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One-dimensional topological pumping of matter waves in two overlaid optical lattices moving with
respect to each other is considered in the presence of attractive nonlinearity. It is shown that there exists a
threshold nonlinearity level above which the matter transfer is completely arrested. Below this threshold,
the transfer of both dispersive wave packets and solitons occurs in accordance with the predictions of the
linear theory; i.e., it is quantized and determined by the linear dynamical Chern numbers of the lowest
bands. The breakdown of the transport is also explained by nontrivial topology of the bands. In that case,
the nonlinearity induces Rabi oscillations of atoms between two (or more) lowest bands. If the sum of the
dynamical Chern numbers of the populated bands is zero, the oscillatory dynamics of a matter soliton in
space occurs, which corresponds to the transport breakdown. Otherwise, the sum of the Chern numbers of
the nonlinearity-excited bands determines the direction and magnitude of the average velocity of matter
solitons that remain quantized and admit fractional values. Thus, even in the strongly nonlinear regime the
topology of the linear bands is responsible for the evolution of solitons. The transition between different
dynamical regimes is accurately described by the perturbation theory for solitons.
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Controlled unidirectional transfer of matter, heat, or
physical quantities like charge or spin in a medium is a
fundamental problem. It was discovered by Thouless [1]
that one-dimensional (1D) pumping of electrons by a
slowly moving periodic potential over one pumping cycle
is quantized with quanta being determined by the Chern
numbers considered in the extended coordinate-time space.
To date, Thouless pumping was experimentally observed
in systems of cold bosonic [2–4] and fermionic [5]
atoms, spin systems [6], optics [7–9], acoustics [10], and
plasmonics [11].
Although topological pumping was originally intro-

duced for essentially linear systems [1,12], physical real-
izations mentioned above provide opportunities for
investigation of the phenomenon in nonlinear settings,
for example, in the presence of optical Kerr nonlinearity
or two-body interactions in Bose-Einstein condensates
(BECs). Interatomic interactions were intrinsically present
in experiments with BECs in bipartite magnetic lattices
where (nonquantized) transport was observed [13] and in
the formation of the Mott insulator phase assuring tight
binding of atoms upon pumping [3]. Nonlinear effects were
explicitly included in the single-band tight-binding
approximation for a gas of several spinor states of fermions
in optical lattices [14] and in model of a nonlinear
interferometer [15], where the obtained pump was frac-
tional. Topological transport of interacting photons was
described in [16]. Qualitatively new effects appear in the

presence of sufficiently strong interactions. Using a Rice-
Mele model, accounting for spin and the Hubbard inter-
action term, in [17] the authors reported the breakdown of
the Thouless pumping, explained by closure of the gap
computed using amplitude-dependent many-body ground
states under twisted boundary conditions. Apparently, the
effect may be dependent on the specific model, since in
another realization of a spinful Rice-Mele model subject to
both open and twisted boundary conditions, breakdown of
pumping was not found [18].
All above results dealt with repulsive interatomic inter-

actions and thus with stable nonlinear states of constant
amplitudes. In this Letter, we address nonlinear Thouless
pumping of matter waves in a BEC with a negative
scattering length, loaded in an optical superlattice created
by two lattices, one moving with respect to the other. In this
regime a well-localized matter soliton is formed and
excitations from the upper bands of the linear lattice
spectrum acquire special importance [19,20]. Our two
main findings are as follows: First, there exists a threshold
amplitude below which the pumping closely follows the
prediction of the linear theory [1], even when solitons are
formed. Above the threshold amplitude, the transport either
becomes fractional, acquires direction opposite to the
moving sublattice velocity, or is arrested, resulting in
oscillatory motion of a soliton. Second, oscillations of a
soliton, relatively well described by the perturbation theory
[21], have topological nature. They occur due to the
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nonlinearity-induced Rabi oscillations of atoms between
bands with different Chern numbers. The sum of the Chern
numbers of the excited bands determines the direction and
fractional magnitude of the one-cycle-average velocity of
the soliton. While dynamics of nonlinear wave packets in
oscillating lattices was studied previously in discrete
models [22,23], photonics [24–27], and BECs [28–30],
the relation of the transport properties of nonlinear systems
with the topological properties of linear bands is estab-
lished here for the first time.
The mean field dynamics of 1D BEC with a negative

scattering length (as < 0) is described by the Gross-
Pitaevskii equation for the macroscopic order parameter Ψ,

