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We prove that given any two general probabilistic theories (GPTs) the following are equivalent: (i) each
theory is nonclassical, meaning that neither of their state spaces is a simplex; (ii) each theory satisfies a
strong notion of incompatibility equivalent to the existence of “superpositions”; and (iii) the two theories
are entangleable, in the sense that their composite exhibits either entangled states or entangled
measurements. Intuitively, in the post-quantum GPT setting, a superposition is a set of two binary
ensembles of states that are unambiguously distinguishable if the ensemble is revealed before the
measurement has occurred, but not if it is revealed after. This notion is important because we show that, just
like in quantum theory, superposition in the form of strong incompatibility is sufficient to realize the
Bennett-Brassard 1984 protocol for secret key distribution.
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Introduction.—When one looks back at the magnificent
conceptual revolution that quantum mechanics sparked
almost a century ago, two discoveries stand out as marking
a decisive departure from classical physics, namely, the
superposition principle and the existence of entanglement.
The former can be exploited to design powerful crypto-
graphic protocols [1,2], while the latter implies, via Bell’s
theorem [3,4], that the correlations exhibited by separate
systems cannot be explained by means of local hidden
variable models. These consequences of superposition and
entanglement are predicted by the formalism of quantum
mechanics but can also be understood operationally, as
simple statements concerning the frequencies of certain
measurement outcomes. They can thus be regarded as
theory independent: any future “ultimate” theory of nature,
which may overcome quantum mechanics, must encom-
pass them and explain those experiments.
What is theory dependent is the connection between

these two notions. Namely, it is only within the formalism
of quantum theory that we can understand entanglement as
the superposition principle applied to different product
vectors of a tensor product Hilbert space [5,6]. The fact that
the connection between two fundamental and experimen-
tally verified phenomena can only be understood by means
of the mathematical formalism pertaining to a specific
framework is conceptually unsatisfying. What is more, this
makes our understanding more dependent on the current
theoretical paradigm—which is, most likely, incomplete.
And indeed, recently there have been several attempts to

investigate the interplay between these two notions in an
a priori fashion [7–12].
In this Letter we introduce the concept of strong

incompatibility, showing that it leads naturally to the
sought-after theory-independent connection between
superposition and entanglement. This promotes such a
connection from a mere accident of the mathematics
underpinning quantum mechanics to a logical necessity.
This connection is illustrated in Fig. 1, which depicts how
strong incompatibility as given by Theorem 2 connects
nonclassicality and superposition with entangleability, and
at the same time allows us to construct a version of the
Bennett-Brassard 1984 (BB84) cryptographic protocol [1]
in any nonclassical theory.

FIG. 1. Connections between the notions of nonclassicality and
superposition and entangleability via that of strong incompati-
bility, which is also key to implementing the BB84 protocol.
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To pursue our program, we need a framework capable of
encompassing all physical theories obeying minimal opera-
tional requirements, beyond standard quantum theory. The
formalism of general probabilistic theories (GPTs) accom-
plishes precisely that [13–18]. A brief introduction can be
found below or in Refs. [19–22]. Before explaining our
result, we need to answer a few questions.
(I) What does it mean that a certain theory is non-

classical? The answer we shall adopt is that its state space
should not be described by a classical probability theory:
that is, there should not be a finite set of “elementary states”
that are both (a) perfectly distinguishable by a measure-
ment; and (b) such that any other state can be written as a
statistical mixture of them. In the geometric language of
GPTs, this amounts to saying that the state space is not
shaped as a simplex, the multidimensional generalization of
the triangle and tetrahedron.
(II) How can we define superposition without reference

to quantum theory? The difficulty here lies in the fact
that without a Hilbert space, not available in a generic
GPT, there is no notion of linear combination of state
vectors. However, we can try to follow a different route:
the operational notion of superposition stems from the
comparison between the two ensembles of single-qubit
quantum states fj0i; j1ig and fjþi; j−ig, where j�i ¼
ð1= ffiffiffi

