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A unique feature of non-Hermitian (NH) systems is the NH skin effect, i.e., the edge localization of an
extensive number of bulk-band eigenstates in a lattice with open or semi-infinite boundaries. Unlike
extended Bloch waves in Hermitian systems, the skin modes are normalizable eigenstates of the
Hamiltonian that originate from the intrinsic non-Hermitian point-gap topology of the Bloch band energy
spectra. Here, we unravel a fascinating property of NH skin modes, namely self-healing, i.e., the ability to
self-reconstruct their shape after being scattered off by a space-time potential.
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Introduction.—Self-healing is the fantastic property of
certain classical or quantum (matter) waves to reconstruct
their original shape after being scattered off by a potential (an
obstacle) [1-3]. Such a special property is rather generally
shared by diffraction-free and, thus, non-normalizable (delo-
calized) states of the underlying wave equation. Important
examples include Bessel waves of the Helmholtz equation
[1,2,4] and self-accelerating (Airy) waves of the Schrodinger
equation [3,5,6]. Self-healing has been demonstrated for
optical [1,3,7-10], acoustic [11-14], and matter waves
[15,16], with a variety of applications in different areas
of science such as in microscopy and biomedical imaging
[17-19], material processing [20], particle manipulation
[21,22], sensing [8-10], and quantum communications
[23]. However, in a norm-preserving (Hermitian) system,
any normalizable (bound) wave function cannot be strictly
self-healing. An interesting and open question is whether
infinitely many self-healing normalizable waves can exist in
non-Hermitian (NH) systems [24]. An important class of
such systems is provided by NH lattices, where the role of
topology and its far-reaching physical consequences are
attracting an enormous interest [25—100] (for a recent review,
see [79]). A unique feature of NH lattices is the skin effect
[29-31,33,55], i.e., the localization of an extensive number
of bulk eigenstates at the edges under open (OBC) or semi-
infinite (SIBC) boundary conditions. The localized skin
modes replace the extended Bloch waves of Hermitian
lattices and their origin can be traced back to the nontrivial
point-gap topology of the bulk energy spectra under periodic
boundary conditions (PBC), thus, establishing a bulk-edge
correspondence for skin modes [27,55].

In this Letter, we unveil that topological skin edge
modes share the fascinating property of being self-healing
waves. Like non-normalizable diffraction-free waves in
Hermitian systems, in one-dimensional (1D) NH lattices
with SIBC, there are infinitely many localized (normal-
izable) topological skin edge states that can reconstruct
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their shape after being scattered off by a rather arbitrary
space-time potential.

Wave self-healing.—Let us consider the time-dependent
dynamics of a wave function |y(7)) described by the
Schrodinger-like wave equation

i) = (D)), (1

where H is the time-independent Hamiltonian of the
system, which is assumed rather generally NH, and V =
V(t) describes a space-time local scattering potential (the
“obstacle”), which vanishes for r > T and with compact
support in space [Fig. 1(a)]. At initial time ¢ =0, the
system is prepared in the state |y (0)) = |$(0)), and let
|p(2)) be the evolved wave function in the absence of
the scattering potential V, i.e., (1)) = exp(—iH1)|(0)).
Clearly, the presence of the scattering potential destroys the
unperturbed evolution of the wave function, so that after
interaction with the potential, i.e., for # > T, |y(f)) can
largely deviate for ever from the unperturbed solution
|p(1)). The wave function |¢(z)) is dubbed self-healing
if the deviation |&(¢)) = |w(t)) — |¢(2)) is asymptotically
much smaller than |¢(¢)) as t — oo regardless of the form
of V, ie., provided that [Fig. 1(a)] lim,_, () = 0, where

W)
) = 1601e0) @

Note that the above condition corresponds to || (7) —
$(1)|| = 0 for the normalized wave functions [i(z)) =

lw(e)/lw ()|l and |(1)) = [¢(1))/l|#(7)||. Clearly, in a

Hermitian system owing to norm conservation, any normal-
izable wave function is not strictly self-healing, though it
can approximate an extended (non-normalizable) wave
function at some extent [6]. For example, for a freely

