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Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of
gauge invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that
satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full
metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly
hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the linearized vacuum field equations
on Kerr-Newman-Unti-Tamburino spacetimes in terms of homogeneous solutions to the spin-2, spin-1, and
spin-0 Teukolsky equations. We also derive Lorenz-gauge completion pieces representing mass and
angular momentum perturbations of Kerr spacetime.
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The Kerr spacetime [1] is a fundamental vacuum
solution of Einstein’s field equations which provides a
mathematical description of the vast number of rotating
black holes in our Universe. Key questions on black hole
stability, cosmic censorship, and gravitational-wave gen-
eration are addressed via black hole perturbation theory [2],
in which Kerr’s solution sets the stage for the dynamics of
scalar, spinor, electromagnetic, and gravitational field
perturbations playing out on a curved background.
The spacetime possesses obvious time-translation and

axial symmetries, but also a “hidden” symmetry encoded in
a conformal Killing-Yano tensor [3]. This symmetry, which
is closely related to the existence of a doubled pair of
principal null directions (i.e., Petrov type D), underpins
some remarkable results including (i) Liouville integra-
bility for the geodesic equations [4]; (ii) decoupling and
separability of certain Bianchi identities, allowing the
perturbed Weyl scalars Ψ0 and Ψ4 to be expressed as a
sum of modes governed by second-order ordinary differ-
ential equations [5,6]; and (iii) a complete separation of
variables for massive scalar [7], spinor [8], and vector
fields [9]. Exploitation of the hidden symmetry in
(nþ 1)-dimensional Kerr-Newman-Unti-Tamburino-(A)
dS contexts is ongoing [10–13].
A key result from 1975 is that a metric perturbation hμν

can be constructed from a spin-2 scalar Hertz potential ψ in
such a way as to satisfy the linearized Einstein equations on
the Kerr spacetime [14–17]. The metric perturbation so
obtained is in a radiation gauge (or light-cone gauge [18]),
such that hμνlν ¼ 0, where lν is a principal null direction.
In the presence of sources, the construction generically
leads to nonisotropic particle singularities and extended
gauge discontinuities in the metric perturbation [19–22].

This is an impediment to extending perturbation theory to
second order, because the source terms at second order are
derived from the metric perturbation at first order [23]. By
contrast, in the Lorenz gauge hμν is expected to be free from
extended gauge discontinuities.
A metric perturbation hμν satisfying

∇νĥ
μν ¼ 0 ð1Þ

is said to be in Lorenz gauge, also known as harmonic or
de Donder gauge. Here ĥμν ¼ hμν − 1

2
gμνh is the trace-

reversed metric perturbation, h ¼ hμμ is its trace, and ∇μ

denotes the covariant derivative on the background metric
gμν. Imposing the Lorenz-gauge condition on the linearized
Einstein equations leads to the (manifestly hyperbolic)
Lichnerowicz tensor wave equation,

□ĥμν þ 2Rμ
σ
ν
λĥσλ ¼ −16πTμν; ð2Þ

where Tμν is the stress-energy tensor of matter sources, and
Rμσνλ is the Riemann tensor of the background spacetime
which we take to be Ricci flat (Rμν ¼ 0).
The gravitational self-force (GSF) program addresses the

challenge of modeling extreme mass-ratio inspirals for
gravitational wave detectors. GSF calculations are naturally
formulated and conducted in Lorenz gauge [24–31]. On
Schwarzschild spacetime, a Lorenz-gauge formulation at
first order [31] is an essential ingredient in the recent
calculation of the gravitational-wave flux at second order in
the mass ratio [32]. Lacking a separable solution of the
Lorenz-gauge equations on Kerr spacetime in the literature
(see Ref. [33] for discussion), recent focus has shifted to
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constructing second-order perturbations in sufficiently
regular gauges [23,34–39].
In the context of electromagnetism, a vector potential Aμ

is said to be in Lorenz gauge if it satisfies ∇μAμ ¼ 0.
Imposing the Lorenz-gauge condition renders the Maxwell
field equation into a wave equation, □Aμ ¼ jμ. Recent
work [10–13,40–42] has identified a separable method for
obtaining solutions to Maxwell’s equations in Lorenz
gauge on spacetimes that include Kerr. In this work, we
show that a similar approach may also be applied in the
context of Lorenz-gauge gravitational perturbations, by
obtaining a set of solutions for the Lorenz-gauge equa-
tions (2) on Kerr spacetime in the absence of sources
(Tμν ¼ 0) for the first time.
Preliminaries.—The Kerr metric can be written in terms

of a null tetrad,

gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ; ð3Þ

where lμ andnν are alignedwith the principal null directions,
mμ is a complex null vector, and m̄ν is its complex conjugate.
In Boyer-Lindquist coordinates ft; r; θ;ϕg, the Kinnersley
null tetrad is lμ ¼ lμþ, nμ ¼ −ðΔ=2ΣÞlμ−,mμ ¼ ð1= ffiffiffi

