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We introduce a linear optical technique that can implement ideal quantum teleamplification up to the
nth Fock state, where n can be any positive integer. Here teleamplification consists of both quantum
teleportation and noiseless linear amplification (NLA). This simple protocol consists of a beam splitter and
an (nþ 1) splitter, with n ancillary photons and detection of n photons. For a given target fidelity, our
technique improves success probability and physical resource costs by orders of magnitude over current
alternative teleportation and NLA schemes. We show how this protocol can also be used as a loss-tolerant
quantum relay for entanglement distribution and distillation.
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Introduction.—The ability to amplify an arbitrary state in
a linear, or phase insensitive, manner is useful for a wide
variety of quantum protocols. Unfortunately, the uncertainty
principle means deterministic linear amplification will
always introduce noise, which diminishes the output state’s
quantum characteristics [1,2]. However, noiseless linear
amplification (NLA) is possible for nondeterministic ampli-
fiers, which work with some success probability P < 1
[3–5]. Applications of NLA include quantum secure com-
munication [6–11], quantum repeaters [12–14], entangle-
ment distillation [15,16], quantum sensing [17–19], and
quantum error correction [20,21].
Quantum teleamplification protocols implement quan-

tum teleportation [22] and NLA simultaneously. In this
regard, Pegg et al. proposed a nondeterministic teleporter
for low-energy states called the one-photon quantum
scissor (1-QS), named for its ability to cut or truncate an
arbitrary state up to its one-photon Fock state jψi≡P∞

j¼0 cjjji →
P

1
j¼0 cjjji [23]. Ralph and Lund later real-

ized adjusting a beam splitter in the 1-QS modified the

output state’s amplitudes jψi !1-QSP1
j¼0 g

jcjjji [3]. Hence,
for low-energy states, the 1-QS can also perform an ideal
NLA operation ga

†a up to the one-photon Fock state with
g ∈ ð0;∞Þ gain; this was subsequently experimentally
verified [4,5]. To overcome the low-energy limitation, it
was proposed to split up the input state, before applying
multiple 1-QS in parallel [3,4]. However, for a finite
number of 1-QS, this protocol introduces extra undesirable
factors to the Fock states, distorting the output state a
way from the ideal. Other NLA proposals are similarly
nonideal [24–26].
Rather than multiple 1-QS in parallel, here we propose to

generalize the 1-QS to the n-photons quantum scissor
(n-QS), for any n ∈ Nþ. Previous generalizations of the

QS were only for specific sizes n ∈ f1; 3; 7g [27], and our
fully generalized n-QS protocol contains these previous
results [28]. Our n-QS protocol is a fully scalable linear
optical scheme, which can perform teleamplification on an
arbitrary state perfectly up to the nth Fock state. Other
teleamplification proposals are restricted to specific types
of input states [44]. The 2-QS case is of particular
experimental interest, as it should be immediately acces-
sible with current technology.
In this Letter, we first describe our n-QS protocol,

including its operational mechanism and probability of
success. We show that as an NLA it can produce amplified
states with fidelities that are unreachable by previous
linear-optical NLA protocols. Next, we explain how the
n-QS is also useful as a high-fidelity continuous-variable
teleporter, with orders of magnitude advantages over
current alternatives. We then show that the n-QS can be
used as a loss-tolerant relay for entanglement distillation.
Finally, we discuss how our scheme is tolerant to standard
resource and detector imperfections, and hence remains
advantageous under practical conditions.
Noiseless linear amplifier.—The n-QS operation on an

arbitrary bosonic state jψi truncates the Fock components
after n and performs NLA ga

†a as follows:

jψi≡X∞
j¼0

cjjji !n-QSjgψni ¼ N
Xn
j¼0

gjcjjji: ð1Þ

This is implemented via Fig. 1 using a beam splitter (BS)
and a fixed coherent (nþ 1) splitter called the quantum
Fourier transform (QFT), with n extra resource photons and
n photon detections. The amount of amplification or
deamplification gain g ∈ ð0;∞Þ can be freely chosen by
setting the BS transmissivity to τ ¼ g2=ð1þ g2Þ. The n-QS
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operation only occurs if the correct outcomes are measured.
Two different architectures are shown in Fig. 1, with
(a) requiring jni bunched photons (n-QSBP or BP), while
(b) requiring ⊗n j1i single photons (n-QSSP or SP); we
will differentiate these devices by their state resources.
Because of recent experimental advances, such as in boson
sampling, n-QSSP may be easier to implement; for
example, Ref. [45] experimentally implements the QFT
up to fourth order with single-photon inputs.
The action of the BS B2ðτÞ is a†1 →

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
a†2 −

ffiffiffi
τ

p
a†1,

which describes how the photons are scattered for a given
transmissivity τ. Similarly, the action of an m mode linear
optical network a⃗† → Uma⃗† is captured by anm ×m unitary
scattering matrix Um. The QFT optical device has the
scattering matrix ðFnþ1Þj;k ≡ e−2iπðj−1Þðk−1Þ=ðnþ1Þ=

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
.