© 2022 American Physical Society


https://orcid.org/0000-0002-8739-3542
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.157601&domain=pdf&date_stamp=2022-04-12
https://doi.org/10.1103/PhysRevLett.128.157601
https://doi.org/10.1103/PhysRevLett.128.157601
https://doi.org/10.1103/PhysRevLett.128.157601
https://doi.org/10.1103/PhysRevLett.128.157601

PHYSICAL REVIEW LETTERS 128, 157601 (2022)

(b)

Im(E)

self-healing
edg

obstacle

0/ space x

FIG. 1. (a) Sketch of wave function propagation and self-
healing property. After being scattered off by a space-time
localized potential (the obstacle), the wave function w/(x,1)
can reconstruct its shape, as if the scattering potential was not
present. (b) In a NH semi-infinite lattice with a left boundary, any
topological edge skin mode at energy E with W(E) <0 and
Im(E) > E,, (shaded area in the figure) is a self-healing wave
function. In the figure, the outer closed loop describes the energy
spectrum o(Hppc), whereas the inner open arc is the energy
spectrum o(Hopc)-

moving quantum particle in a one-dimensional space,
H = —-0%/0x%, the self-accelerating Airy solutions to
the time-dependent Schrodinger equation [5] are non-
normalizable self-healing waves [3]. Other non-
normalizable self-healing modes include Bessel waves,
parabolic cylinder waves, Weber and Mathieu beams,
Bloch surface waves, and others (see, e.g., [2,9,101]).
However, in a NH system, propagation-invariant normal-
izable waves can be found [102].

Energy spectra, topological skin modes, and the bulk-
edge correspondence.—We consider a one-dimensional
NH lattice with short-range hopping with Hamiltonian A
in physical space given by

H="" H,n, (3)

n,l=1

where H, ;is a N x N banded matrix and N is the number
of lattice sites. We indicate by Hppc and Hppc the N x N
matrix Hamiltonians under PBC and OBC, respectively, in
the large (thermodynamic) N limit. For a single-band
model, Hopc is a banded Toeplitz matrix, i.e., (Hopc),; =
t,_;witht, =0forn > sand n < —r (t_,, t; # 0), where
t,; are the left or right hopping amplitudes among sites
distant 4=/ in the lattice and r, s > 1 are the largest orders of
left or right hopping. Hppc is a circulant matrix with the
same form as Hogc, except for the top right and bottom left
corners of the matrix. Finally, we indicate by Hgqpc the
infinite-dimensional matrix Hamiltonian under SIBC with
aboundary on the left but not on the right, i.e., (Hgipc),.; =
t,_; for n,1 =1,2,3,.... The central result in the band
theory of NH systems is that the energy spectra o(Hpgc),
o6(Hogc) and o(Hgpc) are rather generally distinct, which
implies the emergence of the NH skin effect, topological

NH edge states, and the need for a non-Bloch band
theory. These results, studied in several recent Letters
[30,38,40,55,59,60] and briefly reviewed in Sec. 1 of
[103], are basically rooted in the spectral theory of non-
self-adjoint Toeplitz matrices and operators [104—-107].
Specifically, for a single-band lattice: (i) o(Hppc) is a
closed loop in a complex energy plane described by the
Bloch Hamiltonian H (k) = P[f = exp(ik)|, where P(f) =
Y, t,f is the Laurent polynomial associated with the
Toeplitz matrix and —z < k < 7 is the Bloch wave number.
(il) 6(Hppc) is the set of complex energies E = P(f3),
where /3 varies on the generalized Brillouin zone (GBZ) Cp.
6(Hopc) is always topological trivial in terms of a
point gap [55]. The definition and calculation of Cy is
discussed in [30,38,59,60], and briefly reviewed in [103].
(iii) o(Hspc) = o(Hppc) U B, where B is the interior of
the PBC energy spectrum loop such that for £ € B the
winding number W(E), defined by

W(E) = QLIU/_Z dk%logdet {H(k)-E}, (4)

is nonvanishing. If W(E) < 0, then E is an eigenvalue of
Hgpc of multiplicity |W(E)|, and the corresponding (right)
eigenvectors are exponentially localized at the left edge.
Such a result provides a bulk-boundary correspondence for
NH systems, relating the appearance of skin edge states in a
semi-infinite lattice to the topology of the PBC energy
spectrum [55].

