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A pump coupled to a conserved density generates long-range modulations, resulting from the non-
equilibrium nature of the dynamics. We study how these modulations are modified at the critical point
where the system exhibits intrinsic long-range correlations. To do so, we consider a pump in a diffusive
fluid, which is known to generate a density profile in the form of an electric dipole potential and a current in
the form of a dipolar field above the critical point. We demonstrate that while the current retains its form at
the critical point, the density profile changes drastically. At criticality, in d < 4 dimensions, the deviation
of the density from the average is given by sgn½cosðθÞ�j cosðθÞ=rðd−1Þj1=δ at large distance r from the pump
and angle θ with respect to the pump’s orientation. At short distances, there is a crossover to a
cosðθÞ=rd−3þη profile. Here δ and η are Ising critical exponents. The effect of the local pump on the domain
wall structure below the critical point is also considered.
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Consider a fluid continuously pumped by a localized
force. When the force couples to a conserved field, such as
momentum or density, it leads to a nonlocal steady-state
flow in the system. A canonical example arises when a
localized force is exerted on an incompressible fluid at low
Reynolds number. The resulting flow is long ranged,
decaying as a power law with the distance from the pump
[1,2]. The solution, known as a Stokeslet, is the Green’s
function of the Stokes equations. This solution plays an
important role in the understanding of many phenomena.
Examples include microswimmers [3–5], hydrodynamic
interactions [6–9], and the large class of problems asso-
ciated with slender-body motion [10–12]. In this case the
force couples to the momentum flux, since it acts as a
source of momentum.
A simpler case is that of a diffusive system where a

localized pump drives the particles in a specific direction.
Here momentum is not conserved, but the coupling of the
pump to the conserved particle density results in long-range
currents accompanied by density modulations due to the
finite compressibility. In particular, it has been shown that
in a hard core gas, corresponding to infinite temperature,
the density profile induced by the pump is of the form of a
dipole potential and the current is proportional to the
gradient of the density [13,14].
The above results pertain to systems which without the

pump have short range correlations. Here we ask what
happens when the underlying fluid is critical, where one
expects nontrivial interplay between the long-range corre-
lations of the critical fluid and the long-range perturbation
induced by the pump. Detailed analysis of this setup is,
however, rather involved as it requires going beyond

deterministic hydrodynamics due to the large fluctuations
and long-range correlations existing in this system.
In this Letter we make a first step towards addressing this

problem by studying a pump in a critical diffusive system.
This diffusive problem is directly relevant to interacting
colloidal particles [15,16], which may be studied next to a
surface where energy and momentum are not conserved.
These can be pumped, for example, by using optical
tweezers to bias the motion of colloids along a small
segment in a specific direction [17–19].
To study the interplay between the nonlocal structure

induced by the pump and critical correlations we consider a
pump in an interacting dissipative system with density
conservation, such as a lattice-gas system evolving by
Kawasaki dynamics, which exhibits a liquid-gas phase
transition. We show that above the critical temperature as
well as at criticality and slightly below it, the current takes
the form of a dipolar electric field. In contrast, the behavior
of the density changes dramatically as a function of
temperature. Above the critical temperature the behavior
is qualitatively identical to that found in Refs. [13,14] for a
hard core gas: At large distance r from the pump the density
decays to the average density as cosðθÞ=rðd−1Þ, with θ the
angle measured with respect to the direction of the driving
force and d > 1 the dimension of the system. On the other
hand, at the critical point the density develops a nontrivial
scale-dependent behavior. In particular, in d < 4 dimen-
sions the density exhibits a crossover from one scaling form
to another at a distance r� from the pump which varies as an
inverse power of the drive. At distances r < r�, the density
profile takes the form cosðθÞ=rd−3þη, while for r > r�, it
becomes sgn½cosðθÞ�j cosðθÞ=rðd−1Þj1=δ, where η and δ are
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the Ising exponents with η ¼ 1=4 and δ ¼ 15 in d ¼ 2 and
η ≃ 3.63 × 10−2 and δ ≃ 4.79 in d ¼ 3. This implies that in
d ¼ 2 dimensions and at short distances the magnitude of
the density modulation grows with r as r3=4, and has a
cosðθÞ angular dependence. On the contrary, in the far field
the magnitude of the density modulation decays extremely
slowly as a function of r, as r−1=15. This is accompanied by
a change in the angular dependence of the density profile
into sgn½cosðθÞ�j cosðθÞj1=15. The crossover distance r�

between the two behaviors scales as f−8=7, with f the
strength of the pump. These results are compared with
numerical simulation in Fig. 1, where we use a magnetic
Ising system corresponding to a lattice gas, so that si ¼ �1,
the magnetization at site i, is related to the density through
ni ¼ ð1þ siÞ=2. The pump locally swaps two pairs of
spins [20], such that for each pair sL ¼ þ1 on the left and
sR ¼ −1 on the right become sL ¼ −1 and sR ¼ þ1.
A three-dimensional version of Fig. 1 can be found in
the Supplemental Material [20]. Finally, we also study the
system below the critical temperature and show that the
pump controls the shape and location of the domain wall
between the two phases. This is illustrated for zero average
magnetization in Fig. 1. While in the low temperature phase

our theoretical arguments hold only in the vicinity of the
critical point, they qualitatively agree with the numerics
also at lower temperatures.
To obtain these results it is useful to consider a localized

pump acting on an Ising lattice gas with a conserved
magnetization field, ϕðrÞ, representing the local deviation
of the density from the overall average density. Hereafter
we simply refer to ϕðrÞ as the local density. The Landau-
Ginzburg free energy of the gas is given by

F 0 ¼
Z

ddr

�
K
2
j∇ϕj2 þ τ

2
ϕ2 þ u

4
ϕ4

�
; ð1Þ

with K; u > 0, and τ ∝ ðT − TcÞ=Tc. The model evolves
by the magnetization-conserving model B dynamics

∂tϕ ¼ −∇ · J;

J ¼ J0 þ ΛþMfδðdÞðrÞ; ð2Þ

where JðrÞ is the current. Here J0 is the usual deterministic
part of the current,

FIG. 1. Results for a two-dimensional L × L lattice gas with zero magnetization in the presence of a pump (indicated by an arrow)
above (T ¼ 4.54J), at (T ¼ 2.27J), and below (T ¼ 1.14J) criticality. The top row [(a),(d),(g),(j)] shows magnetization profiles, the
middle row [(b),(e),(h),(k)] the measured angular dependence of the density at r ¼ 0.35L (on the dotted circles in the top row) compared
to the theoretical prediction [black line, Eqs. (9), (18), and (14)], and the bottom row [(c),(f),(i),(l)] the radial dependence of the
magnetization along the direction of the pump, as a function the distance from it compared to the theoretical prediction [black line,
Eqs. (9), (18), and (14)]. At the critical point we consider two pump strengths allowing us to verify the behavior below and above r�.
For T > Tc and T ¼ Tc, L ¼ 512 while for T < Tc, L ¼ 256.
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J0 ¼ −M∇μ½ϕ� ¼ −M∇ δF 0

δϕ
; ð3Þ

with μ½ϕ� the chemical potential. The Gaussian white noise
term, Λðr; tÞ, has zero mean with a variance satisfying
hΛiðr; tÞΛjðr0; t0Þi ¼ 2Dδijδ

ðdÞðr − r0Þδðt − t0Þ, where the
angular brackets denote an average over histories. The
pump, of fixed strength f, localized at the origin, is
accounted for by the last term in Eq. (2). It is represented
by a delta function, which yields the correct behavior in
the far field for any localized drive. Finally, D ¼ MT with
T the temperature, and M is the mobility. In general M
depends on the magnetization ϕ. In what follows we
consider the case of ϕ-independent mobility. This is valid
above and in the vicinity of the critical point where the
coarse-grained magnetization is small, so that a small ϕ
expansion can be applied. Implications of magnetization-
dependent mobility are discussed later.
We first consider the current. To do so we use density

conservation; because of the constant mobility the steady-
state average of the chemical potential satisfies Poisson’s
equation

∇2hμi ¼ ∇ · ½fδðdÞðrÞ�: ð4Þ

This implies that hμi ¼ ð1=SdÞðf · r=rdÞ with Sd ¼
2πðd=2Þ=Γðd=2Þ the area of a d-dimensional unit sphere
and Γ is the Gamma function. Hence the average steady-
state current takes the form of the field of an electric dipole:

hJiðrÞ ¼ −M∇hμi ¼ M
Sd

1

rd

�
dðf · rÞr

r2
− f

�
: ð5Þ

This motivates us, following existing literature, to refer to f
as the dipole strength. This result is confirmed numerically
in Fig. 3 of the Supplemental Material [20].
Before proceeding to the analysis of the density profile in

the various temperature regimes we note that while the
system is out of equilibrium, its steady-state properties
such as the density profile may be obtained by studying an
equivalent equilibrium system. This observation is found
useful in the analysis that follows and in the numerical
studies of the model. To see this, we use a Helmholtz-
Hodge decomposition

fδðdÞðrÞ ¼ ∇heff þ ζ; ð6Þ

where heff is a scalar function and ζ satisfies ∇ · ζ ¼ 0.
Using this in Eq. (2) shows that the density profile is only
affected by ∇heff. The statistics of ϕ are then described by
an equilibrium problem with the free energy

