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The origin of limited plasticity in metallic glasses is elusive, with no apparent link to their atomic
structure. We propose that the response of the glassy structure to applied stress, not the original structure
itself, provides a gauge to predict the degree of plasticity. We carried out high-energy x-ray diffraction on
various bulk metallic glasses (BMGs) under uniaxial compression within the elastic limit and evaluated the
anisotropic pair distribution function. We show that the extent of local deviation from the affine (uniform)
deformation in the elastic regime is strongly correlated with the plastic behavior of BMGs beyond yield,
across chemical compositions and sample history. The results suggest that the propensity for collective
local atomic rearrangements under stress promotes plasticity.
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Bulk metallic glasses (BMGs) exhibit high strength and
high elastic limit with potential for structural applications
[1–3]. On the other hand, the fracture toughness varies
widely from those exhibiting exceptional tough behavior
[4] to others showing close to ideal brittle behavior [5]. It
had been observed that ductile BMGs exhibit a low ratio of
shear modulus to bulk modulus [6], and a direct correlation
of ductility with this ratio was suggested [5]. However,
follow-up research revealed that such correlation does not
exist across the different chemical compositions [7–9].
Attempts to relate the plasticity to the atomic structure of
glass have been mostly indirect [10,11], because it is
difficult to define a direct structural feature or parameter
related to ductility such as “defects” in crystals. The leading
model of mechanical deformation in metallic glasses is the
shear-transformation-zone (STZ) model [12–14]. The STZs
are local events involving 5–50 atoms [15,16], which
undergo atomic rearrangements during deformation.
STZs are not preexisting defects but emerge upon defor-
mation and disappear afterward [13,15,16]. Therefore, STZ
cannot be detected by examining the structure prior to
deformation, unlike dislocations in crystals. Some attempts
have been made to relate the initial structure to propensity
of deformation, using MD [17] or through machine learn-
ing [18,19]. However, they are only partially successful and
are not amenable for experimental verification.
On the other hand, the change in the structure under

stress could provide relevant information regarding the
deformation mechanism. It is recognized that at the atomic
level the deformation of glass is not uniform, and stress
induces locally nonaffine atomic displacements even in the

elastic regime [20–24]. Therefore, the “elastic regime” is
not strictly elastic, but we use this term to describe a macro-
scopic deformation range before yielding. Simulation in the
two-dimensional Lennard-Jones system suggests the local
nonaffine modulus is related to plastic events [25]. In this
Letter, we show that the extent of local deviations from the
affine deformation in the elastic regime is strongly corre-
lated with the plastic behavior of BMGs upon yielding
at higher stresses. We propose a parameter, the local non-
affine strain ratio ΔεR=ε∞, to quantify the local structural
response to the applied stress in the elastic regime. This
characterization represents a predictive method to assess
plasticity across different chemistry of BMGs and provides
new perspective on the deformation mechanism.
We carried out in situ high-energy x-ray diffraction

measurements on various BMGs under uniaxial compres-
sion at the beam line 1-ID of the Advanced Photon Source
(APS), Argonne National Laboratory, to characterize non-
affine strains. (For experimental details, see Supplemental
Material [26].) Under uniaxial stress, the structure of the
glass becomes anisotropic. The isotropic and anisotropic
components of the pair distribution function (PDF) were
obtained as a function of applied stress:

gðr; χÞ ¼ g00ðrÞ þ
ffiffiffi

5
p

P0
2ðcos χÞg02ðrÞ: ð1Þ

Here, χ is an angle between the r and the z axis, which is
aligned with the stress direction, Pm

l ðxÞ is the associated
Legendre polynomial, and r ¼ jrj. The elliptic term
(m ¼ 0, l ¼ 2) measures the anisotropy of the glass and
is related to the strain. It was shown before [31] that if the
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elastic deformation is affine, the anisotropic component of
the PDF is related to the derivative of the isotropic PDF as
shown in Fig. 1(a):