i∂tΨ ¼ HΨ − jΨj2Ψ; H ≡ −
1

2
∂2
x þ Vðx; tÞ: ð1Þ

Here t and x are measured, respectively, in the units ℏ=2Er

and Λ=π, Er ¼ ℏ2π2=ð2Λ2mÞ is the recoil energy, m is the
atomic mass, and Λ is a characteristic length defining the
period of the potential Vðx; tÞ, whose amplitude is mea-
sured in 2Er units. For a BEC in a cigar-shaped trap with
the frequency of the transverse trap ω⊥, the dimensionless
Ψ and dimensional Φ order parameters are related by Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏω⊥jasj=Er

p

Φ (see, e.g., [31]). The dynamical super-
lattice is modeled by

Vðx; tÞ ¼ −p1cos2ðπx=d1Þ − p2cos2ðπx=d2 − νtÞ; ð2Þ

where p1;2 and d1;2 are the dimensionless depths (in the
units of 2Er) and periods of the constitutive lattices. The
first stationary lattice can be created by two counter-
propagating monochromatic laser beams [28,29,32], while
the second lattice moving with the dimensionless velocity
vL ¼ νd2=π is created by two counterpropagating beams
with the frequency detuning ∼ν [33,34]. We require vL ≪
1 to be a small parameter determining adiabatic displace-
ment of the second lattice. Considering a 7Li BEC
(as ≈ −1.43 nm) [35,36], in a trap with ω⊥ ¼ 2π ×
710 Hz andΛ ≈ 2 μm, the period T ¼ 10π and the distance
L ¼ 1 used in our simulations correspond to 4.2 ms and

0.64 μm. For a soliton with 103 atoms in such a trap,
N ¼ R

∞
−∞ jΨj2dx ≈ 8.5. The periods d1 and d2 are consid-

ered commensurate, i.e., d1=d2 ¼ n1=n2 with n1 and n2
being coprime integers. At any instant of time, the potential
remains periodic with the dimensionless period
L ¼ n1d2 ¼ n2d1. Equation (1) is considered subject to
zero boundary conditions at the infinity and the initial
conditions, ensuring desirable filling of the bands as
discussed below.
Let us consider the coordinate of the c.m. (center of mass)

of the wave packet defined as XðtÞ ¼ N−1
R

∞
−∞ xjΨj2dx.

Adiabatic evolution makes it meaningful to consider the
instantaneous spectrum of H, i.e., Hφ ¼ μφ with μ being a
chemical potential and t considered as a parameter. This
gives origin to the instantaneous band gap spectrum μαðk; tÞ
[illustrated in Fig. 1(a)] with corresponding Bloch functions
φαkðx; tÞ ¼ eikxuαkðx; tÞ, where uαkðx; tÞ ¼ uαkðxþ L; tÞ,
α ¼ 1; 2;… is the band index, and k is the Bloch momen-
tum. Introducing also the Wannier functions [37,38]
wαnðx; tÞ ¼ ðL=2πÞ RBZ φαkðx; tÞe−iknLdk, we can expand
the order parameter Ψ ¼ ffiffiffiffi

N
p

P

α;n aαnwαn. The time-
dependent coefficients aαnðtÞ satisfy the normalization
condition

P

α;n jaαnj2 ¼ 1 expressing the fact that norm
N is conserved and can be found from the original evolution
equation (1) (see Supplemental Material [39]). This repre-
sentation allows one to express the shift of the c.m. in the
form

XðtÞ ¼
X

∞

α¼1

ραXα þ L
X

∞

n¼−∞
nηn

þ
X

∞

α;α0¼1

α≠α0

X

∞

n;n0¼−∞
n≠n0

a�α0n0aαn

Z

∞

−∞
w�
α0k0xwαkdx: ð3Þ

Here ραðtÞ ¼
P

n jaαnj2 is the population of the αth band,

XαðtÞ ¼
Z

∞

−∞
w�
α0ðxÞxwα0ðxÞdx ¼ L

2π

Z

BZ
Aαdk ð4Þ

describes the transport carried by αth band, AαðtÞ ¼
huαkðx; tÞji∂kuαkðx; tÞi is the Berry connection in the

FIG. 1. (a) The one-cycle evolution of the first three bands and their Chern numbers. Evolution of the initial state Ψini with l ¼ 0.4 at
(b) A2 ¼ 0.1, (c) 15, and (d) 70. Solid white curve in (b) visualizes the c.m. trajectory of the dispersive wave packet in the quasilinear
regime. Solid green curve in (d) represents the potential profile at t ¼ 0. Insets in (c) and (d) show the atomic densities at t ¼ 3T. The
vertical dotted lines in (b) and (c) indicate the position of c.m. at t ¼ 3T. (e) c.m. displacement in the dynamical lattices with p2 ¼ 5, 15,
and 25. The red dots on the solid line (p2 ¼ 25) correspond to dynamics in (b), (c), and (d). In (a)–(d), p1 ¼ p2 ¼ 25. In all cases
d2 ¼ 2d1 ¼ 1, L ¼ 1, ν ¼ 0.1, and T ¼ 10π.
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ðx; tÞ space, hfjgi ≔ R

