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Quantum simulation provides important tools in studying strongly correlated many-body systems with
controllable parameters. As a hybrid of two fundamental models in quantum optics and in condensed
matter physics, the Rabi-Hubbard model demonstrates rich physics through the competition between local
spin-boson interactions and long-range boson hopping. Here, we report an experimental realization of the
Rabi-Hubbard model using up to 16 trapped ions and present a controlled study of its equilibrium
properties and quantum dynamics. We observe the ground-state quantum phase transition by slowly
quenching the coupling strength, and measure the quantum dynamical evolution in various parameter
regimes. With the magnetization and the spin-spin correlation as probes, we verify the prediction of the
model Hamiltonian by comparing theoretical results in small system sizes with experimental observations.
For larger-size systems of 16 ions and 16 phonon modes, the effective Hilbert space dimension exceeds 257,
whose dynamics is intractable for classical supercomputers.

DOI: 10.1103/PhysRevLett.128.160504

The Hubbard model is a fundamental model in many-
body physics, with rich physical phenomena arising from
two competing effects: the on-site repulsion and the
hopping between different sites [1]. One of its natural
generalizations to the spin-boson coupled system is the
Rabi-Hubbard (RH) model [2–4] where the on-site inter-
action is replaced by a quantum Rabi model Hamiltonian
[5], a fundamental model in quantum optics describing the
interaction of a spin with a bosonic mode. The RH model
breaks the U(1) symmetry (particle number conservation)
that appears in the other generalizations like the Bose-
Hubbard model [6–8] and Jaynes-Cummings-Hubbard
(JCH) model [9,10], and thus shows nontrivial distinctions
in its ground state or general dynamics. Although important
analytical and numerical progress has been achieved in
understanding its properties [2–4,11–13], the RH model
has not yet been realized in the cavity QED system where it
was first proposed due to the experimental difficulty. This
motivates one to realize and experimentally probe the RH
model using other controllable physical systems through
the idea of quantum simulation [14,15].
As the scale and the controllability of quantum devices

develop, quantum simulation is becoming increasingly
important in studying strongly correlated many-body sys-
tems [14,15]. As one of the leading platforms for quantum
simulation, trapped ions possess a long coherence time,
convenient initialization and readout [16]. Furthermore, the
trapped ion system is intrinsically equipped with laser-
coupled spin and bosonic degrees of freedom [16], which
makes it an excellent candidate to simulate the light-matter
interaction Hamiltonian. Previously, quantum simulation of

many-body spin models [17], the Dicke model [18], the
quantum Rabi model of a single ion [19,20], and the JCH
model for two [21,22] and three [23] ions have been
demonstrated in this system. Here, we perform a quantum
simulation of the RH model for the first time with up to 16
ions and explore its equilibrium phase transition [24] and
quantum dynamical properties [25] using spin observables.
Compared with the spin models where phonons are only
virtually excited [17], our inclusion of phonon modes in the
realization of the RH model greatly enlarges the effective
dimension of the Hilbert space and thus demonstrates
quantum simulation results that are intractable for the
available classical computers.
Long-range Rabi-Hubbard model.—We use a chain of

trapped 171Ybþ ions to simulate the RH model. Our
experimental setup is shown schematically in Fig. 1. The
on-site quantum Rabi model Hamiltonian is generated
through global bichromatic Raman laser beams [19,20]
which couple the internal qubit states j↓i≡ jS1=2; F ¼ 0;
mF ¼ 0i, j ↑i≡ jS1=2; F ¼ 1; mF ¼ 0i with the local
transverse oscillation of the ions. Furthermore, the
Coulomb interaction between the ions couples these local
oscillation modes together and finally gives us an RH
Hamiltonian

