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Electronic interactions play a fundamental role in atoms, molecular structure and reactivity. We
introduce a general concept to control the effective electronic exchange interaction with intense laser fields
via coupling to excited states. As an experimental proof of principle, we study the SF6 molecule using a
combination of soft x-ray and infrared (IR) laser pulses. Increasing the IR intensity increases the effective
exchange energy of the core hole with the excited electron by 50%, as observed by a characteristic spin-
orbit branching ratio change. This work demonstrates altering electronic interactions by targeting many-
particle quantum properties.
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Electron-electron interaction is pivotal for molecular
physics and chemistry by binding atoms together via
covalent bonds. This interaction can be split into the
classical direct Coulomb repulsion and the exchange
interaction, which is a pure quantum effect related to the
Pauli principle [1].
Light, especially when emitted by lasers, is an ideal tool

to investigate [2] and control [3] molecules on this
electronic level: Its tunable electric field directly couples
to the charged electrons, which quickly transfer their
excitation to the nuclei. This forms the basis for observing
and coherently controlling molecular dynamics ranging
from small diatomic [4,5] and polyatomic [6–8] up to large
biologically relevant [9,10] molecules. Furthermore, in
solid-state systems, macroscopic, correlation-based phe-
nomena such as magnetism [11,12] or high-temperature
superconductivity [13] can be altered via laser light.
Core-level transient absorption spectroscopy as an all-

optical technique has led to scientific breakthroughs in the
field of laser-induced atomic [14,15] and molecular
[16–20] dynamics. To date, physical insights have been
gained from experimentally quantifying parameters such as
the absorption line shape [21–23], the resonance energy
[24,25], and its line strength [15–17,24,25] under the
influence of strong fields. High-resolution studies of

static x-ray absorption spectra have identified another
experimentally accessible observable: The relative area
ratio of spin-orbit-split absorbance doublets. Theoretical
works [26,27] have shown that a change in this so-called
branching ratio [28] is a direct measure of the electronic
exchange interaction. Since then, the analysis of branching
ratios in x-ray absorption spectroscopy (XAS) has helped
to elucidate the electronic-correlation nature even in com-
plex solid-state systems [29].
Here, we realize laser control of the effective exchange-

interaction energy. Tuning solely the electronic degrees of
freedom is achieved by the ultrafast transient coupling of
electronic states via intense IR laser pulses and analyzing its
imprint on the spin-orbit branching ratio. Using ultrashort
x-ray pulses acting on the timescale of a core-hole lifetime,
the measurement is completed before significant nuclear
motion sets in. To clearly single out the effect of a tuned
exchange interaction, we employ an excitation from a spin-
orbit-split core orbital. This serves as a proof of concept and
offers element specificity within the molecule. Furthermore,
our study constitutes a new mechanism for electronic
structure alteration, as we do not rely on either significant
population or charge transfer [30], ionization [31], nor a
mediation through nuclear motion like vibrations [5], rota-
tions [8], or intersite couplings across a lattice [11–13,32].
Our goal in this Letter is to describe and quantify

exchange-interaction control using a minimal theoretical
toy model (for a thorough derivation, consult Supplemental
Material, Sec. III [33]). This is achieved by reducing the
theoretical framework to its most important parts and
introducing effective parameters [41].
In the following, we distinguish between the single- and

the multiparticle perspective by referring to “orbitals” in
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contrast to “states,” respectively. We restrict our one-particle
space to three orbitals, here denoted “core” orbital ψc,
“valence” orbital ψv and "polarizing" orbital ψp [compare
Fig. 1(a)]. A weak dipole field couples ψc to ψv, while a
strong field couples ψv to ψp. The weak field will act as a
“probe” in the following. Furthermore, ψc is assumed to
experience significant spin-orbit coupling, splitting into two
“core orbitals” ψc� .
Based on the four single-particle orbitals, the many-body

ground state j0i is created by filling the orbitals with
electrons to the highest occupied molecular orbital
(HOMO). In addition, the valence and the polarizing orbital
of Fig. 1(a) can be dipole excited (ψ1

v or ψ1
p) leaving a hole

in either of the two spin-orbit-split core orbitals, ψ−1
c� . Thus,

this gives rise to four many-body excited states: jc−1þ v1i,
jc−1− v1i, jc−1þ p1i, and jc−1− p1i. The first two excited states
jc−1� v1i contain an electron promoted to the valence orbital
from either of the two spin-orbit-split core orbitals. A
further excitation of the valence electron to the polarizing
orbital gives rise to the last two states jc−1� p1i. Using this
many-body basis, the Hamiltonian can be expressed as the
5 × 5 matrix