L
0 f�ðxÞgðxÞdx, ηnðtÞ ¼

P

α jaαnj2 is
the population of the nth site, and the last term in Eq. (3)
describes the contribution of interband transitions.
One-band approximation at weak nonlinearities.—

Consider variation of a gapped spectrum over one cycle
as illustrated in Fig. 1(a) for potential (2). Suppose also that
only the lowest band α ¼ 1 is populated. Then the c.m.
coordinate is given by a simple expression XðtÞ ≈ X1ðtÞþ
ξdðtÞ, where ξd ¼ L

P

n nja1nj2. The pumping term X1ðtÞ
has a topological nature. Over one cycle of periodic driving,
one obtains [1,12,42] X1ðTÞ ¼ C1L, where

Cα¼
i
2π

Z

T

0

dt
Z

BZ
dk½h∂tuαkj∂kuαki−h∂kuαkj∂tuαki� ð5Þ

is the Chern number of the band α in ðx; tÞ space (see
Supplemental Material [39]). While X1ðtÞ is determined by
the global properties of the lattice, the contribution of the
dispersion ξdðtÞ is determined by the tunneling between
the nearest potential minima. In sufficiently deep lattices,
one estimates [39] jdX1=dtj ≫ jdξd=dtj. This estimate is
valid for both strong dispersion [Fig. 1(b)] and solitonic
[Fig. 1(c)] regimes. In any of these limits, the c.m.
coordinate being determined by the Chern number of the
lowest band is topological.
Equation (1) allows families of soliton solutions bifurcat-

ing from the linear Bloch states [43]. Small-amplitude
solitons, A → 0, are characterized by the scaling N ∼ A.
However, not any soliton input state results in soliton creation.
In the absence of a potential, i.e., at Vðx; tÞ≡ 0, Eq. (1) is
integrable andone can show [44] that for allΨðx; 0Þ satisfying
the condition

R jΨðx; 0Þjdx < U, where U ¼ lnð2þ ffiffiffi

3
p Þ,

no solitons are created. At Vðx; tÞ ≠ 0 a similar estimate is
unknown, but one can use the fact that evolution of small-
amplitude solitons is well represented by a Bloch wave
modulated by a slowly varying envelope Aðx; tÞ, which is
also governed by the nonlinear Schrödinger equation NLSE
with the effective mass meff and effective nonlinearity geff
determined by the specific form of the potential [43]:
iAt ¼ −ð1=2meffÞAxx − geff jAj2A. Therefore, in the pres-
ence of the lattice, the above condition for the absence of
solitons (roughly) should include a renormalized constant:
R jAðx; 0Þjdx≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meffgeff
p

U. Thus, one can distinguish the
quasilinear transport carried by gradually dispersing (non-
solitonic) wave packets [Fig. 1(b)] and solitonic transport for
which one can observe at least two different regimes, as
illustrated in Figs. 1(c) and 1(d).
We numerically solved Eq. (1) with the initial excitation

condition ΨiniðxÞ ¼ Ae−x
2=l2φ1;0ðx; 0Þ, where φ1;0ðx; 0Þ is

the normalized Bloch state of the lowest band at k ¼ 0, l is
the width of the envelope, and the amplitude A is used as a
control parameter. Increasing A allows us to study the
pumping under the transition between the quasilinear and
strongly nonlinear regimes. Quasilinear transport is shown
in Fig. 1(b), where one observes that, in spite of strong

dispersion, the c.m. of the wave packet follows the
averaged trajectory XavðtÞ ¼ Lt=T, as predicted above
for the lowest band characterized by the first Chern number
C1 ¼ 1. When amplitude of the initial state increases and
nonlinearity becomes sufficiently strong (A > 2 in our
simulations) for compensation of dispersion, a matter-wave
soliton forms. Remarkably, its pumping is still topological
and is accurately predicted by the formula for X1ðtÞ
[Fig. 1(c)].
Solitons and transport breakdown.—Upon further