ρ0g02;expðrÞ ¼ �εaffine
2ð1þ νÞ
3

ffiffiffi

5
p r

d
dr

ρ0g00ðrÞ: ð2Þ

Here, ρ0 is the number density of atoms, ν is Poisson’s
ratio, and εaffine is the amplitude of affine strain. The “�”
signs indicate compression and tension, respectively.
However, deformation in a glass is heterogeneous at the
atomic level even in the elastic regime, because of the
spatial variation in elastic modulus and local strain relax-
ation, which results in a nonaffine length-scale-dependent
strain εðrÞ, which substitutes constant, affine strain, in
Eq. (2). Specifically, the local strain in the first atomic shell
is smaller than the expected long-range strain, as is
illustrated in Fig. 1(b). The long-range strain obtained
by fitting Eq. (2) at large distances is plotted as a red dashed
line. Equation (2) with r-dependent strain εðrÞ, can be used
in evaluating the strain in two ranges of distance: in the first
atomic shell and beyond as shown in Fig. 1(b). In this
equation, both ρ0g02ðrÞ and ρ0g00ðrÞ are determined inde-
pendently from the experiment.
The fitting by Eq. (2) works well at long-r range

(∼6–20 Å), indicating that the strain beyond the second
shell is equal to the long-range average strain. The long-
range strain ε∞ obtained from this fit defines the reference
state for each measurement. For the first atomic shell, the
εðrÞ is smaller than the affine εaffine predicted by Eq. (2).
This deviation is commonly observed in the elastic defor-
mation of all the BMG samples we measured. The reduced
amplitude of the εðrÞ in the first shell indicates that the local
strain is smaller than the long-range average strain, sug-
gesting that local strain relaxation occurs under applied
stress even in the elastic regime. Thus, we can use the
difference between the long-range strain and the local strain

as a measure of the capacity of glass to relax the stress by
local atomic rearrangements under load.
Because g02ðrÞ is proportional to the derivative of g00ðrÞ as

given in Eq. (2), the first peak of g00ðrÞ corresponds to a pair
of positive and negative peaks in g02ðrÞ. The local strain was
evaluated by taking the average of the strains for the
positive and negative peaks, ε1 and ε2, defined by

Ai ¼ εi ·
2ð1þ νÞ
3

ffiffiffi

5
p ri

d
dr

g00ðriÞ; i ¼ 1; 2; ð3Þ

where A1 and r1 are the height and position, respectively, of
the first positive peak and A2 and r2 are the height and
position, respectively, of the negative peak. The extent of
local strain relaxation is expressed by the ratio ΔεR=ε∞, as
defined below. The denominator ε∞ is the long-range
average strain obtained from fitting Eq. (2) in the large-r
range. The numerator ΔεR is the amount of the relaxed
strain, i.e., the difference between the long-range and the
local strain. Thus, ΔεR ¼ ε∞ − ðε1 þ ε2Þ=2.
The ΔεR and ε∞ are dependent on the applied stress as is

shown in Fig. S2 (Supplemental Material [26]). However,
their ratio ΔεR=ε∞ is nearly independent of stress as shown
in Fig. S3 [26] for several glass compositions appearing as
macroscopic linear anelasticity. This confirms that the local
nonaffine strain ratio is an intrinsic parameter characteriz-
ing the ability of the glass to relax strain locally, and it
justifies the comparison of ΔεR=ε∞ for different BMGs
measured at slightly different stresses.
The mechanical properties of Zr-based BMG have been

studied extensively, e.g., Refs. [32–34]. The Zr-rich com-
positions tend to show more plasticity in compression tests,
exhibit higher fracture toughness [35–37], and show plastic
strains even in tension [37]. This trend has been attributed
to the increasing value of the Poisson’s ratio with Zr content
[5,38]. The change in the local nonaffine strain ratio
ΔεR=ε∞ for several Zr- and Pd-based BMGs is shown in