H ¼
X
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where σix and σiz are Pauli operators for the spin i and ai and
a†i the annihilation and creation operators of the corre-
sponding local phonon mode. The spin frequency ω0 is set
by the detuning of the global bichromatic laser beams, the
spin-phonon coupling g by the amplitudes, the phonon
hopping term tij by the ion spacings, and the local phonon
frequency ωi by both the laser detuning and the Coulomb
interaction and thus becomes inhomogeneous (see
Supplemental Material for details [26]). Compared with
the original RH model [2], our Hamiltonian has long-range
hopping decaying inverse cubically with the distance.
Equilibrium quantum phase transition.—First, we study

the quantum phase transition in this model by slowly tuning
the spin-phonon coupling across the critical point, as shown
in Fig. 2. The RH model has two distinct phases in its
ground state [2]: at low phonon hopping rate and low spin-
phonon coupling, the spin-spin correlation on distant sites
vanishes, which is known as an incoherent phase; as the
hopping and the coupling rates increase, long-range spin-
spin correlation appears as the Z2 symmetry spontaneously

breaks, and the system enters a coherent phase. Here, we
start from zero spin-phonon coupling, for which the ground
state can be easily prepared by sideband cooling of phonon
modes into j0i and optical pumping of spins into j↓i. As
the spin-phonon coupling g increases, the ground state
phase transition can be understood qualitatively by a mean-
field analysis (see Supplemental Material for details [26]).
Diagonalizing the local phonon modes faig into collective
modes fbkg and ignoring the quantum correlation between
spin and phonon states, the only consistent solution at low g
is hσixi ¼ 0 and hbki ¼ 0. As g goes up across a critical
point gmf

c ¼ ffiffiffiffiffiffiffiffiffiffi
ω0δ0

p
=2 where δ0 is the lowest frequency of

the collective modes, hb0i can acquire a nonzero value,
which in turn leads to nonzero hσixi for each spin and
nonzero hbki for other modes. In the experiment, we slowly
tune up the coupling g following an exponential function
gðtÞ ¼ ð1 − e−t=τÞgmax where τ ¼ 1 ms is the largest
quench time and ð1 − 1=eÞgmax above the critical point
is the largest coupling rate. We expect the system to stay in
the ground state adiabatically until close to the transition
point where the energy gap closes in the thermodynamic
limit. Nevertheless, this still allows us to observe the
transition signal in the spin-spin correlation.
In our experiment, g is limited by the available laser

power, so we set small δ0 ≈ 2π × 2 kHz for an achievable
critical point. In Figs. 2(a)–2(e), we present the spin-spin
correlation Cij ≡ hσixσjxi − hσixihσjxi for ion pairs with
various distances in an N ¼ 10 chain. At low coupling,
ideally the spin-spin correlation is vanishingly small. In the
experiment, we measure the spin-spin correlation by
rotating σϕ ¼ σx cosϕþ σy sinϕ into the σz basis, scan
the correlation with respect to ϕ, and then extract the
oscillation amplitude of this curve as Cij (see Supplemental
Material [26]). While this process removes the sensitivity to
the relative phase between the lab frame and the interaction
picture of the RH Hamiltonian, it causes a systematic error
when Cij is close to zero since the fitted oscillation
amplitude is always nonnegative: the statistical fluctuation
or drift in the device parameters will now result in a
measured positive correlation in the low-g regime, which is
what we observe in these plots. As g rises near the mean-
field transition point gmf

c ¼ 2π × 4.6 kHz we observe a
quick increase in the spin-spin correlations, which is a
signature of the quantum phase transition. The experimen-
tal data agree well with the theoretical results calculated
by the density-matrix-renormalization-group (DMRG)
method [32] (solid lines), and the error comes from slow
drifts in the trap frequencies (dashed lines for �300 Hz
drifts), violation of the adiabatic condition, motional
decoherence as well as SPAM errors (see Supplemental
Material for details [26]). Furthermore, we see that the
correlation in the coherent phase decays slowly with the
distance and persists over half a chain, which is character-
istic for this phase. In Fig. 2(f) we plot the experimental and

(a)

(b)