2
p

ζ̄Þmμ
þ,

and m̄μ ¼ ðmμÞ� ¼ ð1= ffiffiffi
2

p
ζÞmμ

−, with

lμ� ¼ ½�ðr2 þ a2Þ=Δ; 1; 0;�a=Δ�; ð4aÞ

mμ
� ¼ ½�ia sin θ; 0; 1;�i= sin θ�; ð4bÞ

where Δ ¼ r2 − 2Mrþ a2, Σ ¼ ζζ̄ ¼ r2 þ a2 cos2 θ, and

ζ ¼ r − ia cos θ: ð5Þ

The parameters M and a represent the mass and specific
angular momentum of the black hole, respectively.
In the absence of sources, the spin-2 perturbed Weyl

scalars satisfy the homogeneous Teukolsky equations
[5,6,43] (see Ref. [2] for a review with conventions
consistent with those used here), OΨ0 ¼ 0 ¼ O0Ψ4≡
ζ−4Oζ4Ψ4. The Teukolsky equations admit a separation
of variables: working with the Kinnersley tetrad
and inserting the ansatz ζ4Ψ4 ¼ R−2ðrÞS−2ðθÞe−iωtþimϕ

yields

O0Ψ4 ¼ ζ−4½ΔD†
−1Dþ L−1L

†
2 − 6iωζ̄�ðζ4Ψ4Þ ¼ 0; ð6Þ

where the directional derivatives areD≡ lμþ∂μ,D† ≡ lμ−∂μ,
L† ¼ mμ

þ∂μ, L ¼ mμ
−∂μ, with Dn ¼ Dþ nð∂rΔÞ=Δ and

Ln ¼ Lþ n cot θ. The functions R−2ðrÞ and S−2ðθÞ there-
fore satisfy a set of decoupled ordinary differential equa-
tions. A similar result also holds for Ψ0.
There is substantial gauge freedom in perturbation

theory, linked to the freedom to make an infinitesimal
coordinate transformation xμ → xμ þ ϵξμ, where ϵ ¼ 1 is

an order-counting parameter. Under such a transformation,
a tensor field T ¼ T þ ϵδT changes at perturbative order as
T → T þ ϵðδT − £ξTÞ þOðϵ2Þ, where £ξ denotes the Lie
derivative along the gauge vector ξμ. Applying this rule to
the perturbed metric gμν ¼ gμν þ ϵhμν yields a transforma-
tion law for the metric perturbation hμν under a change of
gauge, namely, hμν → hμν − 2ξðμ;νÞ, where a semicolon
denotes the covariant derivative and parentheses indicate
symmetrization over the indices.
On a vacuum black hole background (Rμν ¼ 0), the

perturbed Ricci tensor δRμν is gauge invariant at linear
order (as £ξRμν ¼ 0). Consequently, any pure-gauge metric
perturbation hμν ¼ −2ξðμ;νÞ satisfies the vacuum field
equations; furthermore, if the vector satisfies □ξμ ¼ 0,
then hμν is in Lorenz gauge and the metric perturbation
satisfies Eq. (2) with Tμν ¼ 0.
In principle, given a vacuum metric perturbation hμν, one

may apply a gauge transformation to transform it to Lorenz
gauge, such that

hLμν ≡ hμν − 2ξðμ;νÞ ð7Þ

satisfies Eq. (1). It follows that the gauge vector ξμ must
satisfy a sourced wave equation,

