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Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of
V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay
between the atomic level structure and dissipation makes the phase diagram of the open system drastically
different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and
nearly dark excited many-body states with inverted atomic populations as the steady states. The
multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well
as the system’s Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be
implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated
states in a bosonic quantum gas. This implementation offers prospects for potential applications like the
realization of quantum optical random walks and microscopy with subwavelength spatial resolution.
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The interaction between matter and light has received
enduring attention over decades. Particularly, dark states can
be achieved where atoms are decoupled from the light
radiation channel. Single particle dark states lie at the core of
diverse phenomena and applications like coherent popula-
tion trapping [1-4], electromagnetically induced transpar-
ency [5,6], atomic clocks [7,8], atom cooling [9,10], and
slow-light polaritons [11-13]. More recently, many-body
dark states have been explored, revealing their importance in
quantum information and quantum computation [14—18].

Concurrently, ultracold atomic gases in high-finesse
optical cavities have emerged as a versatile platform to
simulate hitherto unexplored strongly coupled light-matter
phases [19-21]. A paradigmatic example is the realization
of the Dicke superradiant phase [22-25] in a weakly
interacting Bose-Einstein condensate (BEC) coupled to a
cavity [19,26]. The ubiquitous dissipation present in these
systems can be exploited to obtain squeezing and entan-
glement [27], chiral states [28], as well as oscillatory and
chaotic dynamics [29-39]. Particularly, cavity dissipation is
known to stabilize excited eigenstates as steady states in the
interpolating Dicke—Tavis-Cummings (IDTC) model where
two-level atoms are coupled to both quadratures of the
cavity field [40,41], which has recently been experimen-
tally verified by coupling thermal atoms [42] or a spinor
BEC [43] to an optical cavity. An exciting but relatively
underexplored frontier in cavity-QED systems is many-
body dark-state physics [44-46].

In this Letter, we study a many-body cavity-atom
system, where the atomic subspace has an enlarged
symmetry, and unveil how dissipative stabilization of
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excited states fosters the realization of a continuous family
of dark and nearly dark steady states with intrinsic many-
body correlations. This dark-state preparation is via cavity
dissipation in contrast to spontaneous atomic emission
[6,47]. To this end, we consider N identical, effective
V-shaped three-level atoms coupled to a dissipative cavity
with resonance frequency @ and dissipation rate x in the
thermodynamic limit N — oo [Fig. 1(a)]. The atoms have
two distinct but degenerate levels |1) and |2) separated by
an energy @, from the lowest level |0). The transitions
between the ground level and the excited levels are
exclusively mediated by coherent couplings to the two
orthogonal quadratures of the cavity fields with respective
strengths A; and 4,. In atomic gases, such an effective
atomic spectrum can be designed by addressing motional
degrees of freedom with external laser fields [48—51], or by
combining them with internal atomic levels [52]. The
Hamiltonian governing this system is given by (4 = 1)
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where a is the cavity annihilation operator, and iﬂu =

H=wa"a+ wy(Z) +2n) +

Z?’Zl |u) ;{v|; are the collective pseudospin operators with
|u); denoting the uth level (u € {0, 1,2}) of the jth atom.
A similar model has been considered in Ref. [52], which
focused on the superradiant features in the low energy
sectors.

© 2022 American Physical Society
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FIG. 1. (a) System schematics illustrating an ensemble of three-

level (|0), |1), and |2)) atoms with energy splitting , coupled to
an optical cavity a with resonance frequency @ and dissipation
rate k through coupling strengths A,,. Also shown is a repre-
sentation of the inverted states as mixed or superposition states of
levels |1) and |2), including the nearly dark (gray region) and the
dark (black point) states. (b),(c) Phase diagrams illustrating
(b) the ground states for the closed system Eq. (1), and (c) the
steady states for the open system Eq. (4). Pictorial representations
of the normal (N), superradiant (S), and inverted (/) states are
superimposed. In panel (c), the thick solid and dotted lines
indicate that the normal and superradiant states are stable only for
A1 =0 or 4, =0. Superradiant states stably coexist with the
inverted states in the tiled regions, and are physical but unstable in
the hatched regions. The purple star and diamond indicate the end
points of the ramps in Figs. 3 and 4, respectively. System
parameters are @ = 2@, wy = 0.5@, and k = 0.1® with reference
frequency @.

The Hamiltonian possesses a Z, X Z, parity symmetry

IM=7,07, where 7, and 7, are defined by

T, e A T
(a, Z3017202) (-a", 201, —2)  and (&, %1, Zp)
(a", =201, 202), and can be broken separately. When

A1 = Ay, this symmetry is enlarged to a U(l) symmetry
with generator G = a'a — (£, + £,;). The levels |1) and
|2) have completely equivalent roles in the Hamiltonian.
The pseudospin operators ﬁﬂv follow the commutation
relation of the Gell-Mann matrices and, thus, span an
SU(3) symmetry space [see Supplemental Material (SM)
[53]]. In comparison, a spin-one implementation with
SU(2) symmetry [63] realizes an equally spaced E-shaped
three-level system, where the middle level is equally
coupled to the upper and lower ones [53]. This is
qualitatively different from our V-shaped system.