This definition justifies the interpretation of the QFT as a
coherent (nþ 1) splitter, as it scatters photons equally
amongst its nþ 1 output ports with fixed phases. An
arbitrary unitary Um can always be decomposed into a
network of at most mðm − 1Þ=2 beam splitters and phase
shifts [46,47]; however, only around half of theQFT network
is needed since only the first two ports are used. As an
example, we use Ref. [47] to decompose 2-QS into a four BS
network, as shown in Fig. 1 for either (c) BP j2i, or (d) SP
j1ij1i resources. The 2-QS is the smallest network
whose useful teleamplification properties were previously
not known.

Here we will highlight the key elements which prove
Fig. 1 implements the n-QS transformation in Eq. (1)
∀ n ∈ Nþ. Firstly, one can show that B2ðgÞj0ijni¼
ð1=ðg2þ1Þn=2ÞPn

j¼0g
jð−1Þj

ffiffiffiffiffiffi
ðnjÞ

q
jjijn−ji, which already

has the gain gj coefficients, though with unwanted

ð−1Þj
ffiffiffiffiffiffi
ðnjÞ

q
factors. The red dashed box in (b) produces

the two-mode output jRni ¼⊗n−1 h0jF†
nþ1j0i ⊗n j1i ¼

ð ffiffiffiffiffi
n!

p
=ðnþ 1Þn=2ÞPn

j¼0ð−1Þj
ffiffiffiffiffiffiffiffiffiffi
ðnjÞ−1

q
jn − jijji. In other

words, the state jRni distorts the Fock states in an inverse
manner to B2j0ijni. Hence, by combining one mode from
each of these states, the overall action of the n-QSSP is

h0jhnjB†
2jRni ¼

ffiffiffiffiffi
n!

p

ðnþ 1Þn=2
1

ðg2 þ 1Þn=2
Xn
j¼0

gjjjihjj: ð2Þ

The n-QSBP is described by the same operator, since it is
the conjugate transpose of this expression. The n-QS
therefore applies ideal ga

†a up to the nth Fock state

jgψni ¼
ffiffiffiffiffi
n!

p

ðnþ 1Þn=2
1

ðg2 þ 1Þn=2
Xn
j¼0

gjcjjji: ð3Þ

The Supplemental Material contains the full proof [28].

FIG. 1. Schematic of our scalable n-photons quantum scissors (n-QS) protocol, which implements noiseless linear amplification or
deamplification of an arbitrary state jψi → ga

†ajψni ¼ jgψni, up to the nth Fock state with perfect fidelity. The gain g ∈ ð0;∞Þ is
chosen by modifying the transmissivity τ ¼ g2=ð1þ g2Þ ∈ ð0; 1Þ of the beam splitter. The quantum Fourier transform is a coherent
(nþ 1) splitter. This n-QS protocol requires either (a) n bunched photons (BP) or (b) n single photons (SP) as a resource. The linear
optical networks for the 2-QS is shown for (c) BP or (d) SP resources.
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The n-QS has a success probability of P ¼ hgψnjgψni,
which can be improved depending on whether we are
considering the BP or SP configuration. For n-QSBP, it is
not required that the vacuum state h0j be detected at the first
output port of Fnþ1, since the QFT is highly symmetric. If
h0j was instead detected in the ðm0 þ 1Þth output port
⊗m0 h1j ⊗ h0j ⊗n−m0 h1j, m0 ∈ f0;…; ng, the output state
will be jgψniwith an extra phase shift that can be corrected
by C1ðm0Þ ¼ eð2iπm0=ðnþ1ÞÞa†a [28]. Utilizing all nþ 1
heralding events enhances the success probability by
PBP ¼ ðnþ 1ÞP. For n-QSSP, the jRni resource state
from the red dashed box in Fig. 1(b) could be prepared
and stored beforehand; assuming jRni is deterministically
available increases the success probability PSP to at least
ððnþ 1Þn=ðnþ 1Þ!ÞP [28]. Note that PSP < PBP for
n ∈ f1; 2g, PSP ¼ PBP for n ¼ 3, and PSP > PBP for
n > 3 [28]. Since there is no difference between the
output states of these configurations, we will use
PXP ¼ maxðPSP;PBPÞ depending on the size n under
consideration.
We will now contrast our protocol with Xiang et al.

