þ. Unlike I½b�ðjÞ, I½0�ðjÞ is
not twice differentiable at j ¼ 0. On the other hand, at large
jλj we have FðλÞ ∼ jλj, implying that j is confined within
the compact interval ½−1; 1�, cf. Refs. [8,33]. This is a direct
manifestation of causality: owing to the fact that charges
propagate with unit velocity and interact locally, the
maximal transferred charge in a time interval t is upper
bounded by t. The near-horizon behavior can be found
analytically [26].
We have also computed a family of rate functions

associated with the “moderate deviation principle” for a
continuous range of timescales (1=2z < ζ < 1) [26].
Singular scaled cumulants and criticality.—Lack of

analyticity of scaled CGF FðλÞ is often found in

Markovian stochastic systems driven away from equilib-
rium by means of boundary reservoirs, where it is attributed
to a first-order dynamical phase transition (DPT), see
Refs. [33–39]. We are not aware of similar dynamical
features taking place in equilibrium. Despite that, we can
observe certain conspicuous similarities.
Significance of divergent scaled cumulants is most

transparently discussed in the complex fugacity plane in
the framework of the Lee-Yang theory [40] of phase
transitions [41,42]. Presently, we find that OðtÞ Lee-
Yang zeros of GðλjtÞ condense along certain contours in
the λ plane. By fourfold symmetry, there are four zeros of
GðλjtÞ closest to the origin λ ¼ 0, at a distance rðtÞ,
corresponding to the convergence radius of a complex
Taylor series logGðλjtÞ ¼ P

n cnðtÞλn=n!. Applying the
standard analysis (see Refs. [35,43–45]), and using the
known asymptotics of cnðtÞ, we deduce the scaling
r½b�ðtÞ ∼ t−1=2, r½0�ðtÞ ∼ t−1=4 (see Ref. [26] for details).
The vanishing convergence radius, r∞ ≡ limt→∞ rðtÞ ¼ 0,
signifies that λc ¼ 0 is a dynamical critical point. Based on
this, one might draw an incorrect conclusion that scaled
CGF FðλÞ develops a nonanalyticity at the critical point. In
reality, only F½b�ðλÞ is found to be nonanalytic, owing to the
discontinuities in its odd-order derivatives at the origin.
Conversely, F½0�ðλÞ, which depends on μ0ðλÞ ¼ cosh λ and
is derived via Eq. (3), represents a real analytic function;
while its expansion coefficients are unrelated to cumulants,
F½0�ðλÞ is the Legendre dual of the LD rate function I½0�ðjÞ.
In contrast to first-order DPTs seen in out-of-equilibrium

stochastic processes [where both the scaled CGF FðλÞ and
LD rate function exhibit a cusp], we encounter, in the
biased case b > 0, a cusp only in the second derivative,
ðd=dλÞ2F½b�ðλÞ. This indicates, at a formal level,
a DPT of third order at λ ¼ λc, with the value at the cusp
being the dynamical charge-current susceptibility, s2 ¼
limt→∞ t−1c2ðtÞ ¼

R
t
0 dτhjðτÞjð0Þic. Note that result (5)

can be reinterpreted as a Curie-Weiss like partition sum
[46], where b plays the role of a magnetic field with
a line of first order phase transitions at bc ¼ 0, ending
at λ ¼ λc.
The Lee-Yang theory permits us to establish that

divergent scaled cumulants, with an extra assumption that
cnðtÞ=cnþ2ðtÞ ∼ t−γn with limn→∞ γn > 0, imply r∞ ¼ 0
(i.e., λc ¼ 0), and vice versa. In this scenario “Bryc’s
regularity conditions” ensuring applicability of CLT are
violated. Indeed, in the present model Lebesgue’s criterion
of dominated convergence is not satisfied by the time
sequence of real analytic functions FðλjtÞ, irrespectively, of
bias b. One should, however, be cautious, as neither
divergent sn nor nonanalytic FðλÞ automatically imply a
departure from Gaussianity. The fate of PtypðjÞ is instead
predicated on the asymptotic scaling of the higher cumu-
lants cnðtÞ ¼ ðd=dλÞn logGðλjtÞjλ¼0: writing cn>2ðtÞ ∼ tνn ,
one finds a Gaussian PtypðjÞ if and only if the exponents νn