H ¼

j0i jc−1þ v1i jc−1− v1i jc−1þ p1i jc−1− p1i0
BBBBBB@

0 μþdE μ−dE 0 0

μþdE Eþ Ex d0E0 0

μ−dE Ex E− 0 d0E0

0 d0E0 0 E0þ E0
x

0 0 d0E0 E0
x E0

−

1
CCCCCCA

: ð1Þ

The energy expectation values of jc−1� v1i are denoted as
Eþ and E−. Their coupling to the ground state is given by
the dipole matrix element d and the weak, probing field
strength E. It is weighted with a multiplicity factor

μ�¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� þ 1

p
due to the degeneracies of ψc� . The states

are further coupled to one another by the matrix element
Ex, because the electrons in the orbitals can flip their spin
and position via exchange interaction. The states jc−1� p1i
give rise to an analogous block of matrix elements E0þ, E0

−,
and E0

x, which are coupled to the upper-left 3 × 3 block by
the dipole matrix element d0 and the strong field E0.
In general, the eigenvalues of the Hamiltonian matrix

HjE¼0 at a vanishing probe field determine the centers of
the spectral line, while the areas correspond to the squares
of off-diagonal matrix elements of H expressed in the
diagonal basis of these eigenvectors [42]. In the absence of
any field and exchange interaction, the matrix is diagonal
and the spectrum of the probe field therefore shows
two peaks with the expected statistical area ratio of
R ¼ ðμ2þ=μ2−Þ ¼ ½ð2jþ þ 1Þ=ð2j− þ 1Þ�. Because of the
exchange coupling, this ratio changes [26,27], as is
schematically shown in Fig. 1(c).
Additionally activating the strong field individually

couples the orbitals containing the valence electron with
higher-lying valence orbitals and the same core hole.
This further influences the ratio, because the final states
reached by the probe field now have overlap with the
initially inaccessible states jc−1� p1i, which have a different
exchange-interaction strength E0

x. If the excited-state
lifetime is much shorter than the duration of the pulse
that couples the valence to the polarizing orbital, one can
evaluate H with an adiabatic approach (see Supplemental
Material, Sec. V [33]) without explicit time dependence in
any matrix element. This is analogous to a treatment of
laser-dressed states.
For an experimental realization of electronic exchange-

interaction control, the prototypical molecule sulfur
hexafluoride (SF6) was investigated using XAS in combi-
nation with strong IR laser pulses. The sulfur (S) L2;3-edge
transition to the LUMO was chosen as core-to-valence
transition, visualized in Fig. 2(a). In terms of molecular
orbitals (MOs), this corresponds to an electronic dipole
transition from the core-level 2t1uðj� ¼ f3=2; 1=2gÞ
orbital with atomic S 2p character (l ¼ 1 and thus
j� ¼ 1� 1=2) to the 6a1g LUMO, mediated by a soft
x-ray (SXR) pulse at transition energies of 173.44 and

FIG. 1. Schematic experiment. (a) Single-particle-picture level
scheme with spin-orbit-split core orbitals ψc� , valence orbital ψv,
and laser-coupled polarizing orbital ψp. (b) Experimental tran-
sient absorption setup scheme for exchange-interaction control
(compare Supplemental Material, Sec. I [33]). A motorized
aperture (motA) cuts the IR beam mode and thus controls the
IR intensity. The transmitted SXR through a gaseous target (tar) is
spectrally dispersed via a variable-line-spacing (VLS) grating,
while the target is perturbed by the time-overlapped IR field of
variable intensity. The insets show expected SXR spectra for the
“no target” case and “with target” [without (1) or with (2) ex-
change interaction]. (c) The corresponding optical densities
(ODs) of (b). In the case without exchange interaction (1), the
spin-orbit peak area ratio R is given by the statistical one, derived
from Pauli’s principle, while deviating from it otherwise.
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172.27 eV, respectively [43]. Thus, we probe the electronic
structure of SF6 from the point of view of the sulfur atom
[16]. The orbitals 2t1u and 6a1g represent the core and
valence orbitals from the model in Fig. 1(a). The 6a1g orbital
[43–45] has a significant exchange interaction with the S 2p
core orbital 2t1u. Consequently, the 2t1u → 6a1g transition is
an ideal probe for the interaction between the five remaining
2t1u electrons and the excited LUMO electron, referred to as
core-hole–excited-electron interaction [46]. In addition, a
strong IR laser pulse dipole couples the 6a1g with other
unoccupied orbitals with odd symmetry, e.g., 6t1u. The
manifold of dipole-coupled odd-parity orbitals represents
the effective polarizing orbital ψp in Fig. 1(a).
The experimental implementation sketched in Fig. 1(b)

