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We study three-body loss in an ultracold mixture of a thermal Bose gas and a degenerate Fermi gas.
We find that at unitarity, where the interspecies scattering length diverges, the usual inverse-square
temperature scaling of the three-body loss found in nondegenerate systems is strongly modified and
reduced with the increasing degeneracy of the Fermi gas. While the reduction of loss is qualitatively
explained within the few-body scattering framework, a remaining suppression provides evidence for the
long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions mediated by fermions between bosons.
Our model based on RKKY interactions quantitatively reproduces the data without free parameters, and
predicts one order of magnitude reduction of the three-body loss coefficient in the deeply Fermi-degenerate

regime.
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Ultracold mixtures of bosonic and fermionic atoms
provide a powerful platform to explore the physics of
Bose-Fermi mixtures. Degenerate mixtures have been
produced to investigate phase separation [1], superfluidity
[2], polarons [3-5], and fermion-mediated interactions
[6,7]. Although various phases have been predicted for
strongly interacting mixtures, ranging from supersolid
charge density wave states [8,9] to boson-mediated s/ p-
wave fermion pairing [10-12], experimental investigation
is hindered by the strong three-body recombination loss
between the atoms [13-16]. Characterizing and under-
standing the three-body loss is a crucial step toward
exploring many-body physics in strongly interacting Bose-
Fermi mixtures.

Three-body loss describes the process in which two
atoms form a dimer while interacting with a third atom. The
released binding energy of the dimer leads to the scattering
products escaping the trap [17] and to heating [18]. A
formalism for three-body loss in nondegenerate mixtures
has been developed [19,20] and confirmed experimentally
[15,21,22]. In the universal regime, where the s-wave
scattering length a is much shorter than the de Broglie
wavelength, the three-body loss coefficient L is propor-
tional to a*, and can be altered by a series of Efimov
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resonances arising from couplings to Efimov-trimer bound
states. In the unitary regime, where the scattering length is
larger than the de Broglie wavelength, the three-body loss
coefficient saturates with Ly o« 1/7? [20], which has been
confirmed experimentally in nondegenerate systems [17,22].

In the quantum degenerate regime, the three-body loss
rate strongly depends on quantum statistics and other
many-body effects such as the fermion-mediated inter-
actions [6,7,23]. While the three-body recombinations
involving identical particles are enhanced (suppressed)
by bunching (antibunching) due to Bose [24-26] (Fermi
[27,28]) statistics, it remains unexplored how Fermi sta-
tistics modifies three-body recombination processes that
involve only one fermion. Moreover, the effective boson-
boson interaction mediated by the degenerate Fermi gas
further complicates the problem. Through the Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism, two bosons
obtain an effective long-range interaction by exchanging
one fermion [29]. The RKKY interaction modifies the
scattering potential, and thus, the three-body loss rate. The
RKKY interaction is predicted to form the basis for several
new quantum phases [23,30], however, so far only mean-
field effects of this interaction have been observed [6,7].

In this Letter, we study three-body loss in a mixture of
thermal >*Na and Fermi-degenerate “°K, where we explore
the effects of both Fermi statistics and the RKKY inter-
action. We measure the three-body loss coefficient L at
different interspecies scattering lengths. We find that the
loss is described by the zero-range theory in the universal
regime, while it is reduced by Fermi degeneracy in the
unitary regime. In addition to the 1/7? scaling, the unitary
three-body loss decreases with 7/Ty of the Fermi gas
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where T is the Fermi temperature. A theoretical model
based on few-body scattering theory, including contribu-
tions from the Fermi statistics and the RKKY interaction,
quantitatively described the data without any free parameters.
Based on this model, more than one order of magnitude
reduction in L3 can be achieved with T'/T; < 0.13.

