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We investigate nematic quantum phase transitions in two different Dirac fermion models. The models
feature twofold and fourfold, respectively, lattice rotational symmetries that are spontaneously broken in
the ordered phase. Using negative-sign-free quantum Monte Carlo simulations and an ϵ-expansion
renormalization group analysis, we show that both models exhibit continuous phase transitions. In contrast
to generic Gross-Neveu dynamical mass generation, the quantum critical regime is characterized by large
velocity anisotropies, with fixed-point values being approached very slowly. Both experimental and
numerical investigations will not be representative of the infrared fixed point, but of a quasiuniversal regime
where the drift of the exponents tracks the velocity anisotropy.
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In a strongly correlated electron system, global sym-
metries, such as spin rotation, point group, or translational
symmetries, can be spontaneously broken as a function of
some external tuning parameter. This challenging problem
has been studied extensively numerically and experimentally
over the last years and impacts our understanding of quantum
criticality [1] in cuprates [2] and heavy fermions [3]. The
problem greatly simplifies when the Fermi surface reduces to
isolated Fermi points in 2þ 1 dimensions and the critical
point features emergent Lorentz symmetry. In this context,
spin, time reversal, and translational symmetry breaking
generically correspond to the dynamical generation of mass
terms [4], and the semimetal-to-insulator transitionbelongs to
one of the various Gross-Neveu universality classes [5–11].
Across nematic transitions, rotational symmetry is spon-

taneously broken [12,13]. For continuum Dirac fermions
with Hamiltonian HðkÞ ¼ vðkxσx þ kyσyÞ in momentum
space, where σ are Pauli spin matrices and v is the Fermi
velocity, nematic transitions correspond to the dynamical
generation of nonmass terms, such as mσx. They shift the
position of the Dirac cone and as such break rotational, and
therewith also Lorentz, symmetries. Such nematic transitions
have been studied theoretically in the past in the context of d-
wave superconductors [14–18] and bilayer graphene [19].
Fundamental questions pertaining to the very nature of the
transition remain open: While initial renormalization group
(RG) calculations based on the ϵ expansion suggested a first-
order transition [14,15], a continuous transition has been
found in large-N analyses [16,17]. In this Letter, we use

quantum Monte Carlo (QMC) simulations and a revised
ϵ-expansion analysis to study these transitions. We introduce
two different models of Dirac fermions with twofold and
fourfold, respectively, lattice rotational symmetries, and
demonstrate numerically and analytically that both models
feature a continuous nematic transition, realizing a new
family of quantum universality classes in Dirac systems
without emergent Lorentz invariance.
Models.—Inspired from Refs. [13,20,21], we design two

models of (2þ 1)-dimensional Dirac fermions, H0,
coupled to a transverse-field Ising model (TFIM),

HIsing ¼ −J
X

hR;R0i
ŝzRŝ

z
R0 − h

X

R

ŝxR; ð1Þ

where R denotes a unit cell and hR;R0i runs over adjacent
unit cells. A Yukawa coupling, HYuk, between the Ising
field and nematic fermion bilinear yields the desired
models, H ¼ H0 þHIsing þHYuk, that correspond to
one of many possible lattice regularizations of continuum
field theories of Eqs. (4) and (5).
In the C2v model, depicted in Fig. 1(a), we employ a

π-flux Hamiltonian on the square lattice as

HC2v
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where â and b̂ with spin index σ are fermion annihilation
operators on the two sublattices, t is the hopping parameter,
and Nσ ¼ 2 is the number of spin degrees of freedom. H0

features two inequivalent Dirac points per spin component
in the Brillouin zone (BZ). The Ising spins ŝR couple, with
the sign structure indicated in Fig. 1(a), to the nearest-
neighbor fermion hopping terms,

HC2v
Yuk ¼ −ξ

X

R

XNσ

σ¼1

ŝzRâ
†
R;σ

�
b̂R;σe−i

π
4 − b̂Rþe−;σe

iπ
4

− b̂Rþe−−eþ;σe
−iπ

4 þ b̂R−eþ;σe
iπ
4

�
þ H:c:; ð2bÞ

where ξ denotes the coupling strength. The model has a C2v

point group symmetry, composed of reflections, T̂� on the
e� ¼ ex � ey axis. T̂� pins the Dirac cones to the K� ¼
ðπ=2;�π=2Þ points in the BZ. Aside from the above
reflections, π rotations about the z axis are obtained as
T̂þT̂−. Further, the model exhibits an explicit SUðNσÞ spin
symmetry that is enlarged to Oð2NσÞ [22].
The C4v model corresponds to a bilayer π-flux model, in

which the Ising spins are located on the rungs, Fig. 1(b).
The fermion hopping Hamiltonian is