□ξμ ¼ ∇νĥ
μν: ð8Þ

Reconstruction of Lorenz-gauge solutions from scalar
potentials.—Our main result is that one can construct
solutions to the Lorenz-gauge equations from separable
solutions of the Teukolsky equation. These solutions are
divided into scalar (spin-0), vector (spin-1), and tensor
(spin-2) type, alongside “completion” pieces [44,45] asso-
ciated in the Kerr case with infinitesimal changes in the
mass and angular momentum of the black hole. In the
absence of sources, the spin-0 and spin-1 perturbations are
pure-gauge modes. In the presence of sources, we antici-
pate that solutions of all types (s ¼ 0, 1, 2) will be required
to construct a physical solution that is free from gauge
discontinuities, as is found to be the case on Schwarzschild
spacetime [27].
Spin-2 solutions.—To obtain Lorenz-gauge solutions

derived from spin-2 scalars, we start with the ingoing
radiation-gauge solution of Chrzanowski (Ref. [14],
Table I) and seek a transformation to Lorenz gauge.
Chrzanowski’s solution can be expressed in covariant
form as [46]

hμν ¼ −
1

2
∇β½ζ4∇αðζ−4HðμανÞβÞ�; ð9Þ

where

Hμανβ ¼ 4ψl½μmα�l½νmβ�; ð10Þ
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and where ψ is a spin-weight−2 potential. In the absence of
sources it satisfies a homogeneous s ¼ −2 Teukolsky
equation, Oψ ¼ 0.
The metric perturbation in Eq. (9) is manifestly trace-free

(h ¼ 0). The inclusion of ζ4 is required in order to satisfy
the linearized Einstein equation but violates the Lorenz-
gauge condition; without it the metric perturbation would
automatically satisfy the Lorenz-gauge condition but not
the linearized Einstein equation [16]. Finally, in order to
obtain a real metric perturbation that generates a physical
Weyl tensor one typically adds the complex conjugate of
this metric perturbation; for now we omit the complex
conjugate and will return to it later.
We now seek to transform hμν to Lorenz gauge by

solving Eq. (8), while preserving the trace-free condition.
That is, we seek a gauge vector ξμ satisfying

□ξμ ¼ −jμ ≡∇νhμν; ∇μξ
μ ¼ 0: ð11Þ

This we recognize as a well-formed electromagnetic field
equation in (vector) Lorenz gauge. The effective four-
current jμ is divergence-free (∇μjμ ¼ 0) by virtue of the
fact that hμν in Eq. (9) satisfies ∇μ∇νhμν ¼ 0. The above
becomes clearer when written in terms of forms:

δdξ ¼ j; δξ ¼ 0; δj ¼ 0: ð12Þ

Here d is the exterior derivative, δ ¼ ⋆d⋆ is the coderivative,
⋆ is the Hodge dual operation,□ξ ¼ dδξ − δdξ on a Ricci-
flat spacetime, and a key identity is dd ¼ 0 ¼ δδ.
By Poincaré’s lemma, a divergence-free vector is locally

the coderivative of a (nonunique) 2-form. A short calcu-
lation establishes that j ¼ δJ, that is, jμ ¼ ∇νJμν with the
2-form

Jμν ¼ ∇β½UαHβαμν� ¼
ffiffiffi
2

p

Σ
l½μmν�½L†

2 − ia sin θD�ψ ; ð13Þ

where Uα ¼ −∇α ln ζ. Equation (12) can be written as
δðdξ − J þ ⋆dςÞ ¼ 0, where ς is an arbitrary vector field
(i.e., a gauge vector of the third kind [47]). The recent work
of Green et al. [48,49] suggests the ansatz

ξ ¼ ζ2δH − dχ; ð14Þ

where H is a 2-form and χ is a scalar, and we choose the
gauge vector of the third kind to be ς ¼ −iζ2δH so that the
field equation becomes [50]

δ½ð1 − i⋆Þdζ2δH − J� ¼ 0: ð15Þ

The operator dζ2δ generates decoupled equations for the
three anti-self-dual degrees of freedom in the 2-form H
[48], and the operator ð1 − i⋆Þ annihilates the self-dual
components of the equation [48,51]. The ansatz

Hμν ¼
ffiffiffi
2

p

ζ
l½μmν�α ð16Þ

then leads to a single decoupled second-order equation:

ðΔD†ζ2Dþ Lζ2L†
1Þα ¼ −ζðL†

2 − ia sin θDÞψ : ð17Þ

Assuming harmonic time dependence e−iωt for ψ, and by
application of the vacuum Teukolsky equation (6), we find
that Eq. (17) has an elementary solution:

α ¼ −
1

6iωζ
DL†

2ψ : ð18Þ

To obtain the gauge vector in Eq. (14) we must also solve
δdχ ¼ □χ ¼ ð∇μζ

2Þ∇νHμν; that is,

□χ ¼ 1

ζ̄
ðL†

1 − ia sin θDÞα: ð19Þ

This also has an elementary solution:

χ ¼ 1

48ω2
DDL†

1L
†
2ψ : ð20Þ

In summary, the gauge vector that transforms the radiation-
gauge solution (9) to Lorenz gauge via Eq. (7) is