employs a few-optical-cycles pulsed IR laser source at a
center wavelength of 1535 nm. A pulse energy of 1 mJ is
used for the experiment and focused into an XAS vacuum
beam line. The SXR pulses are produced via high-order
harmonic generation (HHG), resulting in a continuous
spectrum up to 200 eV. By cutting the beam mode of
the residual, divergent IR after HHG with a motorized
aperture, the IR intensity can be controlled. Afterward, the
SXR and the IR beams are refocused into a gaseous SF6
target. Finally, the transmitted SXR beam is spectrally
dispersed and measured with a CCD camera (see
Supplemental Material, Sec. I [33]).
Figure 2(b) shows the experimentally determined 6a1g

doublet absorbance for different IR intensities. Using a
Voigt fit model (see Supplemental Material, Sec. II [33]),
one can extract the area (A1=2 and A3=2, respectively) and
center-energy position (E1=2 and E3=2, respectively) of each
absorption peak within the doublet. In XAS, the absorbance
peak area of a resonance is proportional to the oscillator

strength of the respective transition. As can be seen in
Fig. 2(b), A1=2 grows, whereas A3=2 decreases for higher
IR field strengths. Consequently, the peak area ratio R ¼
ðA3=2=A1=2Þ is reduced by 53� 4% [compare Fig. 2(c)].
Measurements of the unperturbed SXR absorption spec-
trum showed that SF6 is an exemplary electron-correlation-
influenced system in which Hund’s multiplicity rule
does not apply, as A3=2 is smaller than A1=2 instead of
being statistically twice as large [43,44,46]. A further
suppression of the jþ peak with increasing IR field
strength intuitively suggests that the effective core-hole–
excited-electron exchange interaction is further increased.
To test this hypothesis, one can apply the fit model from
Eq. (1): By using the peak-energy position differences
(Δ ¼ E1=2 − E3=2) and areas of just the measured static
absorption spectrum at lowest IR intensity and the most
perturbed absorption spectrum at highest IR intensity, one
can obtain the constant Hamiltonian matrix elements [47].
For this description, E0 is to be understood as the average
field the molecules experience in the experiment. This
results in the fits of RðE0Þ and ΔðE0Þ as red- and blue-
dashed lines in Fig. 2(c), which agree very well with the
experimental data, even between the two extremal values
that were exclusively used for the fit shown in the insets.
Evaluating the results of the fit, we find that the exchange

interaction with the core orbital is significantly larger for
the polarizing orbital than for the valence orbital,
E0
x ≈ 2.5Ex. To understand the generality of this phenome-

non, one has to consider that every dipole excitation
changes the parity. Thus, the orbitals involved in the
SXR dipole excitation, 2t1u and 6a1g, have opposite
parities, while the additional IR excitation flips the parity
again for the polarizing orbitals. The exchange matrix

FIG. 2. SF6 electronic structure, measured S L2;3 absorption spectra, and derived quantities. (a) Scheme of the relevant MOs in the
single-particle picture for the corresponding measurement in Fig. 2(b) and their atomic orbital character. A MO illustration based on
density functional theory calculations is given in the middle. (b) Experimental 2t1u − 6a1g doublet absorption spectra under the
influence of strong IR fields. For each IR intensity, an offset of 2 × 10−2 OD was applied for better perspective visibility. Therefore, two
exemplary ordinate axes are given on the left for the extreme cases of lowest (black) and highest (red) IR intensity. (c) Experimental and
fitted R (red) and Δ (blue) dependencies on IR electric field strength. The insets show the Voigt fits for the values used for the analytical
model fit.
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elements in Eq. (1) can be calculated via (see Supplemental
Material, Sec. IV [33] for a derivation)

Eð0Þ
x ∝

ZZ
ψ†
c−ðr⃗1Þψ†

o↑ðr⃗2Þ
1

jr⃗1 − r⃗2j
ψcþðr⃗2Þψo↓ðr⃗1Þdr⃗1dr⃗2;

