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In the Polyakov model, a nonperturbative mass gap is formed at leading-order semiclassics by instanton
effects. By using the notions of critical points at infinity, cluster expansion, and Lefschetz thimbles, we
show that a third-order effect in semiclassics gives an imaginary ambiguous contribution to the mass gap,
which is supposed to be real and unambiguous. This is troublesome for the original analysis, and it is
difficult to resolve this issue directly in quantum field theory (QFT). However, we find a new
compactification of the Polyakov model to quantum mechanics, by using a background 't Hooft flux.
The compactification has the merit of remembering the monopole instantons of the full QFT within Born-
Oppenheimer approximation, while the periodic compactification does not. In the quantum mechanical
limit, we prove the resurgent cancellation of the ambiguity in three-instanton sector against ambiguity in
the Borel resummation of the perturbation theory around one instanton. Assuming that this result holds in
QFT, we provide a large-order asymptotics of perturbation theory around perturbative vacuum and

instanton.

DOI: 10.1103/PhysRevLett.128.151601

Introduction.—The Polyakov model is a prototypical
example of nonperturbatively calculable weakly coupled
quantum field theory [1]. It is by now standard textbook
material in quantum field theory (QFT) and condensed
matter physics, and it is also intimately tied with statistical
field theory of Coulomb gases [2—-5]. Despite the fact that
some fundamental facts about the theory have been known
for more than four decades now, after the advent of
resurgence [6—8] and Lefschetz thimbles [9], many subtle
issues emerged concerning this and other calculable theories.
An important issue is the following. It is known that the mass
gap in the theory is sourced by monopole instantons on R?
and is of the order of mj ~ e~%, where S, is monopole-
instanton (M, ) action, with magnetic charge a; € A% in the
simple root system. How does one incorporate saddles with
higher action (nSy, n > 2)? Should one care about them? Do
they contribute to mass gap? This class of questions is
usually not addressed and swept under the rug by assuming
that these are higher-order quantitative corrections, and not
important [1,4], even in more mathematical treatments of the
theory [2]. Of course, there are also theories in which mass
gap is induced at higher-order effect in monopole expansion
due to Berry phase [10] or topological theta angle [11]
induced destructive interference between leading monopole
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events or as an effect of index theorem [12]. But here we
address the above questions in a simple Polyakov model,
where higher-order effect just seem like a nuisance, by using
the concepts of critical point at infinity, quasi-zero-mode
Lefschetz thimbles, and cluster expansion [13] systematically.

Here is the main point of our analysis. The mass gap in
semiclassical expansion in the Polyakov model is of the
following form (ignoring inessential factors to lessen the
clutter):

(m3). ~ (€™0P) + eX0Py 4 e3Py - )
+i(e™30 .. ), (1)

where P; denotes perturbative expansions around the
relevant saddle. It is reasonable to drop O(e~2%) terms
in the real part of this analysis, as they provide only minor
quantitative corrections. But, as we emphasize, there is a
new effect in third order in semiclassics, which renders the
semiclassical expansion multifold ambiguous and void of
meaning. It is actually not correct to ignore =+i(e™3%),
because it is an effect of a different nature, giving mass an
imaginary ambiguous part. Therefore, one is entitled to ask
whether Polyakov’s analysis is rigorous enough even
within semiclassics. In particular, for the famous result
on mass gap to be justified, one needs a mechanism for the
cancellation of imaginary ambiguity on R3.

The type of ambiguities that appear in Eq. (1) is, in fact,
expected. The reason for this is because Arg(#) =0 and
Arg(h) = x are, in general, Stokes lines. On Stokes lines,
contributions of a subclass of saddles can indeed be

Published by the American Physical Society


https://orcid.org/0000-0002-9206-1307
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.151601&domain=pdf&date_stamp=2022-04-15
https://doi.org/10.1103/PhysRevLett.128.151601
https://doi.org/10.1103/PhysRevLett.128.151601
https://doi.org/10.1103/PhysRevLett.128.151601
https://doi.org/10.1103/PhysRevLett.128.151601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 128, 151601 (2022)

multifold ambiguous. In fact, there are infinitely many
critical points at infinity, and, generically, there are multifold
ambiguities. It is desirable to resolve these pathological
features in order to make Polyakov’s solution meaningful in
this new light.