Self-healing of topological skin modes.—The central
result of this Letter is that, in NH lattices displaying the
NH skin effect, there are infinitely many skin edge modes
that are self-healing. Specifically, let us consider a one-
dimensional NH lattice with SIBC, with a boundary on the
left but no boundary on the right, and with a GBZ C, y; that is,
at least partly, external to the unit circle (to ensure the
existence of left-edge skin states). The local scattering
potential is assumed to have a compact support both in
space and time, i.e., V = V,(¢)|n)(n| with V, () = 0 for
t>T and n> L. Let us indicate by E,, the largest
imaginary part of the energies in the set o(Hqgc),
ie., E, = maxgec, In{P(B)}; E,, the largest imaginary
part of the energies E in the set B defined by {E €
B|W(E) > 0}; and E,, = max(E,, ,E,,). Note that the
set B is empty if the GBZ is entirely external to the unit
circle |3| = 1, i.e., if there are not Bloch points [38]; in this
case, one should assume E,, = E,,; [as in Fig. 1(b)]. The
following theorem can then be proven, which is illustrated
in Fig. 1: any topological skin edge state |¢p(z)) =
o) exp(—iEyt) with energy E, and W(E;) <0 is self
healing if and only if Im(E,) > E,,. A simple corollary of
this theorem is that any topological skin edge state
belonging to Hqopc is not self-healing, because, in this
case, one has Im(Ey) < E,; <E,,.
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Here, we provide a sketch of the proof of the theorem
(technical details are given in [103]). Let us indicate by
lw (7)) the wave function satisfying Eq. (1) with the initial
condition [y(0)) = |ho). and let |E(1)) = (1) — |()) be
the deviation of the wave function |y(¢)) from the unper-
turbed (skin edge eigenstate) solution. The proof consists of
two main steps. In the first step, one shows that, after
interaction with the scatting potential, the deviation &,(T) =
(n|&(T)) vanishes as n — oo faster than exponentially,
i.e., for any h >0 one has lim,_ &,(T)exp(hn) = 0.
Physically, this result stems from the fact that, since the
hopping in the lattice is finite (short range), and the scattering
potential has a limited support in space (V,, = 0 forn > L),
the speed of excitation spreading in the lattice arising from
the interaction with the scattering potential is bounded
(according to the Lieb-Robinson bound [27]), and thus,
after interaction, &,(7) remains basically unperturbed, i.e.,
very close to zero, for large enough n. The fast decay of &,
with n mathematically justified by the asymptotic form of
the exponential of a banded matrix [108] (Sec. 2 of [103]).
Then, let us indicate by |3) the set of eigenfunctions of Hgc
(skin modes) with energy P(f3) belonging to o(Hopc), i.€.,
Hogc|f) = P(P)|p) with p € Cy. Note that [) is also an
eigenstate of Hgigc when || > 1 in the N — oo limit. For
large n, (n|p) behaves as (n|f) ~ p~"[1 + Azexp(—ifzn)]
with some f-dependent constants A and . Since |£(T)) is
bounded with a localization higher than any exponential, one
can decompose |£(T)) as a superposition (integral) of |/3)
skin states, i.e., one can write (Sec. 1 of [103]) |&(T)) =

fcﬂ dBF(P)|) with F(p) nonsingular on Cj. Since V =0
for t > T, after the scattering event, the wave function |&(¢))
evolves according to the Schrodinger equation i0,|&) =
Hgpc|é), so that for 7 > T, one has |£(f)) = fcl, dpF(p)x