2
p Þðj0i � j1iÞ. These ensembles, when mixed with

equal weights, give rise to the same density matrix; further,
identifying the state unambiguously via a measurement is
possible or impossible depending on whether the ensemble
is revealed before or after the measurement is carried out.
We will use such ensembles, termed strongly incompatible,
as a way to identify the existence of superpositions in an
arbitrary GPT. Theorem 2 below shows that this is a
meaningful ansatz, as superpositions exist if and only if
the theory is nonclassical.
(III) What does it mean that two theories exhibit

entanglement when combined? Let us distinguish between
entanglement at the level of states and of measurements.
The former means that there are states on the bipartite
system that cannot be written as a statistical mixture of
uncorrelated (product) states. The latter, accordingly,
means that there are bipartite effects that are not a positive
linear combination of product effects.
General probabilistic theories.—In the most general

sense, a physical theory is simply a set of rules that allow
to deduce a probabilistic prediction of the outcome of an
experiment given the detailed description of its preparation.
From this abstract description one can deduce, via
Ludwig’s embedding theorem [14,15,20], the mathematical
formalism of general probabilistic theories that we will now
describe [20–22].
The fundamental object needed to model an arbitrary

physical system is its state space; mathematically, this will
be represented by a generic convex and compact subset Ω
of some finite-dimensional real vector space [23].

Physically, a state ω ∈ Ω should be thought of as a
description of a preparation procedure for the system under
examination. The convexity of Ω reflects the fact that
preparation procedures can be mixed stochastically: the
ensemble fpi;ωig, which corresponds to the physical
procedure of drawing a random variable I and preparing
the system in the state ωi, is represented within the
formalism by the convex mixture

P
i piωi.

It is useful to include into the picture not only normalized
but also un-normalized states. To do so, we imagine an
augmented vector space V where we introduce a proper
cone C, i.e., a set C ⊂ V that is closed under positive scalar
multiplication, and moreover: (i) convex; (ii) salient, mean-
ing that C ∩ ð−CÞ ¼ f0g; (iii) generating, in the sense that
C − C ¼ V; and (iv) topologically closed (Fig. 2). The state
space Ω is then recovered as the section of C identified
by the equation u ¼ 1, where u ∈ V� is a “normalizing”
functional, called the order unit, belonging to the dual
vector space V� and (v) strictly positive on C, i.e., such that
uðxÞ > 0 for all x ∈ C with x ≠ 0. We can summarize the
above discussion by giving an abstract definition of a GPT
as any triple ðV;C; uÞ, where V is a real finite-dimensional
vector space, C ⊂ V is a proper cone inside it, and u ∈ V�
is a strictly positive functional on C.
This makes V an ordered vector space: for any two

x; y ∈ V, we define the ordering by stipulating that x ≤ y if
y − x ∈ C. Notably, this ordering is not total, i.e., it is
possible that neither x ≤ y nor y ≤ x. The dual space V�
inherits an ordering from V: for f; g ∈ V�, we write f ≤ g if
fðωÞ ≤ gðωÞ for all ω ∈ Ω [equivalently, fðxÞ ≤ gðxÞ for
all x ∈ C]. The cone of positive functionals in V�, called
the dual cone to C, is denoted with C�. Remarkably, for
proper cones C we have the identity C�� ¼ C.
To complete our picture we need to discuss measure-

ments. A physical measurement together with one of its
possible outcomes will be represented mathematically by
an effect. This is just a linear functional e ∈ V�; for every
state ω ∈ Ω, the value eðωÞ is interpreted as the probability
that the corresponding outcome occurs when that state is
measured, and thus 0 ≤ eðωÞ ≤ 1. Employing the above

FIG. 2. The basic ingredients of a GPT are a real finite-
dimensional vector space V and a cone C. The order unit
functional u defines a hyperplane u−1ð1Þ, whose intersection
with C identifies the state space Ω.
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notion of ordering on V�, we see that 0 ≤ e ≤ u. A fully
fledged measurement will then be a (finite) collection
of effects ðeiÞi∈I , where ei ∈ V� with ei ≥ 0 for all i,
and moreover

P
i∈I ei ¼ u, so that the outcome probabil-

ities add up to 1.
Is this mathematical description of measurements com-

plete? Namely, given a collection of effects summing to u,
can it be physically implemented as a measurement
procedure? If so, the system is said to satisfy the no-
restriction hypothesis [24,25]. We deem this assumption
natural, for the following reasons: classical theories (exam-
ple 1) and quantum mechanics satisfy it; assuming addi-
tional restrictions is unnecessary and thus should be
avoided whenever possible; the no-restriction hypothesis
does not limit the mathematical validity of our results, as in
theories with restrictions one only needs to check whether
the needed effects are available; finally, dropping this
assumption trivializes the problem from the mathematical
standpoint (see below). Thus, throughout this Letter we
will always include the no-restriction hypothesis in our
theoretical framework.
To make the GPT formalism we have sketched more