The reduction of three-body loss is qualitatively
explained by the few-body scattering theory. In the unitary
regime, instead of the divergent scattering length, the de
Broglie wavelength determines the scattering properties.
The unitary three-body loss coefficient for scattering
between two identical bosons of mass m;, and one fermion
with mass m, is then given by

_ 8r*htcos’ ¢

l3 (E) m3 Ez

(1—e™), (1)

where FE is the kinetic energy in the three-body center-of-
mass frame [20,31]. Here, m, = m,m¢/(m;, + my) is the
reduced mass, and ¢ is defined by sin¢p = my/(m;, + my).
The term 1 — e™*, where 7 is the inelasticity parameter,
gives the probability that the incoming wave is not
reflected. The average loss coefficient in an atomic mixture
is obtained by averaging over the collision energy distri-
butions f(E) [32],

L= / L (E)f(E)dE. 2)

For a nondegenerate mixture, the average collision energy
is given by 3kzT, thus Ly o 1/T? in the unitary regime
according to Eq. (1). For a mixture where the Fermi gas is
degenerate, the average collision energy furthermore
depends on the Fermi energy. Because of Fermi statistics,
identical fermions distribute over higher momentum states
than for the case of a Boltzmann distribution, leading to a
larger collision energy as illustrated in Fig. 1. Accordingly,
the average unitary three-body loss decreases as the Fermi
energy increases. In other words, the saturation of kinetic
energy in the Fermi degenerate regime leads to a reduction
of three-body loss compared to thermal gases. To explicitly
show the effect of Fermi degeneracy, we separate the 1/7T2
dependence by defining the temperature-independent loss
coefficient A = L;T?. In essence, one expects A to stay
constant in the nondegenerate regime and to decrease with
T /Ty in the Fermi-degenerate regime.

Our experimental sequence begins with the preparation of
a trapped mixture of bosonic *Na atoms in |F, mg) = |1, 1)
and fermionic *°K atoms in |9/2, —9/2). Here, F is the total
angular momentum and my. is its z component. The trapping
frequencies for Na and K in the (x, y, z) direction are 27z x
(88,141,357) Hzand 2z x (97, 164,410) Hz, respectively.
The interspecies scattering length is varied by tuning the
magnetic field around a Feshbach resonance at 78.30(4) G
[32]. The relation between the scattering length and the
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FIG. 1. Three-body loss coefficient and collisional energy

distribution. (a) Unitary three-body loss coefficient I5(E)
1/E?, as given by Eq. (1). (b) The distribution function f(E)
of collisional energy in a Bose-Fermi mixture. We show two
scenarios with the same temperature 7 but different 7. For a
thermal mixture (red solid line), the distribution follows the six-
dimensional Boltzmann distribution with an average collision
energy of 3kzT (black dashed line). For a mixture with a
degenerate Fermi gas (blue solid line), the distribution is shifted
toward larger collision energies by the Fermi pressure.

magnetic field is obtained by fitting the binding-energy data
of the Feshbach molecules, as described in detail in
Supplemental Material [32]. To probe the loss on the
repulsive (attractive) side of the Feshbach resonance, we
prepare the sample at a weakly repulsive interaction below
(above) the resonance and ramp the magnetic field in about
100 us to the target magnetic field. Before the ramp, a
magnetic field gradient is turned on to compensate gravita-
tional sag between the atomic species and ensure good
density overlap. After a variable hold time, the magnetic field
is ramped back within 100 us to a zero crossing of the
interspecies scattering length close the initial magnetic field.
Subsequently, the atoms are released from the trap and both
species are imaged after some time of flight. We obtain the
temperatures and atom numbers from the images and deduce
T from the atom number and trapping frequencies.

To characterize the few-body aspect of the three-body
loss in our system, we measure L3 at various scattering
lengths. We use 3 x 10° Na atoms and 1.5 x 10° K atoms.
The temperature is chosen to be around 0.67 5 but above the
condensation temperature of Na. The measured atom loss
ratio between Na and K is close to 2: 1, confirming that Na-
Na-K is the dominant loss channel, while the K-K-Na
three-body loss is suppressed by Pauli blocking between K
atoms. We determine Lj by fitting the loss rates of Na and
K atoms to the coupled differential equations

dNg  1dNy
7 = 5 di 2= —L3 / nlz\la(x)nK(x)d3x. (3)
We use a thermal distribution for ny,(x) and a Thomas-

Fermi distribution for ng(x). Besides the three-body loss
term, we include secondary processes and evaporation in
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FIG. 2. Three-body loss coefficient L; versus interspecies
scattering length a (gray points). The red solid line shows the
numerical result of the fitted zero-range theory, which yields an
inelasticity parameter 7 = 0.02 and a three-body parameter R, =
35a, (see Supplemental Material [32]). The red dashed line
shows the result with 7 = 0.02 but without Efimov resonances.
The error bars are discussed in Supplemental Material [32].

the universal regime [32]. In the unitary regime, these
processes become insignificant.