exp[—iP(f)(t — T)]|p). The second step is to calculate the
growth rate of ||£(2)||? = (&()|£(z)). To this aim, one has to
distinguish two cases (Sec. 3 of [103]). If Cy is entirely
external to the unit circle, i.e., || > 1 for any p € Cy, the
growth rate of [|&(2)|| is E,,; = maxsec, Im[P(p)], which is
attained at the value f; € Cy corresponding to the most
unstable saddle point of P(f3). Since ||¢p(¢)|| grows in time as
~exp[Im(E)?], one has lim,_ e(f) =0 if and only if
Im(E,) > E,,, where ¢(z) is defined by Eq. (2) and
E, = E,, . On the other hand, if a portion of Cj is internal
to the unit circle, the asymptotic analysis shows that the
growth rate of ||£(#)|| is the larger number between E,, and
E,,,, where E,, is the largest imaginary part of energies in
the set B [103]. This proves the theorem. [ ]

As an illustrative example, let us consider a lattice with
nearest- and next-nearest-neighbor hopping (r = s = 2).
Figure 2 shows the energy spectra 6(Hpgc), 6(Hopc) and
o(Hggc) and corresponding GBZ, which is entirely
external to the unit circle with E,, = E, ~0.5. In the
wide light shaded region of Fig. 2(a), for each complex

Im(B)

6(Hosc)

N
S

Re(B)

FIG. 2. (a) Energy spectrum of Hpgc (outer thin closed loop
with one self-intersection), Hopc (inner bold open arcs) and
Hgpe (shaded areas) of a NH lattice with nearest- and next-to-
nearest neighbor hopping amplitudes 7, =1, t_; =1, 1, =0,
t; = 0.7, and 7, = 0.8. In the light shaded area, W(E) = —1,
corresponding to simple (nondegenerate) skin edge state, whereas
in the dark shaded area, W(E) = —2, corresponding to the
existence of two energy-degenerate skin edge states of Hgpc.
The largest value E,, of Im[o(Hopc)] is E,, = 0.2. (b) The
numerically computed GBZ Cj, corresponding to a deformed
circle with || > 1 all along C. The thin dashed curve depicts the
reference unit circle || = 1.

energy E, there is a single topological skin edge state
(W = —1), while when E is internal to the narrow dark
shaded region encircling the origin, there are two linearly
independent skin edge states (W = —2). To show the self-
healing property of skin edge states, we consider a strongly
absorbing potential V() = —10i which is nonvanishing
in the interval 2 <f<4 and in the spatial region
1 <n <L =10. The initial state |¢,) is chosen to be a
skin edge state with an energy E, in the stable
(Im(Ey) > E,,) or unstable (Im(E,) < E,,) regions. The
self-healing property is measured by the long-time behavior
of €() [Eq. (2)]. Figure 3 illustrates the typical numerical
results of wave propagation in the lattice, corresponding
to the self-healing of the skin mode for Im(E,) > E,,
[Fig. 3(a)], and to the disruption of the skin mode for
Im(E,) < E,, [Fig. 3(b)]. The results are obtained by
solving Eq. (1) in Wannier (real-space) basis by an accurate
fourth-order Runge-Kutta method on a finite-sized lattice
with OBC and with a size wide enough (N = 300 sites) to
avoid right-edge effects over the largest propagation time
(t ~ 20), which would destroy the SIBC skin state [27,109].
A strategic method to selectively prepare the system in a
self-healing SIBC edge state is discussed in [109] and in
Sec. 5 of [103]. As is clearly shown in the left panel of
Fig. 3(a), the strongly absorbing potential cuts the excita-
tion at lattice sites n < L, however, after the scattering
process the skin edge state can restore its original shape,
corresponding to a vanishing of e(¢) [right panel of
Fig. 3(a)]. A different behavior is observed in Fig. 3(b),
where the skin edge state cannot restore its original shape,
and () does not decay toward zero. We checked [103] that
the self-healing property can also be observed when there
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FIG. 3. Self-healing of topological skin edge states. The left
panels show the temporal evolution of the modulus of the
normalized amplitudes W, () on a pseudocolor map, in a
semi-infinite lattice with parameter values as in Fig. 2 and with
an absorbing scattering potential (obstacle) localized in the dotted
rectangular region of the space-time plane (n <10 and
2 < t < 4). The initial state y,(0) is the skin edge mode with
energy £y = 0.35/ in (a), and E; = —1 + 0.05i in (b). The right
panels show the corresponding temporal evolution of the function
(1), defined by Eq. (2), which measures the deviation of the
evolved wave function from the skin state.