concrete, let us discuss an important example of it.
Example 1: Classical theories as GPTs.—In classical

theory the cone C is generated by a set of linearly
independent states. It then follows that the state space is
a simplex and that every state is given as a unique convex
combination of the generating states.
Strong incompatibility.—We consider a strengthened

version of the well-known notion of incompatibility and
prove that it is in fact fully equivalent to non-classicality
(Fig. 1). The incompatibility we have in mind here is both
at the level of states and at the level of effects. While the
latter notion is the more commonly studied, its opera-
tional interpretation resting on the fact that two measure-
ments are compatible if and only if they can be
implemented jointly [26], one also encounters the con-
cept of incompatibility of states when investigating
whether a given assemblage has a local hidden state
model [27]. Moreover, within the context of GPTs the
cones generated by states and effects are dual to each
other, so it is natural that the two versions of incompat-
ibility be treated on equal footing. Given a vector space V
ordered by a cone C, two finite families of vectors xi ∈ C
and yj ∈ C are said to be compatible if one can find
zij ∈ C, such that

P
j zij ¼ xi and

P
i zij ¼ yj for all i, j;

they are said to be incompatible otherwise. Clearly, a
necessary but in general not sufficient condition for
compatibility is that

P
i xi ¼

P
j yj. If ðV;C; uÞ forms

a GPT, we can try to find incompatible vectors either in
the primal space V, C or in the dual space V�, C�.
The connection between incompatibility and nonclassi-

cality of GPTs has been explored thoroughly [9,28–36].
For instance, it is known that a GPT is nonclassical if
and only if it admits two incompatible binary

measurements [34,36]. Here we establish a modified and
stronger version of this fact:
Theorem 2.—A proper cone C is nonclassical if and only

if there are vectors 0 ≠ x0; x1; xþ; x− ∈ C and functionals
f0; f1; fþ; f− ∈ C� such that (i) x0 þ x1 ¼ xþ þ x− and
f0 þ f1 ¼ fþ þ f−; (ii) f0ðx1Þ ¼ f1ðx0Þ ¼ fþðx−Þ ¼
f−ðxþÞ ¼ 0; and (iii) fi þ fj is strictly positive, for all
i ∈ f0; 1g, j ∈ fþ;−g.
The proof of Theorem 2 is in the Supplemental Material

[37]. At first sight it may not be clear what Theorem 2 has
to do with the notion of incompatibility. However, the two
families of vectors x0, x1; xþ; x− constructed there are in
fact incompatible. Indeed, assume that a decomposition
ðzijÞij ∈ C holds, so that

P
j zij ¼ xi and

P
i zij ¼ xj.

Then 0 ¼ f1ðx0Þ ¼ f1ðz0þ þ z0−Þ ≥ f1ðz0þÞ ≥ 0 and
analogously 0¼f−ðxþÞ¼f−ðz0þþz1þÞ≥f−ðz0þÞ≥0, so
that f1ðz0þÞ ¼ f−ðz0þÞ ¼ 0. Since f1 þ f− must be
strictly positive and ðf1 þ f−Þðz0þÞ ¼ 0, it holds that
z0þ ¼ 0. Repeating this reasoning we reach the absurd
conclusion that zij ≡ 0 for all i, j; hence, the vectors x0, x1;
xþ; x− were incompatible.
As we will show in the next section, Theorem 2 solidifies

our idea of defining superposition as described in the
Introduction [see (II)]. Indeed, one can draw a direct
parallel between the two families of vectors x0, x1;
xþ; x− and the quantum states j0i, j1i; jþi, j−i representing
states of a qubit, where j�i ¼ ð1= ffiffiffi