increase of the initial wave packet amplitude, at some
threshold value Ath, the average forward motion of the
soliton becomes inhibited and small oscillations of a
trapped soliton appear [Fig. 1(d)]. This phenomenon
resembles the dynamical localization in a periodically
oscillating potential [45], which for solitons was predicted
in [22,23]. There are, however, two crucial differences
indicating distinct physics of the pumping breakdown.
First, the dynamical localization is a linear phenomenon,
and the nonlinearity is usually an obstacle for its observa-
tion [46], while trapping shown in Fig. 1(d) is a purely
nonlinear effect disappearing below threshold amplitude
Ath, which is illustrated in Fig. 1(e) for different choices of
the lattice parameters. Second, the dynamical localization
occurs at a discrete set of frequencies, while the present
effect is obtained at all frequencies ν that guarantee
adiabatic variation of the potential. To explain breakdown
of pumping, we recall that, when a soliton forms, its
expansion via Wannier functions necessarily involves
contributions from the upper bands [19]. Moreover, the
larger the nonlinearity, the smaller the relative effective
depth of the periodic potential; i.e., a larger number of
bands are excited. Formation of a soliton from an input
pulse occurs over short times, as compared to the long-time
adiabatic evolution. Hence, the pulse dynamics can be
viewed as a motion of a matter soliton. If the amplitude of
the initial pulse is large enough to create a soliton, but not
enough to induce the decay of the initial pulse into several
solitons [47], the motion of the created soliton can be
described using the perturbation theory.
To this end, we consider the renormalized order para-

meter Φ ¼ e−iðp1þp2Þt=2Ψ=A, where A ¼ supxΨiniðxÞ is the
amplitude of the initial wave packet (in our simulations of
the solitonic regime, it is approximately equal to the
amplitude A of Ψini). For sufficiently large A, ensuring
that ϵ ¼ p1=ð2A2Þ ≪ 1, the equation for Φ acquires the
form of the perturbed NLSE

iΦτ þ
1

2
ΦXX þ jΦj2Φ ¼ −ϵVðX; τÞΦ; ð6Þ

where we introduced the scaled variables τ ¼ A2t and
X ¼ Ax, and potential V ¼ cosðκ1XÞ þ p cosðκ2X − ωτÞ
with p ¼ p2=p1, ω ¼ 2ν=A2, and κj ¼ 2π=ðAdjÞ (j ¼ 1,
2). Let us choose the initial wave packet in Eq. (6) in the
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form of a soliton of the unperturbed (ϵ ¼ 0) NLSE,
ΦsðX; 0Þ ¼ λeivz=λþiθsechðzÞ, where z ¼ λ½X − XcðτÞ�;
i.e., we replace Ψini by an exact soliton of the same
amplitude (even so, crude approximation gives accurate
prediction of the threshold amplitude). The parameters λ, v,
and θ determine the amplitude, velocity, and phase of the
soliton, while XcðτÞ is the c.m. coordinate (in the unper-
turbed case dXc=dτ ¼ v). When V ≠ 0, due to smallness of
ϵ, it can be considered as perturbation in Eq. (6), and using
the perturbation theory for the NLSE solitons [21], one
obtains λ ¼ const and

d2Xc

dτ2
¼ −ϵf1 sin ðκ1XcÞ − ϵpf2 sin ðκ2Xc − ωτÞ; ð7Þ

where fj ¼
R∞
−∞ sinhðzÞsech3ðzÞ sin ðκjz=λÞdz.

Figures 2(a) and 2(b) show the results of the numerical
solution of Eq. (7) for two different initial amplitudes and
λ ¼ 1. In Fig. 2(a) we observe the dynamics prescribed by
the topological pumping, i.e., by X1ðtÞ. However, at
A > Ath ≈

ffiffiffiffiffi

61
p

, the wave packet undergoes periodic oscil-
lations [Fig. 2(b)]. This prediction, based on the perturba-
tion theory for solitons, perfectly matches the results of
direct numerical simulations of Eq. (1) shown by the solid
line in Fig. 1(e). Predictions of the perturbation theory for
threshold amplitude in shallower lattices [see the dashed
lines in Fig. 1(e)] are also close to results of simulations of
Eq. (1), but are less accurate because smaller Ath corre-
sponds to larger ϵ.
Rabi oscillations and topology of the breakdown.—