are Bloch points (the GBZ crosses the unit circle) and
for different types of scattering potentials, including
inhomogeneous Hermitian and non-Hermitian amplifying
potentials.

Multiband systems.—The previous analysis has been
focused to single band models, however, the self-healing
property of topological skin edge states can be extended to
multiband systems. As an illustrative example, we consider
a quasi-1D lattice composed of two side-coupled Hatano-
Nelson chains [110] [Fig. 4(a)], which displays the critical
NH skin effect [64]. The Bloch Hamiltonian of the system
reads

H(k) = Godo -+ tOGx -+ [V + l(éb - 5a) sin k]GZ, (5)

where dy = 2t, cosk — i(5, + ;) sink, o, are the Pauli
matrices, (f; +£36,,) are the asymmetric left or right
hopping amplitudes in the upper (a) and lower (b) chains,
£V their on-site energy offset, and 7, is the side coupling
constant. Figures 4(b) and 4(c) show a typical behavior of
GBZ and energy spectra (PBC, OBC, and SIBC) for
0, >0, 6, <0, with the shaded region corresponding
to topological skin edge states localized at the left boundary
under SIBC. Self-healing skin edge states are those
with energy E satisfying the condition Im(E) > E,,, with
E, =max(E, .E,,) = E,; ~0.255. The self-healing
property is illustrated in Fig. 4(d), where a skin edge state
is scattered off by a complex absorbing potential in
both chains [V, (7) = 10i for 4 <7 <8 and 1 <n <10,
V, = 0, otherwise].

tl '611 “/a)
ty +8a n
(a) | | |ro |
t1 - 8[7 b
)
ty +0p \UL
lattice site n

Im(E)

time t

] - 100 10 20 30 40
lattice site n time t

FIG. 4. (a) Scheme of two side-coupled Hatano-Nelson chains.
(b) PBC (thin solid curves), OBC (solid dots), and SIBC (shaded
area) energy spectra for t; =0.75, 6, =0.25, §, = —0.15,
to = 0.05, and V =0.8. The two PBC Bloch bands form
two closed loops which are traveled in opposite directions,
leading to three possible values 0, =1 of the winding W in their
interior. For any energy E in the shaded area (W = —1) there
is one topological edge state at the left boundary of the
lattice. (c) Diagram of the GBZ (solid dots). The thin dashed
curve shows the unit circle as a reference. (d),(e) Self-healing
of the topological edge state with energy E =1+ 0.4i

a b
i P + i 2/

and w,(,b)

(d) Evolution of the normalized amplitudes
S\ W+ w2 where gl
amplitudes at site n in the two chains (a) and (b), respectively.
(e) Temporal behavior of ¢(). The absorbing scattering potential
is localized in the dotted rectangular region of the space-
time plane.

are the wave

Conclusion.—In summary, we have demonstrated that
infinitely many topological edge skin modes in semi-
infinite NH lattices can exhibit self-healing properties,
i.e., they can reconstruct their shape after being scattered
off by a rather arbitrary space-time potential. Contrary to
self-healing waves known in Hermitian systems, such as
Bessel and Airy waves, the topological skin edge states
are truly normalizable eigenstates of the underlying
Hamiltonian. Our results unravel a fascinating funda-
mental property of recently discovered topological
skin modes, extend the idea of self-healing waves beyond
the diffraction-free paradigm of Hermitian physics, and,
thus, could be of potential relevance in different areas
of physics and for future applications of self-healing
NH waves.
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