2
p Þðj0i � j1iÞ. The

corresponding effects f0, f1; fþ; f− are then simply
the projections onto the subspaces generated by the
respective vectors. In this sense, Theorem 2 implies that
any nonclassical state space exhibits an operational form
of discord [38,39].
BB84 protocol in GPTs.—As the main application of the

theory developed here, we design a version of the BB84
protocol [1] for secret key distribution over a public
channel that works in any nonclassical GPT. The idea
comes from the aforementioned parallel between the
families of vectors x0, x1; xþ, x− and the quantum states
j0i, j1i; jþi, j−i. Since the latter are employed in the
quantum BB84 protocol, it is natural to ask whether the
former can be used in a similar way in any nonclassical
GPT ðV;C; uÞ. To this end, let x0, x1; xþ, x− and f0, f1; fþ,
f− be the vectors given by Theorem 2. Construct states
ρ0; ρ1; σþ; σ− ∈ Ω such that piρi ¼ xi and qjσj ¼ xj for
some pi; qj > 0. Then, p0ρ0 þ p1ρ1 ¼ qþσþ þ q−σ−. By
rescaling if necessary, we can assume that p0 þ p1 ¼ qþ þ
q− ¼ 1 and similarly that f0 þ f1 ¼ fþ þ f−≕l ≤ u.
Now, Alice tosses a fair coin; if heads, she prepares one

of the states ρ0, ρ1 (with a priori probabilities p0, p1); if
tails, one of the states σþ; σ− (with a priori probabilities
qþ; q−). Since p0ρ0 þ p1ρ1 ¼ qþσþ þ q−σ−, an eaves-
dropper Eve cannot discern these two scenarios. Unlike
in the quantum case, it is not guaranteed that Bob can
perfectly discriminate ρ0, ρ1 or σþ; σ−; however, he will
toss a fair coin too, and run an unambiguous state
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discrimination procedure using the measurements f0; f1;
u − l (if heads) or fþ; f−; u − l (if tails). This introduces
an additional error, as the rounds where Bob obtains the
outcome u − l have to be discarded. Despite that, Alice
and Bob can proceed as usual: they make the results of their
coin tosses public and remove the rounds for which either
the choices of preparation and measurement were different
or Bob obtained the outcome u − l. In the remaining cases
the choices of preparation and measurement correspond,
and Bob’s outcome was not u − l. By Theorem 2(ii), Bob
has thus recovered with no error the key bit i. In this way
Alice and Bob obtain a shared key. One of the significant
differences with the quantum case is that this key is not
automatically secret. In fact, the information revealed to
Eve is correlated with the key bit. To remedy this, Alice and
Bob can run the secret key distillation protocol proposed
by Maurer [40] to extract a truly secure key. A detailed
description of this step as well as proof that it achieves a
nonzero secret key rate can be found in the Supplemental
Material [37].
Bipartite systems.—In order to describe entanglement

we need to discuss bipartite systems first. Given two
systems A, B modeled by GPTs A ¼ ðV1; C1; u1Þ and
B ¼ ðV2; C2; u2Þ, can we represent also the joint system
AB as a GPT AB ¼ ðV12; C12; u12Þ? In this context, a
natural assumption—which we shall adopt throughout the
Letter—is the local tomography principle. In layman’s
terms, it states that the composite system should not contain
more degrees of freedom than its parts. More formally, we
require that the statistics under product measurements
determine any state of the bipartite system uniquely.
With this assumption, one can prove the familiar tensor
product rule [41,42]

V12 ¼ V1 ⊗ V2; u12 ¼ u1 ⊗ u2: ð1Þ

Two operationally motivated constraints on the cone C12

come from the fact that independent local actions, namely,
state preparations and measurements, should be faithfully
represented in the bipartite picture as well. More formally,
(i) local (tensor product) states should also be valid bipartite
states, and (ii) local (tensor product) effects should also
be valid effects on the bipartite system. Introducing the
minimal and the maximal tensor product of the cones C1

and C2, defined by

C1⊗
min

C2 ≔ convfx ⊗ y∶x ∈ C1; y ∈ C2g; ð2Þ

C1 ⊗
max

C2 ¼
�
C�
1⊗
min

C�
2

��
; ð3Þ

where conv denotes the convex hull, we can rephrase (i) as
C1 ⊗min C2 ⊆ C12 and (ii) as C�

1 ⊗min C�
2 ⊆ C�

12. By com-
bining the former relation with the dual of the latter we
obtain the twofold bound

C1⊗
min

C2 ⊆ C12 ⊆ C1 ⊗
max

C2 ð4Þ

on the bipartite cone C12. We can now formalize the answer
to question (III) in the Introduction: the existence of
entanglement at the level of states or measurements is
equivalent to one of the two inclusions in Eq. (4) being
strict. In turn, this happens if and only if