(X10) linear optical NLA protocol [4]. An n sized X10
network has n copies of 1-QS in parallel between two n
splitters, and hence requires approximately the same
amount of physical resources as an n-QS. One advantage
of the simplified n-QS structure is that setting a particular
gain requires changing just one BS, while n-X10 requires
changing n BS concurrently. The output state from n-X10
has both the cutoff and distorted coefficients

jψi !n-X10jgϕni ¼ N0Xn
j¼0

1

ðn − jÞ!nj g
jcjjji; ð4Þ

hence the NLA is not ideal in general [3]. The fidelity F can
quantify how far away these output states are from the ideal
NLA output state ga

†ajψi ¼ jgψi [28]. It is clear that an
nmax-QS can amplify any arbitrary state with a nmax upper
energy limit with perfect fidelity. This feat cannot be
replicated by any finite sized n-X10, or by any previous
linear-optical NLA protocol [24,25].
In Fig. 2 we consider amplifying a coherent state and a

single-mode squeezed vacuum (SMSV) state. Our n-QS
has superior fidelity scaling, and hence for a required target
fidelity needs much less resources with better success
probability than the n-X10. For example, Figs. 2(a)
and 2(b) show amplifying the coherent state by g ≈ 3 with
99.9% fidelity requires only an 4-QS with 10−5 success
probability, as opposed to a much larger 24-X10 with 10−24

success probability. Figures 2(c) and 2(d) emphasize the
flexibility of our n-QS protocol, in that we can choose the
best n size for a given input; since SMSV states contain
only even photon numbers, it is best to use even sized n-QS
(odd sizes will give the same fidelity as one size down).
These graphs also show the n-QS has fidelity advantages

even with amplifying SMSV states near maximum squeez-
ing given by g2maxs ¼ 1 (here gmax ≈ 1.9).
Quantum teleporter.—Quantum teleportation is a key

primitive in quantum protocols [48–50], since it allows for
the transfer and manipulation of quantum information
through a shared entangled state; this is possible in both
discrete variable [22] and continuous variable (CV) [51]
regimes. Andersen and Ralph (AR13) proposed a CV
teleportation scheme [29], which could in principle reach
high fidelities with lower energy requirements than stan-
dard CV teleportation [51]. However, in a similar manner as
X10, a finite sized AR13 protocol distorts the output state.
We will demonstrate our n-QS with g ¼ 1, as in Fig. 3(a), is
a better protocol for high-fidelity teleportation. We restrict
ourselves to linear-optical systems, hence both n-AR13 and
n-QS are nondeterministic, and require a comparable
amount of physical resources.
We consider teleporting coherent and SMSV states with

various amplitudes in Fig. 4; we chose higher valued
energy states to show the advantage of our scheme for
larger n. It is clear our n-QS scales with many orders of
magnitude better fidelity in comparison to n-AR13, while
the probability of success scales comparatively. For exam-
ple, teleporting an SMSV using a 4-QS results in superior
fidelity and success probability, while requiring less
resources compared to a 10-AR13.
The AR13 paper illustrated the effectiveness of their

protocol by analyzing the teleportation of a coherent state
superposition jαi þ j − αi with α ¼ 2. The authors note
that to achieve just over 99% fidelity, the standard

FIG. 2. A comparison of our n-QS NLA protocol, as per Fig. 1,
against the n-X10 NLA protocol [4]. The left plots considers a
coherent state input with α ¼ 0.3 amplitude, and the right plots
considers a single-mode squeezed vacuum (SMSV) state input
with s ≈ 0.29 squeezing (such that these states have the same
average photon number). (a),(c) Infidelity 1 − F relative to a
perfect NLA output state. (b),(d) Probability of success PXP.
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teleportation approach requires 500 average photons
(30 dB of squeezing) [51], while n-AR13 requires an
n ¼ 100 photon entangled state [29]. To reach the same
fidelity, our n-QS protocol requires just n ¼ 10 photons.
Loss-tolerant quantum relay.—Here we consider distill-

ing entanglement through a loss channel with η ∈ ½0; 1�
total transmissivity. The n-QS can function as a quantum
relay by distributing the QFT measurement component
over the channel, as shown in Fig. 3(b), such that ηAηB ¼ η.
The distributed 1-QS has previously been shown to be

uniquely loss tolerant, in that it can overcome the repeaterless
Pirandola-Laurenza-Ottaviani-Banchi bound [52] without
quantum memories [30]; the only other known scheme that
can also do this feat is the twin-field quantum key distribution
protocol and its variants [53–56]. We confirm that the
complete set of distributed n-QS are also loss tolerant with
improved usage rates. In other words, instead of having the
entire NLA at Bob’s side (ηA ¼ η; ηB ¼ 1), by placing the
QFT measurement half way (ηA ¼ ffiffiffi

