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We develop a variational principle to determine the quantum controls and initial state that optimizes the
quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set
of available controls is limited, the exact optimal initial state and the optimal controls are, in general,
dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent
Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case
via Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain
containing three-body interactions, even when the controls are restricted to one- and two-body interaction,
that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate
quantum metrology under a limited set of available controls, of relevance to many-body quantum
metrology in realistic scenarios.

DOI: 10.1103/PhysRevLett.128.160505

Introduction.—At the heart of quantum technology,
quantum metrology aims at improving the precision of
parameter estimation [1–5]. Recent theoretical advances in
quantum metrology [6–11] have led to the introduction of
optimal control protocols that maximize the quantum
Fisher information (QFI), the key quantity in characterizing
the precision in quantum metrology. The use of control
protocols for enhanced parameter estimation has been
extensively explored in many practical physical setups
[8,9,11–13].
The identification of the optimal control protocol for

parameter estimation [8,9] can be done by exploiting the
notion of adiabatic continuation of quantum states. It
resembles the engineering of shortcuts to adiabaticity
(STA) by counterdiabatic driving [14–18], whereby the
system Hamiltonian is supplemented by some controls that
enforce adiabatic continuation along a prescribed trajec-
tory. In the context of STA, the auxiliary controls enforce
parallel transport along the eigenstates of the uncontrolled
system Hamiltonian. By contrast, optimal controls for
quantum metrology enforce adiabatic continuation of the
eigenstates of an operator defined by the parametric
derivative of the estimation Hamiltonian [19]. This is
intuitive, as such operator guarantees maximal distinguish-
ability of states with a slight change of the estimated
parameter. The connection of optimal control for quantum
metrology and STA is not only fruitful in providing a
geometric justification of the required controls, but, as we
show in this Letter, it also suggests solutions to common
challenges.

In STA, the exact identification of the counterdiabatic
control protocol is not feasible in many-body systems in
which spectral properties of the system Hamiltonian cannot
be found, e.g., in problems such as quantum optimiza-
tion. In addition, the set of available controls in a given
experimental setup is often restricted. This generally
precludes the implementation of the exact STA protocol.
This is particularly important in the many-particle systems
when exact counterdiabatic controls involve nonlocal
multiple-body interactions beyond one-body and pairwise
potentials, which are hard to realize in practice [20]. In
addition, the use of variational methods provides then an
alternative, by designing optimal protocols that are realiz-
able with a restricted set of controls [21–29]. Likewise, the
exact construction of optimal protocols in many-body
quantum metrology [11] (i) requires access to the spectrum
of the parametric derivative of the many-body Hamiltonian,
which is hardly accessible, in general, and (ii) may require
optimal controls that are nonlocal and hard to implement in
the laboratory. Even in single-qubit metrology using a
nitrogen vacancy center, superconducting qubit, or quan-
tum dot, certain control operations may be hard to imple-
ment. It is thus required to develop a new formalism of
optimal control for quantum metrology beyond the state of
the art [8], by taking into account the ubiquitous limitations
on the controls and circumventing the requirement to
access the spectral properties of the Hamiltonian derivative.
This is the problem solved in this Letter by means of a
novel variational approach that relies on a metrological
action. We note that our Letter is unrelated to other
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variational approaches introduced in quantum metrology
that do not involve quantum control [30,31].
Specifically, we assume that the space of control

Hamiltonians is spanned by a set of local basis operators
and introduce a metrological action, which includes con-
tributions of the quantum Fisher information and the
Schrödinger equation, which is considered as a constraint
to the optimization problem. We derive the optimal control
conditions and show that it reduces to the unrestricted
protocol in Ref. [8] if the basis operators generate the full
space of the Hermitian operators. Furthermore, we show
that when the control Hamiltonian is restricted, the exact
optimal solution for the initial state and the control
Hamiltonian depends on the probe time. However, we find
that for multiplicative time-independent Hamiltonians,
even with limited controls, one may identify approximate
optimal controls, which reduce to the unrestricted protocol
and therefore become independent of the probe time, using
the high-frequency expansion in Floquet engineering [32–
38]. In particular, we show in an example in magnetometry
that one can avoid local three-body interaction terms
making use only of local two-body control Hamiltonians.
Optimal initial states and controls through variational