ξμ ¼ ζ2∇νHμν − gμν∇νχ; ð21Þ

where the key ingredients are in Eqs. (16), (18), and (20).
Reformulation in terms of Geroch-Held-Penrose (GHP)

calculus.—We now rewrite the previous results using the
Geroch-Held-Penrose formalism [52] (see Sec. 4.1.1 of
Ref. [2] for a review). This allows us to reformulate the
results in a compact and coordinate-independent way,
eliminate the need for a mode ansatz, and extend the
results to the full Kerr-Newman-Unti-Tamburino class of
Petrov type-D spacetimes. It also allows us to obtain a
similar result for the gauge transformation from outgoing
radiation gauge by applying the GHP prime operator
along with the identifications ψ 0 ¼ ψORG, χ0 ¼ χORG, and
H0

μν ¼ HORG
μν . Translating the key ingredients in the gauge

transformation to GHP expressions and introducing the Lie
derivative £T along the time-translation Killing vector Tμ,
we get

£2Tχ ¼ −
1

24
ð2ζ̄2Þ2ψ ; ð22aÞ

£THμν ¼ l½μmν�
1

3ζ2
ðζ̄Þψ : ð22bÞ

Metric perturbation from Weyl scalars.—We now seek
to express the Lorenz-gauge metric perturbation hLμν in
terms of the Weyl tensor that it generates. In particular, we

PHYSICAL REVIEW LETTERS 128, 151101 (2022)

151101-3



consider projections Ψ0 ¼ Clmlm and Ψ4 ¼ Cnm̄nm̄ which
are invariant under gauge and infinitesimal tetrad trans-
formations. For the metric perturbation (9) or its conjugate,
prime, or prime conjugate, one finds after imposing the
Teukolsky equation that, respectively (see, e.g., Ref. [2]),

Ψ0 ¼
1

4
f0; Þ4ψ̄ ; 3M£Tζ−4ψ 0; ð4ψ̄ 0g; ð23aÞ

Ψ4 ¼
1

4
f−3M£Tζ−4ψ ; ð04ψ̄ ; 0; Þ04ψ̄ 0g: ð23bÞ

If we work with a metric perturbation hμν þ h̄μν or h0μν þ
h̄0μν alone, then we recover the standard radiation gauge
relations between the Hertz potentials and the Weyl scalars
[2]. Alternatively, we can choose the “antisymmetric”
combination h−μν ¼ 1

2
½h0μν þ h̄0μν − ðhμν þ h̄μνÞ�. After

imposing the Teukolsky-Starobinsky identities, this leads
to the remarkably simple relations [46,53]

Ψ0 ¼
3M
4

£Tζ−4ψ 0; Ψ4 ¼
3M
4

£Tζ−4ψ : ð24Þ

Note in particular that ψ and ψ 0 are not the same as the
radiation-gauge potentials, and similarly the hμν and h0μν
appearing in h−μν are also different from the radiation-gauge
metric perturbations. We can thus reinterpret this as

M£Th−μν ¼ −
1

3
∇β½ζ4∇αCðμανÞβ� þ c:c:; ð25Þ

where Cμανβ ¼ 4ðΨ0n½μm̄α�n½νm̄β� − Ψ4l½μmα�l½νmβ�Þ is the
spin-2 part of the self-dual Weyl tensor with the sign of
Ψ4 flipped. Since Ψ0 and Ψ4 are gauge invariant, these
relations also hold after transforming to Lorenz gauge using
Eq. (21) (or its prime, conjugate, or prime conjugate).
In all three cases, imposing the Teukolsky-Starobinsky

identities and the Teukolsky equation reduces four com-
ponents of the Lorenz-gauge metric perturbation to second-
order operators acting on Ψ0 and Ψ4:

£2Th
L
ll ¼ −

1

3
½ζ̄−2ð2ðζ̄4Ψ̄0Þ þ ζ−2ð02ðζ4Ψ0Þ�; ð26aÞ

£2Th
L
nn ¼ −

1

3
½ζ̄−2ð02ðζ̄4Ψ̄4Þ þ ζ−2ð2ðζ4Ψ4Þ�; ð26bÞ

£2Th
L
mm ¼ −

1

3
½ζ̄−2Þ2ðζ̄4Ψ̄4Þ þ ζ−2Þ02ðζ4Ψ0Þ�; ð26cÞ

£2Th
L
m̄ m̄ ¼ −

1

3
½ζ̄−2Þ02ðζ̄4Ψ̄0Þ þ ζ−2Þ2ðζ4Ψ4Þ�: ð26dÞ

A fifth component is obtained from the fact that this
metric perturbation is traceless:

h ¼ 2ðhLmm̄ − hLlnÞ ¼ 0: ð26eÞ

No such simplification appears possible for the remaining
five components, but they can be written in terms of a sixth-
order operator acting on Ψ0 and Ψ4.
Spin-1 solutions.—A set of spin-1 solutions satisfying