HC4v
0 ¼ −t

X

R

XNσ

σ¼1

â†R;σðb̂Rþex;σe
iπ
4 þ b̂R−ex;σe

iπ
4

þ b̂Rþey;σe
−iπ

4 þ b̂R−ey;σe
−iπ

4Þ þ H:c:; ð3aÞ

featuring four Dirac cones per spin component. The
Yukawa coupling reads

HC4v
Yuk ¼ −ξ

X

R

XNσ

σ¼1

iŝzRâ
†
R;σb̂R;σ þ H:c:; ð3bÞ

amounting to a coupling of the Ising spins to the interlayer
fermion current. TheC4v Hamiltonian commutes with T̂π=2,

corresponding to π=2 rotation about the z axis. The model
is invariant under reflections T̂x and T̂y along the x and y
axes, respectively. Reflections along e� ¼ ex � ey, denoted
by T̂�, can be derived from T̂π=2, T̂x, and T̂y, and therefore
also leave the model invariant. The model hence has a C4v
symmetry. Particle-hole symmetry, imposes Aðk;ωÞ ¼
Að−kþ Q;−ωÞ, where Q ¼ ðπ; πÞ such that alongside
with the C4v symmetry the Dirac cones are pinned to
the �K� points in the BZ [22].
Lattice mean-field theory.—The key point of both

models is that the point group and particle-hole symmetries
are tied to the flipping of the Ising spin degree of freedom.
In the large-h limit, the ground state has the full symmetry
of the model Hamiltonian and at the mean-field level we
can set hŝzRi ¼ 0. In this limit, the Dirac cones are pinned
by symmetry. In the opposite small-h limit, the Ising spins
order, hŝzRi ≠ 0. Thereby, the C2v (C4v) symmetry is
reduced to T̂þ (C2v). At the mean-field level, this induces
a meandering of the Dirac points in the BZ, see Fig. 2(a),
and an anisotropy in the Fermi velocities. A detailed
account of the mean-field calculations is presented in the
Supplemental Material [22], and at this level of approxi-
mation the transition turns out to be continuous, in agree-
ment with the large-N analysis [17].
Continuum field theory.—In order to investigate whether

the above remains true upon the inclusion of order-
parameter fluctuations, we derive corresponding continuum
field theories, which are amenable to RG analyses. To lead-
ing order in the gradient expansion around the nodal points,
we obtain the Euclidean action S ¼ R

d2xdτðLΨ þ LϕÞ
with

LC2v
Ψ ¼ Ψ†

σð∂τ þ γ0γ1vk∂þ þ γ0γ2v⊥∂− þ gϕγ2ÞΨσ ð4Þ

(a) (b)

FIG. 1. Sketch of (a) C2v and (b) C4v models, defined on π-flux
single-layer and bilayer square lattices, with lattice vectors eþ=−
and ex=y, respectively. Dark pink regions indicate unit cells,
containing two orbitals (a and b) and one Ising spin (green arrow)
in both cases. Fermions hop along the red lines and acquire a
phase factor eiπ=4 when following the direction of the arrow. Red
and blue squares in (a) indicate the sign structure in the Yukawa
coupling of the C2v model.

FIG. 2. (a) Contour plot of the fermion dispersion in the
disordered phase from mean-field theory. The green lines and
arrows indicate the point group symmetries. Black (gray) dots
sketch the meandering of the Dirac cones in the nematic phase for
hŝzRi > 0 (< 0). (b)–(d) Fermion dispersion from QMC at L ¼ 20

for (b) h ¼ 5.0 > hc featuring isotropic Fermi velocities
(c) h ≃ hc, h ≈ 3.27 (left) and h ≈ 3.65 (right), and (d) at h ¼
1.0 < hc featuring broken point-group symmetries. Color scale
applies to all plots.
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for the four-component Dirac spinors Ψσ ≡ ðâþσ ; b̂þσ ;
â−σ ; b̂