FIG. 2. Rescaled current distribution for unbiased b ¼ 0, half-
filled ρ ¼ 0.5 charged hard-core lattice gas in normal or log scale
(lower or upper data). Colored dashed lines show convergence of

exact distributions P½0�
1=4ðJ jtÞ to the asymptotic form (9) (solid

black line). Estimated current distribution (dots), agrees with
exact solution within statistical errors (Nsample ¼ 109).
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can be upper bounded by threshold exponents νn < n=2z
and is otherwise violated.
Fluctuations of particle current.—It is instructive to add

that fluctuations of the total transferred particle number
behave regularly. By disregarding internal charge degrees
of freedom, the model reduces to free ballistically propa-
gating particles with z ¼ α ¼ 1. Setting accordingly b ¼ 1,
the MGF can be easily summed up explicitly, yielding
an analytical (and faithful) scaled CGF of the form
F½1�ðλÞ ¼ logf1þ 2Δ2½coshðλÞ − 1�g, expectedly recover-
ing the celebrated Levitov-Lesovik formula [47,48] (here
specialized to a single particle channel with perfect trans-
mission at “infinite temperature”).
Conclusion.—We have examined the structure of charge

current fluctuations in a simple classical deterministic
model of interacting charged particles. We derived an exact
closed-form expression for the MGF in equilibrium at
arbitrary background charge density, encoding the FCS of
transferred charge. By performing asymptotic analysis, we
deduced a number of remarkable properties: (I) in the
presence of charge bias, fluctuations of the integrated
current density on the typical timescale are described by
a Gaussian distribution; at vanishing bias we instead
discover a distinctly non-Gaussian profile, thereby estab-
lishing that the CLT can be evaded despite detailed balance;
(II) cumulants cnðtÞ exhibit, irrespectively of bias, indefi-
nite temporal growth with distinct algebraic exponents,
implying divergent scaled cumulants; (III) the scaled CGF
yields, via the Legendre transform, a bona fide large-
deviation rate function; and (IV) for finite charge bias, the
scaled CGF is a nonanalytic function of fugacity λ, with a
discontinuous third derivative at the critical point λc ¼ 0.
Singular behavior of scaled cumulants, snðtÞ → ∞, may

be suggestively interpreted as lack of “sufficiently strong”
temporal clustering associated with a hierarchy of dynami-
cal multipoint current-density correlations along a temporal
seam attached to a fixed point in space, see Eq. (2). Such an
anomalous structure is a manifestation of enhanced
memory effects that are, like other unconventional transport
phenomena such as finite Drude weights [22,49,50] and
charge superdiffusion [51–53], likely inherently tied to
stable (quasi)particles that propagate ballistically though
the system. This expectation is further corroborated by a
recent numerical study of the lattice Landau-Lifshitz model
[15], widely viewed as an archetypicical completely inte-
grable system [54,55], which similarly displays divergent
scaled cumulants and absence of Gaussianity in the
presence of particle-hole symmetry. Therefore, despite
exhibiting diffusive charge dynamics at the level of the
dynamical charge correlations, integrable systems of this
sort do not belong to the same universality class as generic
(i.e., ergodic) diffusive systems such as, for example, the
SSEP (whose current fluctuations have been computed
analytically in Ref. [6], complying with the predictions of
the MFT [56–58]).

We conclude by pointing out several most pressing
issues. Our expectation is that a similar unconventional
behavior of current fluctuations arise in many other
classical and quantum solitonic systems and related inte-
grable modes (including similar superintegrable automata
[59,60]). We specifically have in mind the distinguished
conserved charges associated with manifest discrete or
continuous symmetries [52], while other local conservation
laws presumably behave in a regular way. Second, while
nonanalytic scaled CGF F½b�ðλÞ is conventionally under-
stood as a precursor of a dynamical phase transition, we
currently lack a more insightful physical interpretation of
the encountered third-order critical point. It is also impor-
tant to investigate whether there is any degree of univer-
sality in the non-Gaussian probability function of the
charge current at the typical scale. Last but not least, our
model offers an opportunity to translate many of these
exciting questions into the realm of nonequilibrium physics
by either studying evolution of inhomogeneous initial
profiles or mesoscopic driven models.
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