Remarkably, even the broken pumping can still be inter-
preted as a topological phenomenon. Indeed, when analyz-
ing populations of the lowest bands for unbroken pumping
in Fig. 2(c), one observes that one-band approximation is
perfectly justified: only the first band is populated (black
line) and population fluctuates only slightly with time. The
situation is dramatically different at A > Ath: in Fig. 2(d)
we observe Rabi oscillations of atoms between two lowest

bands (black and red lines), while the population of the
third band remains, in fact, negligible. Obviously, such
situation may be well described with the two-band approxi-
mation in Eq. (3). Recalling that the Chern number of the
second band is C2 ¼ −1 [Fig. 1(a)], one can interpret
spatial oscillations of the soliton in Figs. 1(d) and 2(b) as
Rabi oscillations between the Bloch bands carrying topo-
logical transport in opposite directions. Then forward and
backward motion of the soliton corresponds to dominating
populations of the first and second bands.
To illustrate the interplay of the band topology with

interband Rabi oscillations, we consider a lattice with
Chern numbers of the lowest two bands having different
signs and absolute values: C1 ¼ −1 and C2 ¼ 3 [Fig. 3(a)].
Focusing on the solitonic regime and using the same initial
condition as in Fig. 1, for relatively small amplitudes in
Fig. 3(b) we observe Thouless pumping of a soliton
predicted by the formula XðTÞ ¼ −L. Since the second
and third bands are relatively close, for larger initial ampli-
tudes one excites the three lowest bands [Fig. 3(c)].
Now the position of the soliton c.m. is determined by

FIG. 2. (a),(b) The displacement of the c.m. predicted by the
perturbation theory, for the initial amplitude A (a) below and
(b) above the threshold amplitude Ath ¼

ffiffiffiffiffi

61
p

. (c),(d) The
evolution of the population of the lowest three bands correspond-
ing to (a) and (b). In all cases, p1 ¼ p2 ¼ 25, ν ¼ 0.1.

FIG. 3. (a) The one-cycle evolution of the four lowest bands
and their Chern numbers. (b)–(d) Evolution of the wave packet
ΨiniðxÞ with l ¼ 0.16 at (b) A2 ¼ 3, (c) 40, and (d) 100;
(c) illustrates fractional pumping. The upper panels in (b)–(d)
show atomic populations of the four lowest bands (shown by
black, red, blue, and green lines, respectively). The vertical
dashed lines in (b),(c) indicate the position of the c.m. at t ¼ 3T.
The solid green curve in the lower panel of (d) represents the
potential profile at t ¼ 0. In all cases, p1 ¼ p2 ¼ 25, d1 ¼ 1=2,
d2 ¼ 2=3, and ν ¼ 0.1.
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the first and third terms in formula (3) describing, respec-
tively, topological pumping and Rabi oscillations among
the bands [upper panel of Fig. 3(c)]. Now the pumping is
fractional and occurs in the opposite (positive) direction of
the x axis. The one-cycle-averaged displacement is given
by XðTÞ ¼ L=3, and it is relatively well captured by a crude
approximation XappðTÞ ¼

P

3
α¼1 ραCαL averaging the con-

tribution of the Rabi oscillations to zero [for the result
shown in Fig. 3(c), one has XappðTÞ ≈ 0.23L]. Finally,
taking into account that

P

4
α¼1 Cα ¼ 0, in order to break-

down the soliton pumping, we further increase the ampli-
tude and this indeed leads to the trapping of the soliton
shown in Fig. 3(d), consistent with the explanation of c.m.
oscillations by Rabi oscillations of the atomic density
among the four lowest bands.
To conclude, we have shown that Thouless pumping

preserves its topological nature when considered in soliton
bearing nonlinear systems. Recently, an independent exper-
imental observation of this phenomenon in the array of
optical waveguides governed by a discrete nonlinear
Schrödinger equation was presented [41]. Thus, it is well
established that solitons may play a dominant role in
transport. Meanwhile, the present Letter has uncovered
physical mechanisms responsible for the quantized trans-
port by solitons in a continuous system. We have shown
that nonlinear pumping is determined by the well-defined
linear Chern numbers of the bands; i.e., the nonlinear
evolution is intimately related to the linear topology of the
lattice. The role of the nonlinearity in this process is
twofold: it results in the formation of solitons (in the
discrete case, this is shown in [41]), and it also induces
interband Rabi oscillations resulting in dynamically vary-
ing band populations, which, in turn, determine eventual
contributions of higher bands (all accounted for by the
continuous model) to the soliton displacement. This physi-
cal picture allowed us to predict and confirm numerically
that, by changing only the initial wave packet, the pump
can be reversed with respect to the direction of motion of
the dynamical sublattice, that it can become fractional or
broken (only the latter regime is reported in [41]). Our
results are applicable for both deep lattices, for which the
tight-binding regime considered in [41] is valid, as well as
for relatively shallow lattices requiring fully continuous
description. We also have shown that quantized soliton
motion in a certain range of amplitudes is well described by
the perturbation theory for solitons.
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