principle.—Consider the quantum estimation of a param-
eter λ in a general Hamiltonian HλðtÞ. In this setting, one
may find that the QFI may decrease as the probe time
increases [39]. This motivates the introduction of quantum
controlsHcðtÞ to enhance the QFI [6,8]. When the quantum
controls are introduced, the unitary evolution UðtÞ is
generated by HtotðtÞ ¼ HλðtÞ þHcðtÞ. Let the initial time
and fixed final probe time be 0 and tf, respectively. The

generator for parameter estimation is given by Gtf ½U� ¼R tf
0 U†ðτÞ∂λHλðτÞUðτÞdτ [8] and the quantum Fisher
information I is given by the variance of the generator
[4], i.e., I½U� ¼ VarðGtf ½U�Þ.
The optimization of the QFI I½U� over the initial state

yields the optimal initial state ½jφþðtfÞi þ jφ−ðtfÞi�=
ffiffiffi
2

p
,

where jφ�ðtfÞi are referred to as the maximum and
minimum eigenstates, as they are associated with the
maximum and minimum eigenvalues μ�ðtfÞ of Gtf ½U�
(see the Supplemental Material [40]). The maximum
value of the QFI over the initial states jψ0i is
maxjψ0iI ¼ kGtf ½U�k2=4, where the norm of an operator
is defined by the difference between its maximum and
minimum eigenvalues [5,41,42]. Our next goal is to
maximize the quantum Fisher information I½U� over all
possible unitary dynamics under the condition that U and
Hc satisfy the Schrödinger equation i∂tUðtÞ ¼ HtotðtÞUðtÞ
as a constraint. We further require the control Hamiltonian
Hc to be spanned by a limited set of available linearly inde-
pendent terms as fX igdci¼1. We denote Vc ≡ spanfX igdci¼1

and expand Hc ∈ Vc as HcðτÞ ¼
Pdc

i¼1 ciðτÞX i. This
procedure amounts to removing the constraint on Hc,

reducing the optimization over Hc to the optimization
over ciðτÞ [43].
We shall denote I0 ¼ maxU;Hc;jψ0iI½U�. In principle, I0

can be computed through the variational principle by
constructing an appropriate action. We note that I½U� is
quartic in U since it is quadratic in Gtf ½U�, which is itself
quadratic in U. This makes the variational calculus of I½U�
with respect to U tedious. To facilitate the calculation, we
observe that

I0 ¼ max
U;Hc

max
jφa;bi

ðhφajGtf ½U�jφai − hφbjGtf ½U�jφbiÞ2 ð1Þ

under the constraint of the Schrödinger equation and the
condition that jφa;bi are normalized. The introduction
of two more optimization variables jφa;bi allows us to
remove the square in Eq. (1) and transform the original
optimization problem to the following equivalent one,
maxjφa;bi;U;Hc

SI½Δρ; U�, under aforementioned constraints,
with the “information action” being defined as

SI½Δρ; U�≡ hφajGtf ½U�jφai − hφbjGtf ½U�jφbi

¼
Z

tf

0

TrfΔρU†ðτÞ∂λHλðτÞUðτÞgdτ; ð2Þ

and Δρ≡ jφaihφaj − jφbihφbj. The introduction of two
additional auxiliary variables jφa;bi effectively renders
SI½U� quadratic in U, unlike I½U�, facilitating the variati-
onal calculus with respect to U. Upon introducing the
Lagrangian multipliers μa;b and ΛðτÞ, we obtain the
following “metrological action”:

SMðjφai; jφbi;U;HcÞ≡SI½Δρ;U�þSS½U;Hc�
−μa½hφajφai−1�þμb½hφbjφbi−1�;

ð3Þ

where the “Schrödinger action” is defined as

SS½U;Hc�≡
Z

tf

0

TrfΛðτÞ½i _UðτÞU†ðτÞ−HλðτÞ−HcðτÞ�gdτ:

ð4Þ

We emphasize that jφa;bi, U and Hc are independent
variables. The optimization over jφa;bi can be easily
implemented by differentiation with respect to them, which
yields