−
σ Þ⊤ in the C2v model, where â�σ and b̂�σ corresponds

to hole excitations near K� on the A and B sublattices,
respectively, and

LC4v
Ψ ¼ Ψ†

σ½∂τ þ γ̃0ðγ̃1vk ⊕ γ̃2v⊥Þ∂þ
þ γ̃0ðγ̃2v⊥ ⊕ γ̃1vkÞ∂− þ gϕðγ̃2 ⊕ γ̃2Þ�Ψσ ð5Þ

for the eight-component Dirac spinors Ψσ ≡ ðâþþ
σ ; b̂þþ

σ ;
â−þσ ; b̂−þσ ; âþ−

σ ; b̂þ−
σ ; â−−σ ; b̂−−σ Þ⊤ in the C4v model, where

âþ�
σ and b̂þ�

σ (â−�σ and b̂−�σ ) correspond to hole excitations
near K� (−K�). In the above Lagrangians, we have
assumed the summation convention over repeated indices,
and ⊕ denotes the matrix direct sum. The Fermi velocities
vk and v⊥ correspond to the directions parallel and
perpendicular to the shift of the Dirac cones in the ordered
phase,withvk ¼ v⊥ ∼ t at theUVcutoff scaleΛ. ∂� denotes
the spatial derivative in the direction alongK�. The two sets
of Dirac matrices γμ, γ̃μ realize four-dimensional re-
presentations of the Clifford algebra fγμ; γνg ¼ fγ̃μ; γ̃νg ¼
2δμν, μ, ν ¼ 0, 1, and 2. The fermions couple via g ∼ ξ to the
Ising order-parameter field ϕ, the dynamics of which is
governed by the usual ϕ4 Lagrangian, Lϕ ¼ 1

2
ϕðr − ∂2

τ−
c2þ∂2þ − c2−∂2

−Þϕþ λϕ4, with the tuning parameter r, the
boson velocities c�, and the bosonic self-interaction λ.
ϵ expansion.—The presence of a unique upper critical

spatial dimension of three allows an ϵ ¼ 3 − d expansion,
with ϵ ¼ 1 corresponding to the physical case. Because of
the lack of Lorentz and continuous spatial rotational
symmetries in the low-energy models, it is useful to employ
a regularization in the frequency only, which allows us to
rescale the different momentum components independ-
ently, and evaluate the loop integrals analytically [22].
Two central properties of nematic quantum phase transi-
tions in Dirac systems are revealed by the one-loop RG
analysis: First, both models admit a stable fixed point
featuring anisotropic power laws of the fermion and order
parameter correlation functions. In the C2v model, both
components of the Fermi velocity remain finite at the stable
fixed point with 0 < v�k < v�⊥. At the critical point, a unique
timescale τ emerges for both fields Ψ and ϕ [30,31], which
scales with the two characteristic length scales lþ and l−
as τ ∼ lzþþ ∼ lz−− , with associated dynamical critical expo-
nents z� ¼ ½1 − 1

2
ηϕ þ 1

2
η��−1 as ðzþ; z−Þ ¼ ð1þ 0.3695ϵ;

1þ 0.1086ϵÞ þOðϵ2Þ, reflecting the absence of Lorentz
and rotational symmetries at criticality. By contrast, in the
C4v model, the fixed point is characterized by a maximal
velocity anisotropy with ðv�k; v�⊥Þ ¼ ð0; 1Þ in units of fixed

boson velocities c≡ cþ ¼ c− ¼ 1. This result is consistent
with the large-N RG analysis in fixed d ¼ 2 [16]. The fact
that v�k vanishes leads to the interesting behavior that the