The closed system phase diagram of our system as
summarized in Fig. 1(b) and the corresponding polaritonic
excitation spectra can be obtained by using an SU(3)
generalization of the Holstein-Primakoff transformation
[53,64]. For small couplings A= max(4;,4) <A4.=
%\/a_)w_ , the system stays in the normal phase with an

empty cavity and all atoms populating the |0) level.
When either coupling exceeds the threshold A > 1.,
the system enters the superradiant phase where the
cavity field is coherently populated as [(a)| =
(AWN/w)\/1 = (wgw/42%)?. For A > A, (A, > Ay), the
T, (7,) symmetry is spontaneously broken, leading to a
nonzero expectation value of the imaginary (real) quad-
rature of the cavity field and an occupation of the |0) and
1) (|2)) levels. For 4; = 4, > A, the broken U(1) sym-
metry results in a population of all three atomic levels.

In the high-energy sector, our model hosts a dark state
decoupled from the cavity field and, thus, is stable, obeying
H|D) = Nwy|D) and a|D) = 0 [65-67]

/12|1 Yit+ 4 |2>

11:[1 VAT + 4

This state manifests a complete atomic population inver-
sion with unoccupied |0) level. In fact, it is merely one
element of a family of states satisfying (3,) =0 and (&) =0
in O(N), which we term the inverted states. These states are
uniquely defined by two parameters,

(2)

Ny = (Zn), 0 = arg(2)y), (3)
where N, € [0, N] is the occupation of level |1), and 6 €
(—m, x] is the relative phase between levels |1) and |2).
These quasidegenerate inverted states have a much higher
energy E = Nw, compared to the polaritonic excitations,
whose energy is in O(1) [53]. These states stem from the
enlarged SU(3) symmetry and, in contrast to the dark state
of Eq. (2), are characterized by nontrivial many-body
correlations. Despite the inaccessibility of these inverted
states with quasiadiabatic protocols in the closed system,
they are inherently related to the dark state upon intro-
duction of dissipation.
Now, we explicitly consider cavity dissipation via a
Liouvillian time evolution of the density matrix [68]
dip = Lp=—ilH.p)+x(2apa’ —{a‘a,p}). (4)
The stability of the Liouvillian’s fixed points determines
the steady states of the system. In the third quantization
approach [69,70], this can be inferred from rapidities {&;},
whose construction and calculation from the Liouvillian are
detailed in the SM [53]. The values of ¢; dictate the stability
of the steady states to fluctuations. A state is stable
(unstable) when Reé;, >0 (Re&,;, < 0), with &, the
rapidity with the minimal real part. The system converges
to (deviates from) it with a rate of 2|Re&;,| and an
oscillation frequency of 2|Imé&;,| [69,70]. As detailed in
the SM [53], although the normal, superradiant, and
inverted states all remain fixed points of the Liouvillian
[Eq. (4)], their stabilities are dramatically altered by
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dissipation. The resulting open system stability diagram is
summarized in Fig. 1(c). Without loss of generality, we
assume 4; > 4, in the following discussion.

The first intriguing aspect of the open system is the
generic instability of the normal state, which is now stable
only when 1, =0 recovering the Dicke model, and
M <3/(0* +K*)wy/w [52]. Dissipation also signifi-
cantly impacts the superradiant states, where all atomic
levels are now populated. At the level of fixed points, akin
to the IDTC model [40], the U(1) symmetry broken phase
at 1; = /A, is eliminated, and two superradiant boundaries
separated by a sliver emerge symmetric about 1; = 4,.
Each superradiant boundary harbors both continuous
and first order sections [53]. In contrast to the IDTC
model, the superradiant state is unstable in an intermediate
region above the critical coupling of the closed system
[hatched region in Fig. 1(c)], as inferred from the associated
rapidities [53]. This superradiant state stability boundary is
almost insensitive to the weaker coupling, and lies
where the stronger coupling A, takes the approximate
value of

Astable R \/ (0? 4+ ) (0 + 2V 40? + 367wy /120%. (5)

Both normal and superradiant states manifest mathematical
singularity in fluctuations in both limits 1, - 0 and x — 0
[53]. A slight deviation from the Dicke model together with
an infinitesimal dissipation immediately destabilizes the

superradiant state when 1 < 4,/4, < +/5/3 and the nor-
mal state.