Gtf ½U�jφαi ¼ μαjφαi; α ¼ a; b: ð5Þ

As shown in Sec. I in the Supplemental Material [40], in
order for I0 to take the global maximum values over jφa;bi,
μa;b and jφa;bi must be the maximum and minimum
eigenvalues and eigenvectors of Gtf ½U�, respectively.
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Variation with respect to Hc and U gives the trace
condition TrfΛðτÞX ig ¼ 0 for i ∈ ½1; dc� and the
differential equation _ΛðτÞ − i½ΛðτÞ; HtotðτÞ� þ i½ΔρðτÞ;
∂λHλðτÞ� ¼ 0, with the final condition ΛðtfÞ ¼ 0, where
ΔρðτÞ≡UðτÞΔρU†ðτÞ. One can solve for ΛðτÞ the differ-
ential equation and substitute the result into the trace
condition to find

TrfX i∂λ½ΔρðτÞ�g ¼ 0; i ∈ ½1; dc�: ð6Þ

Equations (5) and (6) are our central results. The form of
these equations in the parameter-independent rotating
frame can be found in [40]. They give the optimal initial
state and optimal dynamics that maximize the QFI when
the quantum controls are restricted to the subspace spanned
by fX ig. In what follows, we discuss their implications and
applications.
The unrestricted control and the general feature of exact

restricted controls.—As a first application of our results, let
us assume there is no restriction on the control
Hamiltonians, that is, fX jg spans the whole space of
traceless Hermitian operators. We shall see how the
Pang-Jordan protocol in Ref. [8] is reproduced. In this
case, Eq. (6) is equivalent to ∂λ½ΔρðτÞ� ¼ 0. Taking the
time derivative on both sides yields

∂τ∂λ½ΔρðτÞ�¼−i½∂λHλðτÞ;ΔρðτÞ�¼0; ∀ τ∈ ½0;tf�; ð7Þ

where we use the Liouville equation for ΔρðτÞ. Since
jφa;bðτÞi≡UðτÞjφa;bi are associated with the nondegen-
erate eigenvalues �1 of ΔρðτÞ, we conclude that jφa;bðτÞi
must also be eigenvectors of ∂λHλðτÞ at all times. That is,
∂λHλðτÞjφa;bðτÞi ¼ νa;bðτÞjφa;bðτÞi, ∀ τ ∈ ½0; tf�, where
νa;bðτÞ is the eigenvalue of ∂λHλðτÞ. It is then straightfor-
ward to check that jφa;bi are eigenvectors of Gtf ½U� with
eigenvalue

R tf
0 νa;bðτÞdτ. Thus, any unitary dynamics that

preserves the adiabatic evolution of any pair of eigenstates
of ∂λHλðτÞ satisfies Eq. (7) and is an extremal solution
satisfying δSM ¼ 0. To further maximize the QFI among
the manifold of extremal solutions, one needs to further
optimize the difference between

R tf
0 νaðτÞ and

R tf
0 νbðτÞ.

This requires νaðτÞ and νbðτÞ to be the maximal and
minimum eigenvalues of ∂λHλðτÞ at all times. When the
unitary dynamics preserves the adiabatic evolution of all
eigenstates of ∂λHλðτÞ, i.e., UðτÞ ¼ P

α jφαðτÞihφαð0Þj,
where jφαi denotes the eigenvectors of ∂λHλðτÞ, one
recovers the Pang-Jordan control Hamiltonian [8]
HcðτÞ ¼ i

P
α j _φαðτÞihφαðτÞj −HλðτÞ. Note that, if there

is any level crossing in νaðτÞ at some instant time in ½0; tf�,
the way of labeling the eigenstates and eigenvalues is not
unique. Choosing νþðτÞ and ν−ðsÞ always as the maximum
and minimum eigenvalues of ∂λHλðτÞ at all times, the
resulting QFI is the greatest among all the different ways of
labeling the eigenstates. With this labeling, the first-order

time derivative of jφaðτÞi is discontinuous, which results in
a δ pulse in the control Hamiltonian Hc. This provides
an alternative understanding of the σx-like pulses in
Refs. [8,9,13].
In the general case, fX igdci¼1 do not span the whole space

of Hermitian operators, and the generic optimal solutions
UðτÞ and jφa;bi implicitly depend on the probe time tf. This
is due to the dependence of the generator Gtf ½U� on tf,
which may make the eigenvectors jφa;bi determining the
optimal initial state also dependent on tf. The dependence
on tf for the optimal unitary UðτÞ can then be seen from
Eq. (6). With these observations, we take the derivative
with respective to tf to obtain the following differential-
integral equation:

∂tfGtf jφα;tfiþGtf j∂tfφα;tfi¼∂tfμα;tf jφα;tfiþμα;tf j∂tfφα;tfi;
ð8Þ

where we have suppressed the dependence on U in the
generator Gtf for simplicity, and α ¼ a, b, ∂tfGtf ¼
i∂tfU

†
tfðtfÞ∂λUtfðtfÞ þ iU†

tfðtfÞ∂tf∂λUtfðtfÞ þ U†
tfðtfÞ×

∂λHλðtfÞUtfðtfÞ, where ∂tf denotes the derivative with
respect the subscript tf instead of the one in the parentheses
[40]. Generally, Eq. (8) is difficult to solve analyti-
cally, while numerical calculation is tractable. However,
if UtfðτÞ and jφa;tfi are independent of the subscript vari-

able tf, Eq. (8) reduces to U†ðtfÞ∂λHλðtfÞUðtfÞjφαi ¼
∂tfμα;tf jφαi. It then follows that jφaðtfÞi ¼ UðtfÞjφai
is an eigenstate of ∂λHλðtfÞ for all tf, with eigenvalue
∂tfμα;tf . The solution reduces again to the Pang-Jordan
protocol [8].
This suggests that, when the control Hamiltonian is

restricted to some nontrivial subspace of the Hermitian
operators, such that ∂λΔρðτÞ does not always vanish on
½0; tf�, both the exact optimal controls and the exact optimal
initial states depend on the probing time tf, making it
challenging to find them analytically. In particular, one can
show that, when only UðτÞ depends on tf but jφαi is
independent of tf, this is the case as there exists a time such
that ∂λΔρðτÞ ≠ 0 [40].
Approximate solution via Floquet engineering.—We

next show that for a time-independent Hamiltonian Hλ

the restricted optimal controls can be approximately engi-
neered by the high-frequency control, known as Floquet
engineering [32–38]. For time-independent Hamiltonians
with unrestricted controls, the minimum optimal control
Hamiltonian is the one that cancels the parts in Hλ that do
not commute with ∂λHλ [8]. However, if any of the required
control Hamiltonians are not available, it is not clear how to
reach the Heisenberg scaling, IHS0 ¼ 4n2t2f, where n is
the number of probes. Here, we search for a static control

Hc;0 and high-frequency driving controls HðdÞ
c ðtÞ, where
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HðdÞ
c ðtÞ≡P

l≠0Hc;leilωt, so that HtotðtÞ ¼ Hλ þHc;0þ
HðdÞ

c ðtÞ, and show that the unavailable controls in the
minimum optimal control Hamiltonian can be actually
constructed approximately through a high-frequency expan-
sion. Let us first move to the rotating frame associated with
UðtÞ ¼ eiKðtÞ, whereKðtÞ is the so-called kick operator [33].
In it, the total Hamiltonian is given by the Floquet effective
Hamiltonian HF. When the driving frequency is high
enough, an expansion in orders of 1=ω can be performed
[33,36]. To the first order of 1=ω, one finds that KðtÞ ¼
½1=ðiωÞ�Pl≠0ð1=lÞðHc;leilωt − 1Þ þOð1=ω2Þ [44] and

HF¼HλþHc;0þ1=ω
X∞
l¼1

½Hc;l;Hc;−l�=lþOð1=ω2Þ: ð9Þ

One can explicitly show that the kick operator KðtÞ consists
of the Hc;l with l ≠ 0 and it is independent of the estima-
tion parameter. Thus, the QFI remains unchanged in the
Floquet rotating frame. The generator becomes Gtf ¼R tf
0 e−iHFτ∂λHλeiHFτdτ [40]. The key idea is that the
unavailable controls in the original static frame can be
constructed through the commutator in Eq. (9). This can be
best illustrated using a simple qubit example with the
Hamiltonian Hλ ¼ λσz=2þ Δσx=2 and Vc ¼ fσy; σzg.
The term that does not commute with ∂λHλ is Δσx=2,
which is not available in Vc. Therefore, we consider Hc;0 ¼
cy0σy þ cz0σz and HðdÞ