According to resurgence, there is another ambiguity in
the story. Perturbation theory around a perturbative vacuum
saddle, one-instanton saddle, etc., are all expected to be
divergent asymptotic expansions [14—18]. They are also
expected to be non-Borel summable, meaning that Borel
resummation of perturbation theory around each saddle is
multifold ambiguous. Resurgence implies that, for the
theory to be meaningful, these two types of ambiguities
must cancel around each sector of the theory. However,
demonstrating this in a generic QFT is hard. It is possible to
take mileage on this problem using the idea of adiabatic
continuity and turning on background fields [6-8], by
working with QFTs with special properties such as inte-
grability [19,20], or working with rather special QFTs in
which one has a good knowledge of perturbation theory
[21]. In this work, we employ a ’t Hooft flux background
(couple the theory to a one-form symmetry background) to
tackle this problem in the Polyakov model.

Basic.—The Polyakov model is given as an SU(N) non-
Abelian gauge theory coupled to an adjoint scalar field in a
3D Euclidean space:

s— / d3x2ig§[trF2+tr(D¢>2HV(q;)], 2)

where the potential V(¢) leads to the Abelianization of
gauge dynamics down to U(1)V=!. We assume without loss
of generality that the eigenvalues of ¢ are uniformly
separated: v; —v;,; = v. In the 1 <1 limit, the theory
has saddles which are solutions to (anti-)self-duality equa-
tions F = £*x3D¢ with topological (magnetic) charges

Oum, = (27/g3)a; and actions Sé’> = (47v/ ) = (so/ ),
where a; € A” are N — 1 simple roots, where ¢* = ¢3/visa
dimensionless expansion parameter. The monopole opera-
tors are M, ~ (Sp)?e™ e~ n/@)b)artiare(x) where gh(x)
and o(x) are fluctuations of Cartan components of adjoint
scalar and dual photon, respectively, and (S)? arise from the
four zero modes of the monopole. The former can be set
to zero in the description of the long-distance theory. The
proliferation of monopoles generates a mass gap for gauge
fluctuations as discovered by Polyakov [1]; see also [2,22].

Critical points at infinity and cluster expansion.—The
model, apart from regular saddles, also possesses critical
points at infinity [23-25]. These critical points are very
likely one of the most important concepts in semiclassics;
yet, there is a minuscule amount of work on systematizing
them or a heavy burden of misunderstandings emanating
from 1970s related to them; see [23,24]. These configu-
rations, to our knowledge, are not addressed at all in the

context of Polyakov model and will play an important
role below.

Consider a monopole-monopole or monopole-antimono-
pole pair. The interaction between the two in the 4 — 0
limit is

0 for (M;, M;),

vin - —a; _
(r) @Ca) - for (M M;).

(3)

Thus, (M, M) do not interact [26,27], but (M, M) pairs
interact, attractively for i = j and repulsively for j =i 4 1.
At any finite separation, since V! |._., # 0, these pairs are
not exact solutions. But at r = oo, they become exact
solutions, hence the name. Such configurations are genuine
critical points, but they are non-Gaussian, i.e., VI |,_ =0,
unlike Gaussian saddles. Because of this property, one needs
to integrate over the whole steepest descent cycle to find the
effect of such pairs.

The integrals that give the contribution of the second-
order effects in semiclassics are of the form

Z, = [M][M}] / dridPrye”Vm(n=rl), (4)

The measure can be expressed in terms of the center-of-action
coordinate, the integral over which gives a space-time volume
factor V), and the relative coordinate, which corresponds to
quasi-zero-mode  direction: [M;][M]VAx [ drrie”Vm(").
This type of integral appears in the standard cluster expansion
in statistical field theory [13].

In semiclassics, steepest descent cycles are not neces-
sarily real. Let us call r - z € C. The steepest descent

cycles can end up at points where e~/(2)/ 9 - 0. For
polynomial f(z), this gives a homology cycle decompo-
sition of the integration [9], in terms of cycles that end at
infinity in certain wedges. For the Coulomb potential, the
end point is a pole at z = 0 similar to Ref. [28], and the
critical point is at z = co. For e=!/(9'9) the cycle must enter
to the pole in the arg(z) = 0 direction, while for e*!/ (e°2),
the cycle must enter to the pole in the arg(z) = # direction
for steepest descent. So, the steepest descent directions for
the attractive and repulsive potentials are different.