The high-energy inverted states show a nontrivial sta-
bility, as only a subset of them is stable. In the N-0
parameter space, the inverted state stability boundary as
depicted in Fig. 2(a) is given by

111, cos 6 way
= =Q, 6
m+n 0+ o} + K ©)

where 7, = A;y/N{/N, n,=2,4/1 —N;/N, and Q €
(0,1/2) is a scaled variable. The enclosed extended region
of multistability has a finite area A = Nz[l — Q(43 + 43)/
\V/A323 + (A2 = 13)2Q?], which increases for less resonant
o and g, and for larger k. Consistently, the dark
state |D) introduced in Eq. (2) corresponds to (N{,0) =
(N23/(A1 4+ 23),0), and always lies inside the stable region
for all values of €. These nearly dark inverted states
are either the exclusive steady states [orange region in
Fig. 1(c)] or coexistent with superradiant states [hatched
|

(1} +n3 — 2n3n3 cos 20) (@? + k> + 4nyn, cos 0)w}

= (0=0.018, A1=A, 0=0.23, A1=2A; log <5d2>—‘
10
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(a)
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FIG. 2. (a) Stability boundaries of the inverted state in the open

system for different system parameters given by Eq. (6). The
regions enclosed indicate stable solutions. The boundary is only
sensitive to the coupling ratio 1, /4, and the scale variable Q. The
blue solid line corresponds to typical experimental parameters
w=2xx2.0MHz, w, = 27z x 50 kHz, and x = 2z x 1.25 MHz
[43,49], the orange dashed line and green dotted line correspond
to the parameters used in Fig. 1: w =2®, wy = 0.5®, and
k = 0.1®, whereas the brown dash-dotted line depicts a scenario
with larger Q = 0.4. (b) Cavity field fluctuations (542) [cf. Eq. (7)]
of different inverted states in the stable region, with system
parameters taken as @ =2®, wy=0.5&®, x=0.1®, and
ﬂ'l = 12 = 6)

regions in Fig. 1(c)]. We reiterate that such multistable
steady states cannot be realized using SU(2) atoms with
cavity modes coupled linearly to it (see SM [53]), which
can host only one coherent dark state [45,46]. Indeed, their
realization requires a larger atomic symmetry like SU(3)
[53], and has been predicted in an SU(3) atomic system
coupled to two cavity modes [44]. Moreover, their exist-
ence and population inversion further requires both the
degeneracy of the levels |1) and |2) and a positive w, as
well. For @y < 0, a similar family of nearly dark states
exists albeit without population inversion (see SM [53]).
An in-depth exploration beyond these parameter regimes
merits future study.

Our results motivate further questions: (i) Are there
accessible observables physically distinguishing different
stable inverted states? (ii) Which of these states does the
system converge to during its Liouvillian time evolution?

To distinguish between the inverted states, a direct
measurement of the atomic observables N; and 6 can be
experimentally challenging. An alternative is to extract the
cavity and atomic fluctuations as well as the excitation
spectra harbored by the individual states. Particularly,
the cavity fluctuations (5a*) = (a‘a) —|(a)|*> are found
to be [53]

(60%) =

2[8nn3 (1 + c0s 20) + 4(n77 + n3)wwy + (0* + k23] 11112 (0* + @f + k%) cos O — (7} + n3)wwy)’

(7)
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FIG. 3. Dynamical evolution probing the multistability of the
inverted states. (a),(b) The time dependence of (a) 4,(¢) and
(b) 4,(7) in the three protocols [53]. (c¢) The trajectories of all
three protocols projected on the Bloch sphere spanned by |1) and
|2). The black dot indicates the starting point of the trajectories,
i.e., the normal state, while the crosses indicate the final points.
The stable region of the inverted states, appearing as the colored
spherical cap in this representation [53], corresponds to the one
shown in Fig. 2(b). (d) Evolution of the cavity and atomic fields
during the pulse in protocol (i), where (e),(f) the simulated
dynamics quantitatively agrees with the theoretically calculated
rapidities &Y. for the normal state and &L . for the inverted state
with (N,0) = (1/2,0) evaluated with instantaneous coupling
strengths. Particularly, (e) the time derivative of |(a)| depicting
the deviation or convergence rate quantitatively agree with
Reé i, Whereas (f) the spectrogram of (@) depicting the
oscillation frequency to Imé&;,.

and vary over orders of magnitude within the stable
region, diverging at the stability boundary and strongly
suppressed around |D) [Fig. 2(b)]. The vanishing cavity
and atomic fluctuations at |D) corroborate its darkness
and atomic coherence, whereas the states in its vicinity are
mixed states with intrinsic many-body correlations and
finite fluctuations. Measurements of the cavity fluctua-
tions and the excitation spectra can uniquely determine the
inverted state for unequal couplings A; # 4,, but only
up to a closed contour in the N -0 parameter space for
equal couplings 4; = 4,, as is consistent with the U(1)
symmetry [53].