F ¼ F 0 −
Z

ddxheffϕ; ð7Þ

with F 0 given in Eq. (1) and heff accounting for the pump.
Taking the divergence of Eq. (6), one finds that

heffðrÞ ¼
1

Sd

f · r
rd

; ð8Þ

is nonlocal, decaying as a power law.
The equivalence between the equilibrium and nonequi-

librium models for the density is verified numerically in
Figs. 4–5 of the Supplemental Material [20]. There we
compare conserving, nonequilibrium Kawasaki dynamics
for a lattice gas with nonconserving, equilibrium Wolff
cluster dynamics [21,22] for the density. The Wolff cluster
algorithm is much more efficient than the conserving
Kawasaki dynamics, as it avoids critical slowing down.
This allows us to present results for large systems. In Fig. 1
we present results of the Wolff algorithm above and at the
critical point for two-dimensional periodic lattices of size
512 × 512. Below the critical point, where the mapping to
the equilibrium problem is not expected to hold due to
the dependence of the mobility on the magnetization, we
present results using Kawasaki dynamics for the non-
equilibrium model with smaller systems. We now turn to
the analysis of the magnetization profiles.
A pump above the critical temperature.—Above the

critical temperature, namely, for τ > 0, where the correla-
tion length is finite, one may ignore the Kj∇ϕj2 term in
Eq. (1) on length scales larger than the correlation length. In
addition, far from the pump, heff is small so the nonlinear
term in Eq. (1) may be ignored as well. Minimizing the free
energy (7) yields

hϕi ∼ 1

Sdτ
f · r
rd

: ð9Þ

This density profile is verified numerically in the leftmost
column of Fig. 1. For self-consistency it is straightforward
to verify that the terms inF 0 ignored in the derivation make
negligibly small contribution to Eq. (9) at large distances.
This result has previously been obtained in Refs. [13,14]
for a lattice gas model of hard core diffusing particles,
corresponding to infinite temperature.
As τ is lowered to approach the critical point the

derivation of Eq. (9) becomes invalid, as manifested by
the divergence of the expression of the density profile. This
is due to the diverging susceptibility χ ∝ τ−1 (or compress-
ibility of the lattice gas) which is linked to the diverging
correlation length.
A pump in a critical system.—We start with a mean-field

calculation, valid for d > dc ¼ 4. To this end, we minimize
F , the effective free energy (7), to obtain

0 ¼ K∇2ϕMF − uϕ3
MF þ

1

Sd

f · r
rd

; ð10Þ
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where we set τ ¼ 0. In the far field we expect the nonlinear
contribution to be negligible, leading to

ϕMF ∝ f · r=Krd−2: ð11Þ

Note that this decays slower than the τ > 0 solution
Eq. (9), but retains the same angular dependence. The
self-consistency of the solution can be checked by compar-
ing the contributions of the nonlinear and linear terms in
Eq. (10). One finds that uϕ3

MF ≪ K∇2ϕMF on distances
larger than r� ∝ ½uf2=K3�1=½2ðd−4Þ�, where f ¼ jfj. This
distance is finite for any dipole strength f in d > 4 and
thus at large distance Eq. (11) holds.
Next, we consider the behavior for d < 4. As the results

above show, the density modulations in this pumped critical
system are described by an equilibrium model with a
magnetic field heffðrÞ which decays as a power law with
the distance from the pump. Note that in general the presence
of a magnetic field h induces a finite correlation length, ξðhÞ.
To derive ξðhÞ we use the equation of state ϕ ∼ h1=δ with h
small, along with the linear-response relation

∂ϕ
∂h ¼ β

Z
drGðr; hÞ; ð12Þ

where β is the inverse temperature. One finds

ξðhÞ ∼ h−
ðδ−1Þ
δð2−ηÞ: ð13Þ

Here Gðr; hÞ ¼ ξ−ðd−2þηÞgðr=ξÞ is the connected magneti-
zation correlation function and η the anomalous exponent
associated with the correlation length.
Returning to the problem of a space-dependent magnetic

field heff , we reason that if in a certain region the field varies
on scales much larger than ξðheffÞ the system should behave
locally as if it is subject to a constant field heff . Using the
equation of state ϕ ∼ h1=δeff with Eq. (8) for heff one finds