FIG. 1. Schematic of the experiment. (a) We use two global
Raman laser beams to create a Rabi-Hubbard model Hamiltonian
on an ion chain. Two frequency components are used to drive the
blue and the red phonon sidebands (BSB and RSB) simulta-
neously. The frequency of the Raman pairs is locked by a phase-
locked loop (PLL). The hopping rates among different sites tij are
determined by the interion spacings, and the local quantum Rabi
model Hamiltonian is controlled by the amplitudes and the
frequencies of the driving lasers. (b) We use 355 nm pulsed
laser beams with a frequency comb structure to bridge the Raman
transitions of the qubits [31]. The large energy splitting of ωhf ¼
2π × 12.6 GHz is covered by about 107 teeth of the frequency
comb so we only need frequency shifts on the order of tens of
MHz to set suitable detuning for the bichromatic Raman beams.
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the theoretical results for ion numbers ranging from 2 to 16.
Although the current experimental accuracy is not enough
for a finite size scaling analysis, we see that the exper-
imental results are consistent with a transition point gc ≈
1.03gmf

c predicted by the DMRG calculation with critical
exponents β ¼ 1=8 and ν ¼ 1. More details about this
phase transition, choice of parameters, and adiabaticity can
be found in Supplemental Material [26]. Also note that in
Fig. 2(f), the range of data points for large N is narrower
than those for small N. This is because for the experimental
data we choose, gmf

c is about 40% higher for the N ¼ 16
case than for the N ¼ 2 case so that the rescaled coupling
g=gmf

c decreases for the same spin-phonon coupling g.
Besides, in the experiment we observe that the lifetime of
the ion crystal under strong laser driving decreases with the
increasing ion number, therefore for higher N we need to
use smaller g.
Quantum dynamics.—Next, we consider nonequilibrium

quantum dynamics of the RH Hamiltonian. As mentioned
above, the ground-state properties of tens of ions can be
computed using the DMRG method because of the low
amount of entanglement in the one-dimensional system
[32]. However, such methods will no longer be applicable

for quantum dynamics far from equilibrium. In Fig. 3 we
initialize the system in j ↑; 0i⊗N through sideband cooling
and optical pumping followed by a global Raman π pulse.
Then, we turn on the RH Hamiltonian and measure the
evolution of hσizðtÞi for individual ions. In Figs. 3(a), 3(d),
and 3(e), we see the measured dynamics agree well with the
theoretical results from direct numerical integration of the
Schrödinger equation for small system sizes. At small g, the
spins are barely affected by the phonon coupling and
hopping, and thus stay near hσizðtÞi ≈ 1 (the lower exper-
imental curves mainly come from SPAM errors); for larger
g, the phonon modes become more important and we
observe oscillatory or damping behavior in the spin
dynamics. In Supplemental Material, we further show that
this difference can be understood qualitatively from the
stability of the system under the Holstein-Primakoff
approximation [26]. In Figs. 3(b) and 3(f) we present the
corresponding theoretical entanglement entropy between
the left and the right halves of the chain (with both spin and
phonon states included) and in Figs. 3(c) and 3(g) we plot
the theoretical phonon numbers. All of these theoretical
results demonstrate the explicit involvement of the phonon
modes in the dynamics we are studying. (Note that an

(a) (b) (c)

(d) (e) (f)

FIG. 2. Quantum phase transition under slow quench. We start from the ground state jΨ0i≡ j↓; 0i⊗N with the on-site spin-phonon
coupling g ¼ 0, and then slowly tune up the coupling across the predicted critical point. (a)–(e) Spin-spin correlations Cij ≡ hσixσjxi −
hσixihσjxi for various ion pairs in an N ¼ 10 chain versus the coupling g after slow quench. For small g, the correlation remains close to
zero apart from small detection errors; once g is tuned across a critical point (indicated by the vertical dashed line as the numerically
computed value gc ≈ 1.03gmf