Steepest descent cycles are easiest to visualize if we map
r =z € C complex domain to a Riemann sphere by using
one-point compactification. To see the thimbles more
clearly, we can introduce a regulator for the integral, find
the steepest descent, and ultimately remove the regulator.
For the two interaction types, the cycles for arg(¢?) = 0F
are given by

J1(0):z € [0, o0],
J2(0%):z € [0,—00] U [CG

repulsive,

or C3], attractive, (5)

and are shown in Fig. 1. The integrations are given by
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pole

FIG. 1. J,and J zi are the (regularized) steepest descent cycles
for repulsive and attractive interaction. The former is unique, and
the latter is twofold ambiguous at arg(g?) = 0. The point R* tends
to infinity as the cutoff is removed, but the loops at infinity
remain.

Zz ~ 52]}2
Zy ~EVIV +1(g7)]
Zyo ~EVV + (g7 7))

noninteracting,
repulsive,

attractive, (6)

where the extensive part corresponds to free (noninteract-
ing) monopole gas with fugacity & and I(g?) in the
subextensive term is called the second virial coefficient,
capturing the effect of interactions. It is given by

dr (27| - aj|\3 27|a; - 11
1) = T (Fme gl (Rl
) 6( 7 ) [n< 7 )H o) U

In the repulsive case, the subextensive part is usually called
magnetic bion, and its amplitude is [Mai/\_/lai =
1(¢*)[M,][M,,,,] [29]. In statistical physics, this is a
configuration in two-cluster, C,.

Attractive case is more interesting. First, note that

. . 2n% (2x|a; - a3
1P = i) i ()

which implies two different remarkable phenomena for this
element of C,. First, we identify the subextensive part in
the attractive case with neutral bions: [M,li/\_/laji =
I(g?e*™)[M,][M,,] [29]. The contribution is twofold
ambiguous. This is expected, because we are formulating
the path integral on a Stokes line, and the configurations
with attractive interactions are expected to lead to twofold
ambiguous results. At least in some limit of QFT, we will
prove that this twofold ambiguity cancels against another
ambiguity.

The overall phase in front of Eq. (8) is equally interest-
ing. It tells us that the fugacity of the two-cluster elements
can be complex:

Arg([M, M, ]) = Arg(Re[M, M, ].) + 7. (9)

This is in some sense similar to Refs. [10,11], where there is
a relative topological phase (sourced by Berry phase or 6

angle) between monopole events. This relative phase
between the two contributions is now sourced by the phase
associated with the thimble and is called the hidden
topological angle [30]. It is known to play a crucial role
in semiclassics. For example, in pure supersymmetric gauge
theory on R3 x S! and supersymmetric quantum mechanics,
the vanishing of the vacuum energy is due to the relative
phase between these two types of nonperturbative saddle.
For other aspects of bions, see Refs. [8,12,18,31-38].

At third order in semiclassics, events such as
My Mg M, ] = 0(e73%) £ i0(e73%) provide a two-
fold ambiguous contribution to mass gap, which is sup-
posed to be real and unambiguous. The fact that the
ambiguity in mass first appears in the third order comes
from the structure of the resurgence triangle [6]. As it
stands, this is quite disturbing for Polyakov’s well-known
solution.

We can anticipate that these ambiguities in two-event and
three-event contributions must be related with the non-
Borel summability of the perturbation theory around
perturbative vacuum and one-instanton sector, respectively.
The left-right Borel resummation is twofold ambiguous as
well, and these two types of ambiguities are expected to
cancel.

However, it is difficult to test this scenario in full QFT.
As we describe, it is also not possible to address this
question by using a naive dimensional reduction of QFT to
quantum mechanics within Born-Oppenheimer approxima-
tion. However, we propose a compactification with discrete
’t Hooft flux in which monopole actions remain the same
and such cancellations in quantum mechanical limit can
be shown.