The full Liouvillian dynamics of the system can be
captured by numerically solving the coupled mean-field
equations of motion for the cavity and atomic fields, using
the normal state with a small cavity field as the initial state,
and different time-dependent ramp protocols for the two
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FIG. 4. Dynamical evolution probing the accessibility of the
superradiant states. (a) The ramp protocols of the coupling
strengths [53]. The regions in which the superradiant state is
unstable, stable, and unphysical for the corresponding instanta-
neous coupling strengths are marked in green, hatched red, and
white, respectively, cf. Fig. 1(c). (b)—-(d) Qualitatively different
evolutions of the atomic fields for the three protocols.

couplings. These are seven coupled complex equations
governing the expectation values of (&), (£o1), (Zpn),
(Z15), Zoo), (£11), and (£5,) [53]. As a representative
case, the system parameters are chosen as o = 2@,
@y = 0.5@, and « = 0.1® with reference frequency @.
We ramp up the couplings fromA; =1, =0tod; =1, =
2@ using three different protocols as illustrated in Figs. 3(a)
and 3(b), which differ in ramp rate and path in 4;-4,
parameter space. For a better visualization, the ensuing
Liouvillian trajectories are projected onto the Bloch sphere
spanned by the axes Re(2,), Im(£,), and L ((£5,) — (£,))
[Fig. 3(c)]. Despite identical final couplings, the final
converged state depends sensitively on both ramp rate
and path, signaling the multistability of the inverted states.
The nature of the dynamics is further elucidated by studying
the cavity field evolution. As the atomic population inverts,
correlations between atomic levels (£,) and (Zy,) are
established. This automatically generates a nonzero (@)
signifying a burst of photons [Fig. 3(d)]. We can best
understand this in the bad-cavity limit x > w,, where
the cavity field follows the atomic evolution adiabatically
as (@) = (iLRe(2y;) + LIm(p))/[V/N(@ + ix)]. The
quantitative consistency between cavity field dynamics
and rapidities [Figs. 3(e) and 3(f)] confirms the dissipative
nature of the instability driving the population inversion.
Now, we discuss the accessibility of the superradiant
steady states by considering three ramp protocols satisfying
A1/A, = 1.2 [Fig. 4(a)]. They traverse the unstable super-
radiant region and terminate in the region where both the
superradiant and the inverted states are stable [purple
diamond in Fig. 1(c)]. We find a ramp-dependent dynamics
mirroring the complex stability of the states, as shown in
Fig. 4. For the slowest ramp [Fig. 4(b)], the dynamics is
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dominated by the instability of the normal state to the
inverted state. For an intermediate ramp rate [Fig. 4(c)], the
system first enters the unstable superradiant state before
being driven by its instability to the inverted state. Finally,
for a fast enough ramp [Fig. 4(d)], the system is quenched
to the stable superradiant state before it can invert toward
the nearly dark states.

Our model can be experimentally implemented using a
two-dimensional BEC in the x-z plane with effectively
two internal Zeeman sublevels |m = 0) and |m = 1) coupled
to a dissipative cavity with typical parameters of
w =2nx2.0 MHz and x = 2z x 1.25 MHz, and driven
by a bichromatic laser whose two standing-wave modulations
are phase shifted by /2 at the position of the atomic cloud
[49]. To the lowest order in kinetic energy, this atomic system
can be effectively mapped to our model [Eq. (1)], where |0)
corresponds to a spatially uniform state y, « |m = 0) ® 1,
while |1) and |2) are orthogonal spatially modulated modes
with wave vector k: w| & |m = 1) ® cos(kx) cos(kz) and
W, & |m = 1) ® cos(kx) sin(kz), respectively. This imple-
mentation structurally protects the degeneracy of the |1) and
|2) levels. The energy difference w, between the atomic
levels is contributed by both the Zeeman splitting and the
recoil energy and has a typical value of wy = 2z x 50 kHz.
Controlled by the pump laser, the couplings 4, and 1, take
values in the range of 2z x 100 kHz. For these experimen-
tally associated parameters, the inverted state stability boun-
dary in N;-0 parameter space is plotted as the blue solid
curve in Fig. 2(a), showing a vast multistable region and,
thus, indicating an easy observability of our predicted results.
Other proposed experimental realizations of similar models
are also discussed in Refs. [51,52].

In conclusion, the dissipative stabilization of a continu-
ous family of excited many-body states as steady states
establishes a new paradigm for preparing nearly dark states
in cavity-atom systems. These salient features pave the way
for a wide range of prospective applications. For instance,
the large multistable region provides a potential platform
for implementing fluctuation-driven random walks like
Lévy flight [71], which can be used for atom cooling
[72—74]. Moreover, in the experimental implementation
discussed above [49], the established correspondence
between matter and light can potentially be used for
fluctuation-based microscopy of the atomic density pat-
terns with subwavelength resolution [75].
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