c ðtÞ ¼ P
l≠0ðcyl σy þ czlσzÞeilωt, where

for l ≠ 0, cyl ¼ cy�−l, and czl ¼ cz�−l to guarantee the

Hermiticity of HðdÞ
c ðtÞ. According to Eq. (9), to the first

order of 1=ω, we find

HF ¼ ðλ=2þ cz0Þσz þ
�
Δ=2 − 4=ω

X∞
l¼1

Im½cyl cz�l �=l
�

× σx þ cy0σy: ð10Þ

The approximate optimal control fulfills cy0 ¼ 0 and

ω ¼ 8=Δ
X∞
l¼1

Im½cyl cz�l �=l; ð11Þ

which we call the “amplitude-frequency matching” (AFM)
condition. The validity of the high-frequency expansion
requires thatω should be the largest frequency in the original
Hamiltonian, i.e., that ω ≫ λ, Δ, cyl , and c

z
l . Experimentally,

for a laser frequency that satisfies this condition, one can
always tune the amplitude so that Eq. (11) is satisfied.
Conversely, one can also choose a proper laser frequency for
given amplitudes so that Eq. (11) is fulfilled. We emphasize
that when Eq. (11) is satisfied and the initial state in the
Floquet rotating frame is ðj0i þ j1iÞ= ffiffiffi

2
p

, the optimal
control conditions (5) and (6) are approximately satisfied

up to the order of 1=ω in the Floquet rotating frame. The
initial state in the lab and Floquet rotating frames is the same
as Kð0Þ ¼ 0. Going back to the lab frame, we generate a
solution to Eqs. (5) and (6) when the controls are restricted.
This illustrates the power of our approach beyond the Pang-
Jordan protocol [8].
A simple choice for the amplitudes involves taking for

l ≥ 1 both cyl and c̃zl ¼ iczl to be real. This yields

HðdÞ
c ðtÞ ¼ 2

X∞
l¼1

½cyl cosðlωtÞσy þ c̃zl sinðlωtÞσz�: ð12Þ

As one can see from Fig. 1(a), for parameters satisfying the
AFM condition (11), the Heisenberg scaling is achieved.
As a result, the first-order term in the high-frequency
expansion makes it possible to construct the σx term by
commuting the operators in Vc. This idea can be gener-
alized to many-body systems, as shown in the following.
Restricted control in a quantum spin chain.—Consider

the sensing of magnetic field using a spin chain

Hλ ¼
J
2

Xn
i¼1

σxi σ
x
iþ1 þ

Δ
2

Xn
i¼1

σxi σ
x
iþ1σ

x
iþ2 þ

λ

2

Xn
i¼1

σzi ; ð13Þ

which contains both two- and three-body interactions. We
assume periodic boundary conditions for simplicity and
consider the set of allowed controls Vc ¼ fσai ; σai σbiþ1g,
ða; b ¼ x; y; zÞ, involving only one-body and nearest
neighbor two-body operators. When the controls are
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FIG. 1. QFI for various scenarios. (a) A single qubit with the
sensing Hamiltonian Hλ ¼ λσz=2þ Δσx=2 (b)–(d) The spin
chain with the sensing Hamiltonian (13). For (a)–(d)
λ ¼ Δ ¼ 1, the frequency of the drive ω ¼ 1826.67. The red
lines satisfy the AFM condition (11) or (16) with cyl ¼ c̃zl ¼
cxyl ¼ c̃zxl ¼ 10 when 1 ≤ l ≤ 5 and vanish for l > 5. The total
simulation time is 5000 times the fundamental periodic 2π=ω. For
the case of lowest two harmonics in green lines, cyl ; c̃

z
l ; c

xy
l ; c̃zxl are

nonvanishing only when l ¼ 1, 2 and take values 10.
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unrestricted, the minimum optimal control Hamiltonian
contains local two-body and local three-body terms. The
first part in the control Hamiltonian would cancel the
nearest neighbor two-body terms, i.e., Hc;0 ¼ −J=2×P

n
i¼1 σ

x
i σ

x
iþ1. However, the term consisting of three-body

operators cannot be canceled directly through the allowed
control set Vc.
Our goal is to construct the three-body operators using

the first-order correction in Eq. (9), that is, we expect to
induce ½Hl;H−l� ∝

P
n
i¼1 σ

x
i σ

x
iþ1σ

x
iþ2. The commutator

between one- and two-body operators cannot produce a
three-body operator. To generate a three-body operator, we
must commute the two-body operators in Vc [40].
Therefore, one can construct HcðtÞ ¼