ϕnonlin ∝ sgnðf · rÞ
���� f · rrd

����
1
δ

: ð14Þ

The condition for this to be valid is that r ≫ ξðheffÞ, which
using Eqs. (13) and (8) gives

r > r� ∼ f
δ−1

dðδ−1Þ−δð3−ηÞþ1: ð15Þ

Using the scaling relation 2 − η ¼ dðδ − 1Þ=ðδþ 1Þ then
gives r� ∼ f−ðδþ1Þ=ððδþ1Þ−dÞ. In d ¼ 4 − ϵ dimensions
δ ¼ 3þ ϵ so that the leading order behavior of r� is

r� ∼ f−2=ϵ; ð16Þ

which diverges as f → 0. Using δ ¼ 15 and δ ≃ 4.79 in
d ¼ 2 and d ¼ 3, respectively, [23,24] one finds r� ∼ f−8=7

and r� ∼ f−2.08, respectively. It is interesting to note that
this behavior is different than the one in d > 4 where the r�
decreases with f.
All in all we find that the far-field behavior below d ¼ 4

is very different from that found for d > 4. In particular, the
density profile is found to decay with the distance in the far
field as r−0.4 and r−1=15 in d ¼ 3 and d ¼ 2 respectively.
Furthermore, the angular dependence is also substanti-
ally modified. It is given by sgn½cosðθÞ�j cosðθÞj0.2 and
sgn½cosðθÞ�j cosðθÞj1=15 for d ¼ 3 and d ¼ 2, respectively.
The fact that r� increases with decreasing f implies that

it is also of interest to study the behavior at distances
r < r�. Here the field heff changes much faster than ξðheffÞ
so that the previous treatment is not self-consistent. Then
one can use perturbation theory to understand how the field
influences the system. This gives

ϕlin ≡ hϕðrÞi ¼
Z

dr0G0ðr − r0Þheffðr0Þ; ð17Þ

where G0ðrÞ ∝ 1=rd−2þη is the renormalized Green’s func-
tion, so that

ϕlin ∝
f · r
rd−2þη : ð18Þ

Note that the dipolar form of heff ensures that the integral
Eq. (17) converges. This is the behavior one might expect
naively from Eq. (11) when extended to include the
fluctuations below dc. The self-consistency of the linear-
response approach can be checked by demanding that the
fluctuations in the magnetization are larger than the mean
induced magnetization. This justifies the use of the critical
Green’s function. Since the fluctuations of the magnetiza-
tion on a scale r are given by r−ðd−2þηÞ=2 and the mean
magnetization is given by Eq. (18) one finds that the
approach breaks down on a scale r� ∼ f2=ðd−4þηÞ. This
coincides with the scale at which the far-field behavior
starts to work, see Eq. (15). Also, note that the two
expressions ϕlinðrÞ and ϕnonlinðrÞ match at r�.
Interestingly, for dimensions such that dþ η < 3, i.e.,

two dimensions, the magnitude of the near-field
density profile for r < r� is an increasing function of r.
The results at the critical point are verified numerically in
Figs. 1(d)–1(i) for a lattice gas in d ¼ 2.
In Sec. V of the Supplemental Material [20] we also

consider the richer behavior that arises close to but not
exactly at criticality, due to the competition between the
off-critical correlation length and the one induced by the
magnetic field.
A pump below the critical temperature.—Here we take

τ < 0 where in the absence of a pump the system phase
separates. Consider first the case studied above where the
net magnetization in the system is zero. The magnetization
is that of an equilibrium system with an effective magnetic
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field given by Eq. (8) which changes sign on the plane
f · r ¼ 0. Since τ < 0, even a small field induces a large
magnetization so that this plane divides the system between
positive and negative magnetization regions. The two
domains are separated by a narrow domain wall whose
width is controlled by the correlation length of the system.
The location and orientation of the domain wall is dictated
by the pump. In addition, the magnetization is essentially
constant in the bulk of the phases because the effective
magnetic field is small. In Sec. IV of the Supplemental
Material [20] we generalize the treatment to finite periodic
systems with the dipole parallel to one of the periodic axes
and to arbitrary values of the magnetization. In the latter
case curved or closed domain walls appear.
Far below the critical point the local average magneti-

zation becomes large and the magnetization dependence of
the mobility is expected to modify our results. In particular,
the mapping to an equilibrium model fails. Nonetheless, we
show in Figs. 3 and 5 of the Supplemental Material [20]
that our theory gives a qualitatively correct picture both
for the magnetization and the current when compared to
numerical simulations.
In summary, we studied the behavior of a pump in a

conserving lattice gas, or its equivalent magnetic system at
various temperatures. The most interesting behavior is found
at the critical point, where there is an interplay between the
long-range effects generated by the drive and the long-range
critical correlations in the system. The problem studied
opens the door to a host of questions. For example, it would
be interesting to generalize this problem to fluids belonging
to other dynamic and static universality classes, in particular
to momentum-conserving ones. These might be realized
experimentally using setups similar to that of Ref. [25]. In
addition, it would be interesting to explore these questions in
active systems where it is known that asymmetric objects
placed in the fluid act as pumps even in the absence of
external forces [26–29]. The closest system to the one
considered above is dry scalar matter which has a critical
point associated with a motility induced phase separation
[30–35]. Our method might be used as a possible probe of
the universality class of the system, a topic which has been
under some debate [36–40].
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