η
p

; ηB ¼ ffiffiffi
η

p
), we

improve the success probability scaling from ηn to ηn=2

[28]. Note here we consider distilling a two-mode squeezed
vacuum or EPR state with χ ¼ 0.25 squeezing.
The logarithmic negativity (LN) is an entanglement

monotone [57,58], and an upper bound for distillable
entanglement [59]. The LN is shown by the solid lines
in Fig. 5(a), which increases with larger n sizes. Maximum
LN occurs with gain approximately gmaxχ

ffiffiffiffiffiffiffiffiffiffiffiffi
ηA=ηB

p
≈ 1

(here gmax ≈ 4), which corresponds to an output state that
is uniformly distributed in the Fock basis [28]. The dashed
lines in these graphs only consider the second moment
covariance correlations, which are more relevant for
Gaussian and CV protocols [60].
The entanglement of formation (EOF) is an entangle-

ment metric [61], whose properties for multimode Gaussian
states are known [31,62–65]. Figure 5(b) is the Gaussian
EOF, which closely resembles the covariance-based LN, as
expected. The gray horizontal lines are pure loss channels

FIG. 3. Our scalable n-QS structure can be applied to many
situations besides NLA, with significant improvements over
existing protocols. We investigate applications for (a) quantum
teleportation and (b) entanglement distillation as a loss-tolerant
quantum relay. Shown are the BP variants.

FIG. 4. A comparison of our n-QS teleportation protocol, as per
Fig. 3(a), against the n-AR13 high-fidelity teleportation protocol
[29]. We consider teleporting an α amplitude coherent state on the
left and an s squeezed SMSV state on the right. (a),(c) Infidelity
1 − F of the teleported output state relative to the input state. (b),
(d) Protocol’s probability of success PXP.

FIG. 5. The amount of entanglement which can be recovered,
using an equally ηA ¼ ηB ¼ ffiffiffi

η
p

distributed n-QS as a quantum
relay, as per Fig. 3(b). We consider a χ ¼ 0.25 amplitude two-
mode squeezed vacuum (TMSV) state into a lossy channel with
η ¼ 0.05 total transmission. The entanglement is measured using
(a) log negativity and (b) Gaussian entanglement of formation.
The solid line considers all correlations (i.e., the entire state),
while the dashed lines only consider second moments (i.e., the
covariance matrix). (c) Protocol’s probability of success Ploss.
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with no QS, where the dashed line has the same initial
squeezing χ ¼ 0.25, and the dotted line is the deterministic
bound with infinite squeezing χ ¼ 1; it is clear this bound
can be beaten by small sized n-QS. Increasing loss does not
significantly change the maximum amount of distillable
entanglement, which is another experimental appealing
feature of this loss tolerant protocol [28].
Experimental imperfections.—Finally, we examined the

effect of noisy, inefficient photon detectors and sources. We
showed that our n-QSBP protocol is tolerant to experi-
mental imperfections, in the same sense as the already
experimentally verified 1-QS [4]. In other words, an
imperfect n-QSBP as an amplifier, teleporter, or relay
results in relative improvements with increased n, in a
similar fashion as the ideal graphs in this Letter.
Unfortunately, the n-QSSP is not tolerant to experimental
imperfections. This is because of how the entanglement
resource is prepared, and a different preparation scheme
could help to improve an imperfect n-QSSP. See the
Supplemental Material for more details [28].
Conclusion.—We introduced the generalized n ∈ Nþ

quantum scissors, which can perform perfect fidelity tele-
amplification up to the nth Fock state. We proved that this
operation can be implemented using two simple scalable
linear-optical networks, with either n single or n bunched
ancillary photons. As a consequence, our n-QS protocol is
shown to have substantial advantages over existing NLA
and teleportation schemes, in terms of fidelity scaling,
success probability, and physical resources. Finally, we
showed that a distributed n-QS quantum relay is loss
tolerant with fast rates, and hence is useful as a building
block for quantum repeater networks.

A. P. L. acknowledges support from BMBF (QPIC-1,
PhoQuant), and the Einstein Research Unit on Quantum
Devices. This research was supported by the Australian
Research Council (ARC) under the Centre of Excellence
for Quantum Computation and Communication
Technology (Project No. CE170100012).

Note added.—The authors recently became aware of a new
related work which investigated noiseless quantum tele-
amplifiers from a different angle [66], based on the
continuous-variable teleportation protocol [51].
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