□ξμ ¼ 0 and ∇μξ
μ ¼ 0 were obtained in Refs. [41,42] (see

also Refs. [9,40]). They take the form

ξμðs¼1Þ ¼ ∇νðζHνμ
ðs¼1ÞÞ þ c:c:; ð27Þ

where

Hμν
ðs¼1Þ ¼ 2£−1T ½ϕ0m̄½μnν� − ϕ2l½μmν��: ð28Þ

Here, ϕ0 and ϕ2 are Maxwell scalars that satisfy the
Teukolsky equations for s ¼ þ1 and s ¼ −1, respectively
(i.e.,Oϕ0 ¼ 0 ¼ O0ϕ2), and which are linked by the spin-1
Teukolsky-Starobinsky identities. A traceless spin-1
Lorenz-gauge metric perturbation can be constructed from

ξμðs¼1Þ in the now familiar way, hðs¼1Þ
μν ¼ −2ξðs¼1Þ

ðμ;νÞ .
Spin-0 solutions.—Thus far, we have only considered

trace-free solutions, h ¼ 0. The trace of the metric pertur-
bation must satisfy

□h ¼ 0 ð29Þ

in the homogeneous case by virtue of the contraction of
Eq. (2). It is natural to ask, what (nonunique) homogeneous
Lorenz-gauge metric perturbation generates a trace h? A
suitable metric perturbation is pure gauge, i.e.,

hðs¼0Þ
αβ ¼ −2ξðs¼0Þ

ðα;βÞ ; ð30Þ

and is generated by a gauge vector that satisfies

∇αξ
α
ðs¼0Þ ¼ −

1

2
h; □ξαðs¼0Þ ¼ 0: ð31Þ

A vector with precisely these properties is

ξαðs¼0Þ ¼
1

2
£−1T fαβh;β þ 2κ;α; ð32Þ

where

fαβ ¼ ðζ þ ζ̄Þn½αlβ� − ðζ − ζ̄Þm̄½αmβ� ð33Þ

is the conformal Killing-Yano tensor (we follow here the
definition of Ref. [54], which differs from that of Ref. [3]
by an overall sign), and where κ is a scalar field satisfying

□κ ¼ 1

2
h: ð34Þ
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It is straightforward to show that the requirements (31) are
satisfied by using the properties of the conformal Killing-
Yano tensor, namely,

fαðβ;γÞ ¼ gβγTα−gαðβTγÞ; fαβ¼f½αβ�; Tα¼1

3
fαβ ;β: ð35Þ

In the Schwarzschild case, the two spin-0 degrees of
freedom, h and κ, map onto those identified by Berndtson
[27] (see also Khavkine [55]).
Completion pieces on Kerr spacetime.—In addition to

spin-s contributions, the metric perturbation may also
contain “completion” pieces [44,45,56] associated in the
Kerr case with infinitesimal changes in the mass and
angular momentum of the black hole. Completion pieces
are constructed from varying the mass M and specific
angular momentum a ¼ J=M parameters, viz.,

hð∂MÞ
μν ≡ ∂gμν

∂M
����
a
; hð∂aÞμν ≡ ∂gμν

∂a
����
M
; ð36Þ

where gμν is the Kerr metric. Moreover, the conformal

mode hð2gÞμν ¼ 2gμν automatically satisfies the linearized
vacuum field equations. These three pieces are linearly
related by the equation

hð2gÞμν ¼ Mhð∂MÞ
μν þ ahð∂aÞμν þ 2Nðμ;νÞ; ð37Þ

with the gauge vector Nμ∂μ ¼ t∂t þ r∂r.
Unlike the conformal mode, the perturbations hð∂MÞ

μν and

hð∂aÞμν (for a ≠ 0) are not in Lorenz gauge. To shift to Lorenz
gauge, we apply a gauge transformation:

hLð∂MÞ
μν ¼ hð∂MÞ

μν − 2Yðμ;νÞ: ð38Þ

As hð∂MÞ
μν is traceless, it follows that □Yμ ¼

∇νhð∂MÞ
μν ¼ 2δrμ=Δ. Since the right-hand side is a gradient,

the gauge vector is also a gradient, Yμ ¼ ∇μy, and using
□ð∇μyÞ ¼ ∇μð□yÞ, the potential y must satisfy