fixed-point couplings g2� and λ� are bound to vanish in this

case as well. This happens in a way that the ratio ðg2=vkÞ�
remains finite, such that the boson anomalous dimensions
become ηϕ ¼ ηþ ¼ η− ¼ ϵ. Importantly, as the fixed-point
couplings g2� and λ� vanish, we expect the one-loop result
for the critical exponents to hold at all loop orders in the
C4v model. For the correlation-length exponent, we find
1=ν ¼ 2 − ϵ. The remaining exponents can then be com-
puted by assuming the usual hyperscaling relations [32].
The susceptibility exponent, for instance, becomes γ ¼ 1,
independent of ϵ. This result is again consistent with the
large-N calculation and has previously already been argued
to hold exactly [16]. We note that the values of the
exponents in the C4v model are independent of the number
of spinor components, in contrast to the situation in the C2v
model, as well as to the usual Gross-Neveu universality
classes [7–10,21,33]. The unique dynamical critical expo-
nent in the C4v model becomes z ¼ 1. We emphasize,
however, that the critical point still does not feature
emergent Lorentz symmetry [34] due to the anisotropic
fermion spectral function. The second important property
revealed by the RG analysis is that the stable fixed points in
both models are approached only extremely slowly as
function of RG scale, Fig. 3. This is universally true for the
C4v model, in which case vk corresponds to a marginally
irrelevant parameter, hence scaling only logarithmically to
zero while other irrelevant operators rapidly die out. This
defines a quasiuniversal flow [35,36] in which only the
velocity anisotropy and not the initial ultraviolet values of
other parameters determine the slow drift of the exponents.
The RG suggests that this regime emerges at scales 1=b≲
0.05 (see Ref. [22]), such that it will dominate numerical as
well as experimental realizations of this critical phenom-
ena. For a reasonable set of ultraviolet starting values and
ϵ ¼ 1, we find that the effective correlation-length expo-
nent 1=νeff (anomalous dimension ηeffϕ ) approaches one
from above (below), with sizable deviations at intermediate
RG scales, see Ref. [22] for details. Moreover, we also

(a) (b)

FIG. 3. Ratio of Fermi velocities v⊥=vk as function of RG scale
1=b for both models. We assume ultraviolet initial values of
vkðb ¼ 1Þ ¼ v⊥ðb ¼ 1Þ ¼ 0.25, and set g2=ðvkv⊥Þðb ¼ 1Þ to
the value at the respective stable fixed point. (a) Semilogarithmic,
(b) linear plots. Starting at a temperature scale representative of
the ultraviolet initial parameters, one has to cool the system by 2
orders of magnitude to start observing the differences between
both models.
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observe that the initial flows at high energy in the two
models resemble each other, despite the fact that they
substantially deviate from each other at low energy. This
suggests that the flow is generically slow in the C2v model
as well.
QMC setup.—For the numerical simulations, we used the

ALF program package [37] that provides a general imple-
mentation of the finite-temperature auxiliary field QMC
algorithm [38–40]. To formulate the path integral, we use a
Trotter decomposition with time step Δτt ¼ 0.1 and choose
a basis where ŝzRjsRi ¼ sRjsRi. The configuration space is
that of a (2þ 1)-dimensional Ising model and we use a
single-spin-flip update to sample it. As shown in the
Supplemental Material [22] both models are negative-
sign-problem free for all values of Nσ [41]. For our
simulations, we have used an inverse temperature β ¼
4L for L × L lattices, and have checked that this choice of β
reflects ground-state properties. For the results shown in the
main text, we have fixed the parameters as J ¼ t ¼ 1 and
Nσ ¼ 2. In the C2v model, we choose ξ ¼ 0.25, as larger
values of ξ lead to spurious size effects that could falsely be
interpreted as first-order transitions, see Ref. [21] and the
Supplemental Material [22] for a detailed discussion. In the
C4v model, we set ξ ¼ 1. As shown in Ref. [22], other
values of ξ and Nσ do not alter the continuous nature of the
transition.
QMC results.—We compute the spin structure factor,

SðkÞ ¼ P
R eik·Rhŝz0ŝzRi, the spin susceptibility, χðkÞ ¼P

r e
ik·R

R β
0 dτhŝzRðτÞŝz0ð0Þi and moments of the total spin

ŝz ¼ P
R ŝzR to derive RG-invariant quantities such as the

correlation ratio [42],

RO ¼ 1 −
OðkminÞ
Oðk ¼ 0Þ with O ¼ S; χ; ð6Þ

and the Binder ratio, B ¼ f3 − ½hðŝzÞ4i=hðŝzÞ2i2�g=2. Here,
kmin corresponds to the longest wavelength on a given
finite-size lattice. From the single-particle Green’s function,
we can extract quantities such as the fermion dispersion
relation and Fermi velocities.
At a quantum critical point, RG-invariant quantities

follow the form f½Lz=β; ðh − hcÞL1=ν; L−Δz; L−ω� [22].
Here we have taken into account the possibility of two
characteristic length scales: Δz ¼ 1 − z−=zþ. Since our
temperature is representative of the ground state, we can
neglect the dependence on Lz=β. Up to corrections to
scaling, ω, and the possibility of z− ≠ zþ, which would
result in another correction to scaling term, the data for
different lattice sizes cross at the critical fieldhc. Figures 4(c)
and 4(d) show the crossing points between L and Lþ ΔL
lattices, with ΔL ¼ 2 (4) for the C2v (C4v) model. As
apparent, we obtain consistent results for hc when consid-
ering different RG-invariant quantities. We estimate the
correlation-length exponents 1=ν by data collapse for the
two models in Figs. 4(a) and 4(b). Considering values of