ð2Þ

where ψo stands for the valence orbital ψv (6a1g) or the
polarizing orbital ψp, respectively. Because the product
of functions with different parities is always odd and
ð1=jr⃗1 − r⃗2jÞ is always positive, spatial changes of the sign
of the integrand occur. Consequently, the exchange-integral
evaluation leads to a reduced value for the alternating-parity
case in comparison to the equal-parity case.
In order to extract an effective core-hole–excited-

electron exchange energy, the model of Eq. (1) can be

reduced by introducing the mixed orbital ψm�¼
def
α�ψv þ

β�ψp and replacing jc−1� v1i with jc−1� m1
�i. Thus, jc−1� m1

�i
represent laser-dressed many-body states. The prefactors of
the mixing are chosen such that the block off-diagonal d0E0
matrix elements in Eq. (1) vanish, and that the polarizing
orbital is only perturbatively populated. This transforma-
tion reduces the dominant part of the many-body
Hamiltonian to a 3 × 3 matrix and accounts for the effect
of the field E0 on the system by introducing effective
parameters,

Heff ¼

j0i jc−1þ m1
þi jc−1− m1

−i0
B@

0 deffþ E deff− E

deffþ E Eeffþ Eeff
x

deff− E Eeff
x Eeff

−

1
CA ; ð3Þ

with the effective dipole moments including multiplicity
factors deff� , the energy expectation values of jc−1þ m1þi and
jc−1− m1

−i, Eeff
� , respectively, and the effective exchange

energy Eeff
x . In general, the effective parameters depend

on the field strength E0. The value of Eeff
x can be found from

Eq. (2) by replacing ψo↓=↑ with ψm� . Thus, the symmetry
breaking of 6a1g due to 6t1u polarizing admixture, which is
visualized in Fig. 3(a), leads to a larger exchange-energy
value for higher IR field strengths.
Information about the effective exchange interaction can

alternatively be obtained without any assumptions about
microscopic quantities: By using effective parameters,
Heff jE¼0 can be diagonalized analytically, which is con-
ducted in the Supplemental Material, Sec. V [33] for
arbitrary values of l. By making use of the fact that the
effective dipole-moment ratio in Eq. (3) remains close to
the multiplicity ratio, i.e., ðdeffþ =deff− Þ ≈ ðμþ=μ−Þ, one can
extract an equation that implicitly connects the effective
exchange Eeff

x to the experimentally accessible area ratio R
and energy splitting Δ [48]. The values displayed in
Fig. 3(b) are obtained in this fashion and show an Eeff

x

increase of up to 50% via strong IR fields in comparison to
the unperturbed case.
Our findings are supported by an ab initio quantum-

mechanical many-body simulation in the form of a restric-
ted active space calculation [49]. The Supplemental
Material, Sec. VII [33] provides more details. The simu-
lation result agrees qualitatively with the experimentally
determined exchange energy as shown in Fig. 3(b).
Quantitative agreement is shown by (i) linearly scaling
the electric field strength, as well as (ii) the field-free
effective exchange energy. This is necessary due to well-
known shortcomings of the ab initio technique: Only one
polarizing orbital is included in the simulation, while in
reality, the IR couples to many. This leads to an underesti-
mation of the polarizability and thus requires rescaling (i).

(a)

(b)

FIG. 3. Laser control of effective exchange interaction.
(a) Mixed orbital ψmþ (polarized LUMO) isosurfaces for four
different IR field strengths (top row) and its product with the
2t1u core hole (bottom row), ψcψmþ . (b) Effective exchange
energy Eeff

x as obtained from experiment and from the ab initio
simulation.
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Furthermore, the discrepancy in the field-free case (ii) orig-
inates from underestimating the Coulomb interaction since
ground-state density functional theory orbitals are also used
for the excited states in the simulation.
In summary, the concept of effective electronic

exchange-interaction control by strong laser fields has
been introduced. By manipulating the exchange interaction
of a core hole with its local excitation inside an SF6
molecule, we experimentally implement and validate this
approach. Future studies of the fundamentals of exchange-
interaction control can also be carried out in atomic
systems, as the only prerequisite is a spin-orbit-split
core-electron transition to a very short-lived excited state.
This proof-of-principle study about exchange-interaction
manipulation will motivate further experiments about the
details of the described mechanism, including the role of
geometrical effects linked to alignment and polarization of
the contributing electric fields. Furthermore, one can
benefit from the generality of the presented model and
replace the x-ray pulse with a visible or IR one. Hence,
interactions between the HOMO and the LUMO could be
modified instead of core-LUMO excitations. As the
exchange interaction plays a key role in determining
molecular potential-energy surfaces and chemical reac-
tions, the presented results pave the way for using
lasers as chemical agents on the fundamental electronic
quantum level to selectively control molecular and material
properties.
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