FIG. 1. (a) The isotropic PDF (top); and (bottom) the fitting of the anisotropic PDF with the derivative of the isotropic PDF (affine
anisotropic PDF) to obtain affine strain ε∞. The red broken curve represents the “expected” or affine g02ðrÞ basing on a derivative of
g00ðrÞ. (b) Amplitudes Ai in the short range of anisotropic PDF to obtain local strains ε1 and ε2 [Eq. (3)].
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Fig. 2(a) as a function of the plastic strain after yielding (see
Fig. S4 in Supplemental Material [26]). The plot, despite
some scatter, shows that glasses with a large ΔεR=ε∞ ratio
tend to exhibit large plastic strains, whereas glasses with a
small strain ratio have small plastic strains and/or fracture
in a brittle manner. This behavior is illustrated by the
compression mechanical tests on Zr50Cu40Al10 and
Zr65Cu17Ni8Al10 as shown in Fig. S4(a) [26] and in
Fig. 2: Zr50Cu40Al10 with small ΔεR=ε∞ (¼0.177) shows
very limited plasticity, whereas Zr65Cu17Ni8Al10 with large
ΔεR=ε∞ (¼0.26) exhibits large plastic strains and is
malleable (more than 50% plastic strain). The results in
Fig. 2(a) demonstrate that the local strain ratio is a good
indicator of plasticity of BMGs. The extensive literature
data on the plastic behavior of different Zr-based BMGs
allows us to establish general correlation of the local
nonaffine strain ratio with plasticity. Based on the reported
mechanical behaviors [5,7,37–39] and our measurements,
we conclude that the range of the value of ΔεR=ε∞, 0.21–
0.24, separates ductile behavior from brittle one as is shown
in Fig. 2(b) for the Zr-based BMGs. The upper limit of
∼0.24 is based on the result that the Zr-based BMGs with
ΔεR=ε∞ above 0.24 show large plasticity in compression
tests and are malleable, and they even show some plastic
strains in tension [37,39]. The plastic behavior in tension is
exceptional and indicative of intrinsic ductility of these
compositions. We suggest that this plastic response is
related to large nonaffine strains observed in our x-ray
experiment and quantified by the large strain ratio that
reflects the ability of the glass to relax strain locally.
However, when ΔεR=ε∞ is below 0.21, the Zr-based
glasses either show limited plasticity in compression or
break in a brittle manner right away upon yielding.
The reported experimental plastic strains for glasses with

ΔεR=ε∞ between 0.21 and 0.24 vary in the literature due to
scatter in sample quality and testing conditions. However,
they clearly imply that plasticity is rather limited. The
results in Fig. 2(b) show that Zr-based glasses for which the
ΔεR=ε∞ ratio is below 0.21 are brittle, whereas those with
the ΔεR=ε∞ ratio above 0.24 are ductile.
The local nonaffine strain ratios ΔεR=ε∞ for different

Pd-based BMGs are presented by symbols with different
colors in Fig. 3. In assessing plasticity, the avail-
able mechanical data [8] are combined with our own
compression tests. The stress-strain curves from our
compression tests on some of these Pd-based glasses are
presented in Supplemental Material, Fig. S4(b) [26].
Generally, glasses with small ΔεR=ε∞, below ∼0.21, such
as Pd42.5Ni7.5Cu30P20 (ΔεR=ε∞ ¼ 0.17), Pd32Ni16Cu32P20
(ΔεR=ε∞ ¼ 0.20), Pd50Ni34P16 (ΔεR=ε∞ ¼ 0.104),
Pd38Ni14Cu28P20 (ΔεR=ε∞ ¼ 0.21), and Pd44Ni12Cu24P20
(ΔεR=ε∞ ¼ 0.21), show brittle or very limited plastic
strains. The Pd79Ag3.5P6Si9.5Ge2 (ΔεR=ε∞ ¼ 0.33) has
an exceptionally large value of ΔεR=ε∞. The reported data
for Pd79Ag3.5P6Si9.5Ge2 [4] show extreme fracture tough-
ness with large plastic flow before cavitation. This glass
was termed damage tolerant, and its behavior is consistent
with the largest value of ΔεR=ε∞ we measured. The
available data combined with ours confirm the conclusion,
suggested for Zr-based glasses, that large nonaffine strain
ratio parameter, ΔεR=ε∞ > 0.24 correlates with intrinsic
plasticity.
Local nonaffine strain ratio is also measured for other

BMGs and displayed in Fig. 4 together with some Zr and Pd
alloys against Poisson’s ratio ν. It was suggested that BMGs
with increasing ν exhibit larger plasticity and tend to be
ductile when ν is above 0.32 [11]. Poisson’s ratios of all the
BMGs in Fig. 4 are above 0.32. Nevertheless, among them,

FIG. 2. (a) The nonaffine strain relaxation ratio as a function of a plastic strain for several Zr- and Pd-based BMGs. (b) The nonaffine
strain ratio for Zr-based BMG. Error bars are vertical streaks typically the size of the symbol data point.
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La60Al25Ni15, Mg66Zn30Ca3Sr1, Ce27.5La27.5Co35Al10,
Cu60Zr20Hf10Ti10, and Pd50Ni34P16 are brittle according
to the reported mechanical tests [8,40–43]. The brittle
behavior of these BMGs is tracked very well by their small
local nonaffine strain ratio with values well below 0.21. On
the other hand, Zr65Cu17Ni8Al10, Pt57.5Cu14.7Ni5.3P22.5, and
Pd79Ag3.5P6Si9.5Ge2 have a value of ΔεR=ε∞ above 0.24
and exhibit large plasticity [4,6,37]. Figure 4 indicates that
the RT plastic behavior of various BMGs does not correlate
with the Poisson’s ratio, and, in contrast, it correlates quite
well with the local nonaffine strain ratio ΔεR=ε∞. It appears
that the transition range ofΔεR=ε∞, 0.21–0.24, separates the
brittle behavior below andductile behavior above universally
for various glassy compositions.
It is known that thermal history has significant influence on