Figure 2 summarizes the results of the three-body loss
coefficient L3 as a function of the interspecies scattering
length a. We compare our results to the zero-range theory,
which assumes contact interactions [19,20,32]. The zero-
range theory including finite temperature effects requires
averaging over the collision energy distribution, and is not
available in an analytic form for a > 0. Therefore, we use
the zero-temperature formula for a > 0 [19] and the finite-
temperature formula for @ < 0 [20]. We find that = 0.02
and the three-body parameter R, = 35a, [32] reproduce
the loss in the universal regime on both sides of the
resonance. In the short range where the scattering length
is comparable to the van der Waals length R 4w = 53.3q,,
the zero-range approximation breaks down [43—45] and the
theory fails to describe the data.

With a good understanding of the three-body loss in the
universal regime, we move on to probe the unitary three-
body loss as a function of temperature and Fermi degen-
eracy. We use the same experimental sequence as in the
previous measurements and fix the probe magnetic field to
the pole of the Feshbach resonance |1/a] < 10~*ag! [32].
We vary T/T by changing the initial number of K atoms
and the temperature while keeping the mixture in thermal
equilibrium. In order to achieve the lowest possible 7/T f,
we use a high number of K atoms (~4 x 10°) and a low
number of Na atoms (~3 x 10%). Thus, the loss fraction of
K atoms is small compared to the loss fraction of Na atoms
and T/T is modified by less than 10% throughout a loss
measurement. In the high-7/T regime, we reduce the
number of K atoms down to ~2 x 10*. Since a dependence
of the three-body loss on T /T is not expected in this
regime, we allow for a relative large increase of T /T of
about 30%. The initial temperatures and the trap parameters
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FIG. 3. Suppression of unitary three-body loss. (a) Temper-

ature-independent loss coefficient A as a function of 7/T . The
temperature of each loss measurement is indicated by the color of
the data points. The dashed line represents the few-body
prediction of A according to Eq. (4). The solid line shows the
prediction including the RKKY effect. (b) Three-body loss
coefficient as a function of temperature. The 7/T of the Fermi
gas is indicated by the color. The dashed lines show the
temperature dependence of L; = A/T? for different T/T.
The A coefficients are obtained by averaging over the data where
T/Tp deviate less than 15% from T/Tp = 0.4 (black), 0.8
(purple), 1.2 (orange). The error bars are discussed in Supple-
mental Material [32].

are chosen such that temperature changes and evaporation
are negligible.

The unitary three-body loss is plotted in Fig. 3. As shown
in Fig. 3(a), the temperature-independent loss coefficient A
is consistent with a saturation for T/T = 1 and decreases
with T/Ty. A reduction of T/T; down to 0.4 leads to a
reduction of A by a factor 2.4(4) in comparison to the
nondegenerate regime. In order to verify that the reduction
does not result from a reduced absolute temperature, the
measurements in the same 7/Ty regime are taken with
different temperatures and atom numbers. As shown in
Fig. 3(b), the data for a given T/T follow the inverse-
square temperature scaling, while the data for a given
temperature L5 decrease with increasing 7' for low T /T .

We compare the data with the prediction from the zero-
range theory. We use the local density approximation,
which treats the mixture at each spatial coordinate in the
trap as a homogeneous gas with temperature 7" and fugacity
z. The averaged A over the three-body density overlap is
given by
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FIG. 4. The effect of the RKKY interactions. (a) RKKY
potential mediated by fermions between two bosons at unitarity
[32]. The potential barrier V, suppresses the tunneling proba-
bility into short range. (b) The suppression factor from the RKKY
interactions A;/Agggy as a function of T/Tp.

and [Z(x>
[ ni(x x)d3x ’

where the subscript f refers to few-body theory. Here, z(x)
is the fugacity under local density approximation, A(z) =
L;(z)T? is the local reduced loss coefficient where L;(z) is
given by Eq. (2) in the degenerate regime and is a function
of the local fugacity. The increased collision energy by the
Fermi pressure leads to a continuous decrease of A in the
degenerate regime. While the model shows a similar
qualitative dependence as the experiment, the experiment
data exhibit a substantially larger reduction: the few-body
theory suggests significant reduction only for 7/Tp less
than 0.1 while the experimental results already show a
reduction for T/Tp < 1