C1⊗
min

C2 ≠ C1 ⊗
max

C2; ð5Þ

i.e., if the minimal tensor product is a strict subset of the
maximal tensor product. When this is the case we call A, B
entangleable. One interesting aspect of this definition of
entangleability is that it is independent of the bipartite cone:
whatever C12 is, Eq. (5) guarantees that the joint system
will exhibit either entangled states or entangled measure-
ments (or both).
Entangleability.—Our result on entangleability is as

follows:
Theorem 3.—Two GPTs A, B are entangleable if and

only if they are both nonclassical.
A somewhat abstract proof of the above result can be

found in Ref. [43]. However, thanks to Theorem 2 intro-
duced here, we can now present a more intuitive proof
of Theorem 3 [37]. Indeed, given two nonclassical
GPTs A ¼ ðV1; C1; u1Þ and B ¼ ðV2; C2; u2Þ, thanks to
Theorem 2 we can construct an explicit tensor belonging to
C1 ⊗max C2 but not to C1 ⊗min C2, thus demonstrating
Eq. (5). In order to do this, we invoke Theorem 2 for the
cone C1 (C2) to construct vectors 0 ≠ x0; x1; xþ; x− ∈ C1

and functionals f0; f1; fþ; f− ∈ C�
1 (vectors y0; y1;

yþ; y− ∈ C2 and functionals g0; g1; gþ; g− ∈ C�
2) satisfying

conditions (i)–(iii). We then construct the state ω ¼
x0 ⊗ yþ − xþ ⊗ yþ þ xþ ⊗ y0 þ x1 ⊗ y1. It turns out that
ω ∈ C1 ⊗max C2nC1 ⊗min C2, thus implying Eq. (5), i.e.,
A, B are entangleable. The proof of this claim consists
of two parts: first we show that ω ∈ C1 ⊗max C2, which
follows straight from (i). To demonstrate that ω ∉ C1 ⊗min
C2 we construct a Bell-like inequality of the Clauser-
Horne-Shimony-Holt (CHSH) type [44], using the func-
tionals f0; f1; fþ; f−, and prove that it is violated. Since
in general f0 þ f1 ¼ fþ þ f− ≠ u, the aforementioned
Bell-like inequality is not necessarily a Bell inequality in
the underlying GPTs, and the question whether any two
nonclassical GPTs violate some Bell inequality is still
open. The other implication of Theorem 3 is easy: if either
A ¼ ðV1; C1; u1Þ or B ¼ ðV2; C2; u2Þ is classical, then it
can be seen directly that C1 ⊗min C2 ¼ C1 ⊗max C2, i.e., A
and B are not entangleable [45,46].
The above Theorem 3 pinpoints a profound and

intrinsic connection between nonclassicality—and thus,
superposition—and entanglement: the two notions are
not merely linked by a mathematical accident of the
quantum mechanical formalism but rather two sides of
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the same coin. Theorem 3 relies on two main assumptions:
first, the no-restriction hypothesis, positing that every
mathematically consistent effect is physically realizable;
and second, the local tomography principle, which entails
that combining two systems does not lead to the appear-
ance of new degrees of freedom. These two assumptions
are not only natural but also necessary to avoid the
mathematical trivialization of the problem. In fact, by
dropping the no-restriction hypothesis it is possible to
enforce a minimal tensor product composition rule at the
level of states and of measurements at the same time,
eliminating entanglement somewhat artificially. On the
other hand, without local tomography the dimension of
the linear span of C12 is larger than that of the span of
C1 ⊗min C2, directly implying the existence of entangled
states [10] (Proposition 2).
Conclusions.—We have showed that superpositions are

present in every nonclassical GPT and that even in opera-
tional settings they allow us to prove existence of BB84
protocol and entanglement. Our results, bypassing the
Hilbert space structure of quantum theory, give a counter-
example to possible axiomatizations of it [47]: for example,
it is known that existence of purifications [25,48], certain
symmetries [49,50] or a strong symmetry condition and
spectrality [51,52] are enough to single out quantum(-like)
theories among other nonclassical theories. Our results
show that existence of superpositions, entanglement, and
availability of BB84 protocol do not restrict the set of
possible nonclassical theories at all.
Our techniques rely on the novel notion of strong

incompatibility, which enabled the construction of a uni-
versally entangled tensor and of a generalized version of
the BB84 protocol in any nonclassical GPT. It is an open
question whether one can derive other properties such as no
broadcasting [53] from strong incompatibility. It is also
open whether the violations of Bell inequalities and steer-
ing exist in any nonclassical GPT; we anticipate that strong
incompatibility may play an important role in investigating
this question.
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