P
l≠0Hc;leilωt,

where Hc;l ¼
P

n
i¼1 ðcxyli σxi σyiþ1 þ cli;zxσ

z
iσ

x
iþ1Þ, cxyli ¼ cxy�−li ,

and czxli ¼ czx�−li to ensure the Hermiticity of HcðtÞ [40].
When cxyli and czxli are, respectively, real and
purely imaginary, the commutator ½Hc;l; Hc;−l� ¼
−4

P
n
i¼1 Imðcxyli czx�liþ1Þσxi σxiþ1σ

x
iþ2. The most general choice

of the coefficients cxyli and czxli , which generates the σx-type
three-body interaction, is provided in Sec. V in the
Supplemental Material [40]. For simplicity, we further
assume these coefficients are homogeneous across the
chain and take cxyli ¼ cxyl and c̃zxl ¼ iczxli to be real for
l ≥ 1. This yields the high-frequency driving control
Hamiltonian

HðdÞ
c ðtÞ¼2

X∞
l¼1

Xn
i¼1

½cxyl cosðlωtÞσxi σyiþ1þ c̃zxl sinðlωtÞσziσxiþ1�;

ð14Þ

while the effective Hamiltonian obtained as the leading
term in the high-frequency expansion becomes

HF ¼ λ

2

Xn
i¼1

σzi þ
�
Δ
2
−
4

ω

X∞
l¼1

1

l
ðcxyl c̃zxl Þ

�
σxi σ

x
iþ1σ

x
iþ2: ð15Þ

The three-body term is then canceled by tuning cxyl and c̃zxl
such that

ω ¼ 8=Δ
X∞
l¼1

ðcxyl c̃zxl =lÞ: ð16Þ

As with the qubit case, the optimal initial state in both the
lab and Floquet rotating is the gigahertz state. Equations (5)
and (6) are thus approximately satisfied up to the order of
1=ω. As shown in Figs. 1(b)–1(d), for parameters satisfying
the AFM condition (16), the Heisenberg scaling IHS0 is
achieved. Furthermore, even when one just takes the lowest
two harmonics in the driving, QFI is not very far below IHS0 .
In Fig. 2, IHS0 is achieved with Eq. (14) when the parameters

satisfy Eq. (16). Again, the precision using only the lowest
two harmonics can approach IHS0 very closely.
Finally, we emphasize that a similar technique can be

applied to design more general driving protocols to cancel
the effect of other types of three-body interactions [40].
Experimental platforms where three-body interactions
either appear naturally or can be potentially engineered—
such as NMR systems [45,46], Kitaev spin liquid [47],
superconducting circuits [48], and quantum gas systems
[49–52]—can be potentially used to test the metrological
protocol discussed here.
In summary, we have introduced a variational approach

to quantum parameter estimation and derived the optimal
control equations under which the precision is optimal
when the available control Hamiltonians are limited. This
approach readily yields the optimal initial state and
Hamiltonian controls that are generally dependent on the
probe time, in contrast with the unconstrained case. The
implementation of the constrained optimal protocol in
many-body systems can be eased by Floquet engineering,
as we have demonstrated in applications to magnetometry.
We hope that our results inspire new theoretical and
technological advances in quantum metrology with quan-
tum many-body systems. Many questions are open for
further investigation, such as determining the ultimate
scaling bounds of the QFI under restricted local controls
and the application of our method to critically enhanced
quantum metrology [53].
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FIG. 2. Numerical calculation of the QFI with respect to the
number of qubit n for the sensing of magnetic field using the spin-
chainHamiltonian (13). The initial state preparation and the values
of the parameters λ, Δ, ω, cxyl , and c̃zxl are the same as Fig. 1 with
J ¼ 0. (b)–(d) tf ¼ 17.2 is the total simulation time in Fig. 1.
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[18] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,

S. Martínez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91,
045001 (2019).

[19] M. Cabedo-Olaya, J. G. Muga, and S. Martínez-Garaot,
Entropy 22, 1251 (2020).