In the following, we show that the fermion-mediated
RKKY interactions between bosons are crucial to under-
standing the suppression of the unitary three-body loss. As
shown in Fig. 4(a), the RKKY interaction is attractive at
short distance and is oscillatory with a length scale z/kf at
long range. At a distance R, = 2.8/kp, the oscillation gives
rise to a barrier of the height V, % 3.2Er &« T [32]. When
the average distance between bosons is much shorter than
R, only the short-range attractive interaction played a role
[6,7]. In our experiment, the bosons are still thermal with an
average distance 0.6 um larger than R, ~ 0.3 um.
Therefore, the barrier reduces the probability of two bosons
approaching each other. In the low-temperature regime, the
tunneling probability through the potential barrier Py is

given by the Bethe-Wigner threshold law +/E/V, x
\/T /T [46], which gives rise to the additional suppression

Ay(T/TF) =

in the degenerate regime. Again, we apply the local density
approximation to obtain the local tunneling probability

x)|] = +/3kpT/2V,[z(x)] from the potential barrier

V,[z(x)] and the average kinetic energy of the bosons
3kgT /2. Accordingly, the coefficient A is given by

J i, (%) ng (%) A[z(x)|Prz(x)]dx
ana(x>nK )d’x '

Equation (5) reproduces the experimental data in the Fermi-
degenerate regime without any fitting parameters, as shown
in Fig. 3(a). In the deeply degenerate regime, the model
predicts more than one order of magnitude reduction,
ie., Arkry(T/Tp <0.13) <0.1Ay, where Ay, is the
reduced loss coefficient in a nondegenerate thermal mix-
ture. The suppression from the RKKY effect can be
quantified as A;/Aggky, i.€., by comparing to the pre-
diction from the few-body theory. As shown in Fig. 4(b),
the suppression factor increase with the Fermi degeneracy.
At T/Tp = 0.13, where we predict reduction of A by one
order of magnitude compare to Ay, the few-body theory
predicts a factor of 2.6 reduction, and the RKKY effect
suppresses the loss further by a factor of A;/Agkky = 3.7.
As T/Tp increases, the form of the mediated interaction
breaks down due to thermal fluctuations. Therefore we
expect a crossover from the prediction with the mediated
interactions in the Fermi-degenerate regime to the constant
loss in the thermal regime.

Our model provides a good starting point for further
theoretical investigation. Future works could improve the
calculation by treating the interaction by nonperturbative
methods [47], and by employing the three-body hyper-
spherical potential [48,49] to go beyond the Born-
Oppenheimer approximation used to derive the mediated
interaction.

In conclusion, we have investigated the three-body loss
of a Bose-Fermi mixture of **Na and “°K both in the
thermal and in the Fermi-degenerate regime. We have
confirmed that L is proportional to a* in the universal
regime, and is consistent with saturation at unitarity. We
have shown that unitary three-body loss is reduced by the
Fermi degeneracy, by measuring the temperature-indepen-
dent loss coefficient A as a function of 7/T . While the
qualitative feature of the reduction is captured by the few-
body scattering theory with the degenerate energy distri-
bution, the additional suppression provides strong evidence
for the RKKY effect. We have developed a theoretical
model based on RKKY interactions, which quantitatively
explains the suppression in the degenerate regime without
any fitting parameters. Our model predicts a factor of 10
reduction of A for 0.137x, a very substantial factor that
could be reached in a deeply degenerate mixture.

The understanding of three-body loss rates in the
quantum degenerate regime presented in this work provides
a promising outlook to investigate strongly interacting

(5)

ARKKY (T/ TF )
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Bose-Fermi mixtures in the deeply degenerate regime.
Exciting future works include measuring the unitary colli-
sional loss between a BEC and a degenerate Fermi gas,
investigating the universality of unitary Bose-Fermi mix-
tures [50], probing the Efimov states in the presence of a
Fermi sea [49,51,52], understanding the phase transition
from atoms to molecules across the unitary regime [53-55],
and using three-body loss as a tool to probe three-particle
correlation functions [26]. Our work is also relevant for
creating degenerate fermionic molecules from Bose-Fermi
mixtures by adiabatically tuning the interaction across the
unitary regime [56,57], where the suppression of three-
body loss could improve the molecule creation efficiency.
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