Periodic T*> compactification does not work.—One may
consider compactification on 72 x R and study the inter-
play of instantons and perturbation theory in quantum
mechanical reduction. However, a problem awaits us here.
The states in quantum mechanics are described in terms of
magnetic flux through 72, |®). The lowest-energy state is
zero flux state |0), and magnetic flux states with nonzero
flux |a,) are parametrically separated in energy: Ey =0
and E, = (®*/2A72), where A2 is the area of the torus
[3]. Therefore, the naively reduced quantum mechanics
possesses a unique perturbative vacuum and does not have
instantons. It is not possible to obtain knowledge concern-
ing QFT from naive dimensional reduction with periodic
compactification in Born-Oppenheimer approximation.

However, despite being correct, this is a little bit over-
simplified. For example, for SU(2) gauge theory, the flux
states are |0), and perturbatively degenerate pairs of states,
| £1),]£2), etc., I41) mix up with [-1) due to two
instanton effects with action 25, where S is the monopole
action in QFT. Therefore, we can try to engineer a vacuum
structure by turning on background fluxes, such that the
instantons of QFT survive in the ground state description of
quantum mechanics.
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Reducing to quantum mechanics with 't Hooft flux.—The

3D theory has a ZE\I,] I-form symmetry but no mixed
anomalies. We can turn on a discrete flux to examine the
dynamics of the theory [39-52]. Since the model is
Abelianized at long distances, we can replace our way
of thinking in terms of discrete flux with a magnetic flux in
coweight lattice thanks to the relation Zy =TI} /TY.
Turning on the background flux, g; € I'}}, we end up with
N degenerate states:

i) =) (10)
- —a —aN_|

connected to each other via monopole events a, € A°.
Below, we argue that these instanton events have the same
action as in R3. Assume 77 size L obeys

r, <<L<d,,. (11)

where r,, is the monopole core size and d,, is the
characteristic distance between monopoles on R*. This
guarantees that, at a fixed Euclidean time slice 7 and per T2
size, there will typically be at most one monopole. We also
choose L > r,, so that the theory is locally 3D, and the
action, which receives its contribution from the core region
of monopole, remains unchanged relative to R*. At dis-
tances 7 2 L, the theory is correctly described by a simple
quantum mechanical system with instantons, whose action
are same as in the original 3D theory.

Here, we focus on N =2. The insertion of ®,, =
modifies the energetics of the setup. It turns the flux state
into |n + 1) with perturbative energies E, = (n +1)>/2Ap,
and the fractional flux states | &) become perturbatively
degenerate vacua. The tunneling between them is an
instanton effect with A® =1 and action S, the same as
the instanton in full QFT. Note that the energy of the states
| £ (3/2)) is higher, and we are justified to drop them, and
the SU(2) Polyakov with ’t Hooft flux reduces to a simple
double-well potential.

This story sounds almost identical to a particle on a circle
in the presence of magnetic flux and a potential cos(2g)
leading to two harmonic minima. At 6 = e®,, = z, all
states are twofold degenerate even nonperturbatively
because of mixed anomaly between Z, translation sym-
metry and time reversal symmetry [51,53]. In fact, SU(2)
Polyakov model and SU(2) deformed Yang-Mills theories
reduce to a double-well potential with configuration space
R and S' [52,54], respectively. The former does not have a
mixed anomaly, and the latter does. The twofold degen-
eracy in quantum mechanics is the remnant of CP broken
vacua of Yang-Mills theory.

In our reduced Polyakov model with flux, the twofold
degeneracy is lifted nonperturbatively, and the ground and
first excited states are separated by a single monopole-
instanton effect:

1
2
S

a1 m-8D):

AE=2Ke™S, (12)

where S is monopole action. Therefore, we claim that the
resurgence properties in the quantum mechanical limit of
the Polyakov model with flux are dictated by the same
instanton action as in R>.

In quantum mechanics, for the double-well potential, the
following resurgent cancellations are already proven by
multiple methods [16,55-57]:

Im[S. Py + [M Mg ] + -] =0,
Im[[Ma,-]SiPl + [M(l,-/\_/la,vMa,-}i + - ] =0. (13)
Here,

Po(g) =D b7 P =Y b (14)
k=0 =0

are divergent asymptotic expansions around a perturbative
vacuum and one-instanton saddle, and S, indicate the lateral
Borel resummations. These series are non-Borel summable;
i.e., the sum has an imaginary twofold ambiguous part
indicated by subscript &-. As described above, the two-events
and three-events in Eq. (13) also have twofold ambiguities.
For the combination of the perturbation theory and the
semiclassical analysis to be meaningful and ambiguity free,
these two types of ambiguities must cancel, and they do. In
fact, exact WKB analysis proves that these cancellations and
their generalizations hold true in all nonperturbative sectors
of quantum mechanics [56,57]. Note that we work in the
A — 0 limit and investigate resurgent structure in g* only.
This make sense provided A < ¢*. At finite A, one needs a
double series, and, relatedly, the action acquire a 4 depend-
ence, Sy = (4x/g*)f(1) [58].