[20] A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev.
Lett. 109, 115703 (2012).

[21] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys.
Rev. A 75, 042308 (2007).

[22] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys.
Rev. Lett. 96, 060503 (2006).

[23] A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P.
Zanardi, Phys. Rev. Lett. 103, 080502 (2009).

[24] T. Opatrný and K. Mølmer, New J. Phys. 16, 015025
(2014).

[25] H. Saberi, T. Opatrný, and K. Mølmer, and A. del Campo,
Phys. Rev. A 90, 060301(R) (2014).

[26] D. Sels and A. Polkovnikov, Proc. Natl. Acad. Sci. U.S.A.
114, E3909 (2017).

[27] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Phys.
Rev. Lett. 123, 090602 (2019).

[28] P. Chandarana, N. N. Hegade, K. Paul, F. Albarrán-
Arriagada, E. Solano, A. del Campo, and X. Chen, Phys.
Rev. Research 4, 013141 (2022).

[29] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo, and M.
Mohseni, Phys. Rev. Lett. 114, 170501 (2015).

[30] R. Kaubruegger, D. V. Vasilyev, M. Schulte, K. Hammerer,
and P. Zoller, Phys. Rev. X 11, 041045 (2021).

[31] C. D. Marciniak, T. Feldker, I. Pogorelov, R. Kaubruegger,
D. V. Vasilyev, R. van Bijnen, P. Schindler, P. Zoller, R.
Blatt, and T. Monz, arXiv:2107.01860.

[32] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett. 91,
110404 (2003).

[33] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027
(2014).

[34] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys.
64, 139 (2015).

[35] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039
(2015).

[36] N. Goldman and J. Dalibard, Phys. Rev. X 5, 029902(E)
(2015).

[37] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[38] Z. Chen, J. D. Murphree, and N. P. Bigelow, Phys. Rev. A

101, 013606 (2020).
[39] S. Pang and T. A. Brun, Phys. Rev. A 90, 022117 (2014).
[40] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevLett.128.160505 for [brief description].
[41] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann.

Phys. (N.Y.) 247, 135 (1996).
[42] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia,

Phys. Rev. Lett. 98, 090401 (2007).
[43] This is the approach pursued in, e.g., the variational

approach in shortcut to adiabaticity [26,27]. Another way
of handling the constraints on the control Hamiltonian
is by introducing the following constraints fj½HcðτÞ� ¼
TrfHcðτÞX jg ¼ 0, j ¼ dc þ 1;…; N to disallow the terms
X j, where j ¼ 1; 2…; dc. This way of introducing the
constraint is the one used in, e.g., a quantum brachisto-
chrone equation [21,22]. However, in many-body quantum
metrology, the number of disallowed nonlocal operators is
much more than the allowed local operators. Therefore, the
second approach may introduce an intractable number of
constraints and we shall pursue the first approach of
expanding Hc in terms of basis operators in the main text.

[44] We choose the normalization Kð0Þ ¼ 0 to all orders of 1=ω,
which is different from the normalization 1=T

R
T
0 KðtÞdt ¼

0 used in Refs. [33,36]. Therefore, the resulting expression
of KðtÞ is different from the one in Refs. [33,36], up to some
irrelevant constant, which does not affect the form of the
Floquet effective Hamiltonian HF.

[45] C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme,
T. F. Havel, and D. G. Cory, Phys. Rev. A 61, 012302
(1999).

[46] X. Peng, J. Zhang, J. Du, and D. Suter, Phys. Rev. Lett. 103,
140501 (2009).

[47] M. O. Takahashi, M. G. Yamada, D. Takikawa, T. Mizushima,
and S. Fujimoto, Phys. Rev. Research 3, 023189 (2021).

[48] F. Petiziol, M. Sameti, S. Carretta, S. Wimberger, and F.
Mintert, Phys. Rev. Lett. 126, 250504 (2021).

[49] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H.
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