the mechanical behavior of BMGs. For instance, the cooling
rate directly affects the state of BMG by changing its fictive
temperature Tf and, thus, its glassy structure [10,44,45].
Annealing [9,46] and thermomechanical creep [47,48] can
modifyTf, moving glass to amore relaxed or to a rejuvenated
state. Supplemental Fig. S5 [26] shows that the local non-
affine strain ratio ΔεR=ε∞ tracks changes in the fictive
temperature for a glass with the same composition. These
data confirm that the nonaffine strain ratio is an intrinsic
parameter and connects to plasticity of metallic glasses.
Our results show that the local nonaffine strain ratio,

characterizing the response of the local structure of
BMG to external stress, is an indicator of compressive

plasticity across BMGs of different alloy systems. Even
though theG=B ratio correlates with plasticity or toughness
within a limited range for each alloy system [5,11,49], it
fails for BMGs of different alloy systems [7,50]. The
independence of the ΔεR=ε∞ of the magnitude of the
applied stress validates that it is an intrinsic property of a
BMG controlled by its chemical composition and its fictive
temperature. The local nonaffine strain ratio measures the
extent of atomic rearrangements induced by external stress.
Therefore, it is not surprising that it relates to the potential
of plastic deformation. Indeed, as seen in Figs. 2–4, typical
brittle BMGs have very small ΔεR=ε∞ ratios, whereas
samples showing plasticity have large ones.
It was observed that the application of stress below the

apparent elastic limit results in local “plastic” deformation,
or local topological relaxation (LTR), by cutting or forming
local atomic bonds [24,51]. Such local changes in the
topology of atomic connectivity [52,53] are most likely the
origin of the observed ΔεR=ε∞ ratio. At low stress levels,
such bond cutting and forming events are low in density
and are well separated in both time and space. Each one of
them is locally constrained by the elastic medium around
them, contributing to internal friction [54]. At higher stress
levels, several contiguous events of bond rearrangement
occur, involving typically five atoms [55], emerging as
STZs. A simulation study [56] suggests that the occurrence
of cascade STZs is linked to ductile behavior. If the stress
concentration at the crack tip can be relaxed by a high
density of induced STZs, the crack tip can be blunted,
and mechanical failure can be avoided. Thus, the local

FIG. 4. The nonaffine strain ratio for different BMGs with a
Poisson’s ratio larger than 0.32. Vertical bars indicate error.FIG. 3. The ratio of relaxed strain to the long-range strain for

Pd-based BMG. Error bars are black vertical streaks typically the
size of the circle data point.
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nonaffine strain ratio ΔεR=ε∞ probes the capability of the
glass to accommodate local shear strain to promote STZs,
leading to plastic flow [55]. The sensitivity of the value of
ΔεR=ε∞ to thermal history suggests a strong link between
this ratio and the density or propensity of STZ [57]. A high
value of ΔεR=ε∞ means easier local atomic rearrangement
upon application of stress, leading to the formation of STZ
at yielding.
The quantification of ductility or plasticity in metallic

glasses is a daunting task by itself. Ideally, a standard fracture
toughness test should be used [58]. However, preparing
BMG samples fulfilling such requirements, the size, in
particular, is not feasible for the wide range of BMGs
considered in this research. Therefore, to assess the corre-
lation of our parameter with plasticity in metallic glasses, we
chose to use simple compression tests allowing the use of
small samples to examine many glassy compositions.
In summary, we have identified the local nonaffine strain

ratio, which quantifies the nonaffine strains and controls the
capacity for local strain relaxation, as a best predictor for
compressive plasticity in BMGs. This ratio is independent
of the applied stress and depends only on the compo-
sition and fictive temperature. This parameter may be
related to the propensity for creating shear-transformation
zones. Whereas it is difficult, if possible, at all, to determine
such propensity from the structure itself, the local non-
affine strain ratio can be measured straightforwardly and
provides excellent prediction of the plasticity of BMG
under compressive stress.

All data included in this Letter are available upon request
to the corresponding author.
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