Back to R3.—Resurgent cancellations (13) are not easy
to prove in full QFT on R3. But they are proven in the small
T2 x R with discrete flux, a construction in which instan-
tons of infinite volume theory survive. In QFT, what we
know rigorously is the existence of ambiguity in the
correlated events. The imaginary ambiguous parts at the
second and third order in QFT on R? are given by

— [ S0 7 2 2
Im[M, M, ], ~ i 7 e 2%/,

S0

— 12 2
Im[M, M, M, ] ~ j:i<;2) In <gz) e 3%/ (15)

Here, the power of (;—3) is2v+3(v—1)forv=2,3,... s
the number of instantons that enter to correlated events.
Recall that each monopole has four bosonic zero modes,
and each zero mode induces (sy/g?)'/? in the prefactor,
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explaining 2v. Each quasi-zero-mode direction gives a
factor of 3 and, hence, 3(v — 1). For a general v-instanton
configuration, the power of ln;—g is given by v — 2.

In order for Polyakov’s result for mass gap to be meaningful
(real, unambiguous), the counterpart of Eq. (13) must hold in
full QFT. With this assumption and using dispersion relations
such as b,((o) = (1/x) J§° d(¢*) (A&, (97)/ (¢*)F), we can
determine the large-order growth of perturbation theory
around a perturbative vacuum and monopole saddle as

b(o) F(k + 7)
(2so)k ’
F(k + 10) ln(k + 10)

(Zso)k

A few remarks are in order. Relative to the standard

So = 477,',

b ~

(16)

quantum mechanical result for b,({o) and b,(cl), where the
factorial growth appears generally as I'(k + 1) for ground
state, we obtain an enhancement. This is due to the
difference of the number of zero and quasizero modes in

the two setups. In b,(cl), there is an extra In(k + 10)
enhancement as well. The log enhancement also appears
in the context of quantum mechanics around instanton
sectors [59-61]. It is there because the three-instanton
amplitude has a [In(—sy/g?)]? in it, coming from integrat-
ing out of two quasizero modes, which leads to a log-
dependent imaginary part in Eq. (15). It is quite curious to
note that b,({” ~ (d/ dz/)b,(co_)2|y:2 asymptotically, reminiscent
of an exact relation in quantum mechanics [17,61]. The
analogous relation in quantum mechanics tells us that
perturbation theory around an instanton is dictated by
perturbation theory around a perturbative vacuum via a
simple formula. It would be remarkable if such a relation
also holds in QFT. The appearance of this enhancement is a
relatively new effect in QFT, an example of which also
appeared in Ref. [62]. But, in retrospect, it is inevitable and
generic. Application of stochastic perturbation theory on a
lattice can be useful to check these predictions [63-65],
especially by modifying the scalar potential in Ref. [64] to
generate adjoint Higgsing and monopole confinement.
Conclusions.—In order for Polyakov’s famous analysis
for mass gap to be justified, one needs Eq. (13) to be true on
R>. We showed that the relation (13) is true in a special
quantum mechanical reduction of the Polyakov model with
discrete 't Hooft flux. The reduction has the merit that
it remembers the instanton of the theory on R3 on small
T? x R in the description of the ground state. We emphasize
that the use of "t Hooft flux or twisted boundary conditions is
not a nuisance regardless of the absence or presence of a
mixed anomaly. To the contrary, it is necessary to make the
instantons (or fractional instantons in gauge theory on
R? x S') transparent in a quantum mechanical reduction
[44,49,52,66]. Assuming that Eq. (13) continues to be valid

in the decompactification limit provides estimates of large-
order structure of perturbation theory around perturbative
vacuum and instanton (16). We hope that these relations can
be tested using stochastic perturbation theory, putting
Polyakov’s analysis on a firmer ground.
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