L ≥ Lmin ¼ 12 we obtain 1=ν ¼ 1.376ð6Þ [1=ν ¼ 1.38ð1Þ]
for the C2v (C4v) model. These values are in the ballpark of
the ϵ-expansion results in the quasiuniversal regime [22].
The data for various values of Lmin are given in the
Supplemental Material [22], and stand in agreement with
the above values. Although seemingly converged, the fact
that the velocity anisotropy is expected to flow extremely
slowly suggest that the exponents are subject to considerable
size effects, see below. Figures 4(f) and 4(g) show the
derivative of the free energy with respect to the tuning
parameter, ∂F=∂h, confirming the absence of any disconti-
nuity at hc. The impact of critical fluctuations on the fermion
spectrum is displayed in Figs. 2(b) and 2(c). In the
disordered phase, Fig. 2(b), the dispersion relation exhibits

FIG. 4. (a) RS as function of ðh − hcÞL1=ν for the C2v model,
revealing data collapse for L ≳ 12, assuming 1=ν ¼ 1.376.
(b) Same as (a), but for C4v model, assuming 1=ν ¼ 1.38.
(c) Crossing points of different RG-invariant quantities as
function of 1=L with ΔL ¼ 2 in C2v model, indicating a unique
critical point hc ¼ 3.27 for L → ∞. (d) Same as (c), but for C4v
model and ΔL ¼ 4, extrapolating to hc ¼ 3.65 (e). Ratio of
Fermi velocities v⊥=vk as function of 1=L at hc, revealing that the
velocity anisotropy increases with increasing system size. The
solid lines show power law fits for L ≥ 8 and logarithmic fits for
L ≥ 12. (f),(g) Derivative of free energy as function of h,
exhibiting no discontinuities.
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rotational symmetry around the Dirac points. On the other
hand, at criticality, Fig. 2(c), the dispersion relation suggests
a velocity anisotropy, vk < v⊥ at theDirac point. Figure 4(e)
demonstrates that this anisotropy grows as a function of
system size, in qualitative agreement with the RG predic-
tions. Although our system sizes are too small to detect
convergence or divergence of the velocity ratio, we find it
reassuring that its dependence on system size qualitatively
resembles the scale dependence predicted from the inte-
grated RG flow; cf. Fig. 4(e) with Fig. 3.
Summary.—Both the ϵ-expansion analysis and the QMC

simulations show that our two symmetry distinct models of
Dirac fermions support continuous nematic transitions. In
both cases, the key feature of the quantum critical point is a
velocity anisotropy that is best seen in the QMC data of
Fig. 2(c). For the C4v model, the ϵ-expansion shows that it
diverges logarithmically with system size, in agreement
with previous large-N results [16]. This law is supported by
finite-size analysis based on QMC data up to linear system
size L ¼ 20, which is close to the upper bound allowed by
current computational approaches. Since the effective
exponents flow with the velocity anisotropy, we foresee
that lattice sizes beyond the reach of our numerical
approach and experiments at ultralow temperatures will
be required to obtain converged values. The QMC data
captures a quasiuniversal regime [35,36], in which irrel-
evant operators aside from the velocity anisotropy die out.
In fact, the RG prediction for exponents in this intermedi-
ate-energy regime is roughly consistent with the finite-size
QMC measurements, Fig. 9(c) of Ref. [22]. Furthermore,
for a reasonable set of starting values, the integrated RG
flows of the two models are initially very similar and
deviate from each other only at very low energy scales. A
similar behavior of the two models is also observed in the
QMC data.
An advantage of our models is that the Dirac points are

pinned by symmetry, such that QMC approaches that take
momentum-space patches around these points into account
[43] represent an attractive direction for future work. Our
models equally allow for large-N generalizations, such that
QMC and analytical large-N calculations can be compared
as a function of increasing N. Finally, we can make contact
to nematic transitions in (2þ 1)-dimensional Fermi liquids
[12,13], since our models do not suffer from the negative-
sign problem under doping.
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