c ), the spin-spin correlation increases rapidly, which indicates a quantum phase transition. The solid line is
the theoretical ground-state value from the DMRG calculation, and the shaded region between the dashed lines represents the theoretical
results under a shift of�300 Hz in the trap frequency. (f) The nearest-neighbor spin-spin correlation for two central ions in a chain of 2–
16 ions (dots with error bars representing one standard deviation) and the corresponding theoretical ground-state values from the DMRG
calculation (solid lines). Here, we normalize the horizontal axis by the mean-field transition point gmf

c , and scale the vertical axis by
N2β=ν where β ¼ 1=8 and ν ¼ 1 are two critical exponents. Theoretically, the rise of the curves becomes sharper near the predicted
transition point as N increases. Although this is less clear from the experimental data due to the noise and errors including the violation
of adiabaticity and decoherence, the overall tendency between the theoretical and the experimental results still agrees with each other for
different system sizes (see Supplemental Material for individual plots of each ion number N [26]).
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entanglement entropy higher than N=2 proves that here the
phonon states directly contribute to the entanglement and
thus the dynamics are strikingly different from the Ising
models simulated in earlier works [14] where the phonon
states are adiabatically eliminated.) For an average phonon
number around 1.5 as shown in Fig. 3(g), we need a cutoff
of at least six for the local phonon number to capture the
dynamics, thus the dimension of the system scales as ½2 ×
ð6þ 1Þ�N (see Supplemental Material for details as well as
for possible simplification using collective modes rather
than local phonon modes [26]). On the other hand, the
quick increase in the entanglement entropy clearly shows
that here the matrix-product-state-based methods will not
be applicable [32]. Therefore, the evolution of the RH
model under the system size and the coupling strength
achieved in this work, such as the spin dynamics in
Figs. 3(h) and 3(i) for N ¼ 16 ions, will generally be

difficult to simulate by classical supercomputers [33]: the
dimension of 1416 ≈ 261 or, with the possible simplification
in Supplemental Material using collective modes [26], of
about 257, corresponds to 57 spins and even writing down
such a pure state would take thousands of PB memories;
besides, the phonon frequencies on the order of 2π ×
50 kHz and the evolution time up to 400 μs require
hundreds of layers of single-site and two-site unitary gates.
Conclusion.—In summary, we have reported the first

experimental realization of the Rabi-Hubbard model and
performed quantum simulation of both ground-state and
dynamical properties of this model using a chain of up to 16
ions. We verify the simulation of the Hamiltonian by
showing agreements between theories and experiments
for quantum phase transition and for generic spin dynamics
in small scales. We then perform quantum simulation in
large scales that is generally intractable for classical

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Generic spin dynamics. We initialize the system in j ↑; 0i⊗N , immediately turn on the RH Hamiltonian to evolve the system,
and measure hσizðtÞi of individual spins. (a) Measured data (dots with error bars representing one standard deviation) and theoretical
results from numerically integrating the Schrödinger equation (solid lines) for N ¼ 2 at g ¼ 2π × 2 kHz (red) and 2π × 7 kHz (blue).
The two ions are symmetric and hence only one is plotted. (d),(e) Similar results for N ¼ 4 at g ¼ 2π × 1 kHz (red) and 2π × 6 kHz
(blue) for an ion on the edge and in the center, respectively. (b),(f) The corresponding evolution of entanglement entropy SðtÞ for N ¼ 2
and N ¼ 4 between the left and the right halves of the chain (with both spin and phonon states included) under the two coupling
strengths. (c),(g) Corresponding theoretical results for local phonon numbers ha†i ðtÞaiðtÞi. For N ¼ 4 the solid and the dashed lines are
for the central and the edge sites, respectively. (h),(i) The measured dynamics for the edge and the central spins of an N ¼ 16 chain at
g ¼ 2π × 1 kHz (red) and 2π × 6 kHz (blue).
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supercomputers. This experiment allows exploring rich
ground-state and quantum dynamical properties of the
RH model in future works, and showcases that the trapped
ion system provides an ideal platform to probe and
quantum simulate various spin-boson many-body models,
which naturally arise and play important roles in a number
of physics fields [2–4,9,10,34,35].
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