□y ¼
Z

2

Δ
dr ¼

�
2

rþ − r−

�
ln

�
r − rþ
r − r−

�
þ const: ð39Þ

This equation can be solved by separation of variables. The

Lorenz-gauge mode hLð∂aÞμν follows via Eq. (37).
The mass and angular momentum content of the hð∂MÞ

μν

and hð∂aÞμν modes is assessed by evaluating the conserved
charges associated with the background Killing vectors (see
Sec. II E in Ref. [29], and Ref. [57]); we find QðtÞ ¼ 1,
QðϕÞ ¼ −a and QðtÞ ¼ 0, QðϕÞ ¼ −M, respectively.
Discussion.—We have obtained a set of Lorenz-gauge

metric perturbations which satisfy the vacuum field equa-
tions [Eq. (2) with Tμν ¼ 0]. In the frequency domain, the

spin-0, spin-1, and spin-2 metric perturbations can be
expressed in terms of separable modes, that is, radial
and angular functions sRlmωðrÞ and sSlmωðθÞ satisfying
the vacuum Teukolsky equations for s ¼ 0, s ¼ �1, and
s ¼ �2. It is notable that, although the construction of the
spin-2 modes starts with the radiation-gauge potentials ψ ,
the Lorenz-gauge metric components in Eq. (26) can be
written in terms of Weyl scalars only, without reference to
ψ . We also note, however, that it is likely that the zero
frequency modes of the spin-2 case will need to be treated
separately, as has been done for the spin-1 case [42].
Several extensions of this work suggest themselves. First,

extending the Lorenz-gauge formalism to include source
terms (Tμν ≠ 0). Second, constructing solutions for GSF
particle-inspiral scenarios by demanding global regularity (in
vacuum regions) on a metric perturbation constructed from a
sum over a complete set of vacuum modes. Third, the
application of these Lorenz-gauge solutions in second-order
GSF applications [32,58,59], ultimately leading to the
production of waveforms for extreme mass-ratio systems
with a spinning primary (larger) black hole.

We thank Leanne Durkan, Vahid Toomani, Stephen
Green, Stefan Hollands, Adam Pound, Leor Barack,
Adrian Ottewill, Amos Ori, Saul Teukolsky, Bernard
Whiting, and Lars Andersson for discussions. Many of
the calculations in this work were enabled by the xAct

[60,61] tensor algebra package for Mathematica. S. R. D.
acknowledges financial support from the Science and
Technology Facilities Council (STFC) under Grant
No. ST/P000800/1 and No. ST/T001038/1, and from the
European Union’s Horizon 2020 research and innovation
programme under the H2020-MSCA-RISE-2017 Grant
No. FunFiCO-777740.

[1] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[2] A. Pound and B. Wardell, Black Hole Perturbation Theory

and Gravitational Self-Force (Springer, Singapore, 2022),
10.1007/978-981-15-4702-7_38-1.

[3] V. Frolov, P. Krtous, and D. Kubiznak, Living Rev.
Relativity 20, 6 (2017).

[4] B. Carter, Phys. Rev. 174, 1559 (1968).
[5] S. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
[6] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[7] D. R. Brill, P. L. Chrzanowski, C. Martin Pereira, E. D.

Fackerell, and J. R. Ipser, Phys. Rev. D 5, 1913 (1972).
[8] S. Chandrasekhar, Proc. R. Soc. A 349, 571 (1976).
[9] V. P. Frolov, P. Krtouš, D. Kubizňák, and J. E. Santos, Phys.

Rev. Lett. 120, 231103 (2018).
[10] P. Krtouš, V. P. Frolov, and D. Kubizňák, Nucl. Phys. B934,

7 (2018).
[11] O. Lunin, J. High Energy Phys. 10 (2019) 030.
[12] T. Houri, N. Tanahashi, and Y. Yasui, Adv. Stud. Pure Math.

85, 407 (2020).
[13] T. Houri, N. Tanahashi, and Y. Yasui, Classical Quantum

Gravity 37, 015011 (2020).

PHYSICAL REVIEW LETTERS 128, 151101 (2022)

151101-5

https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1007/978-981-15-4702-7_38-1
https://doi.org/10.1007/s41114-017-0009-9
https://doi.org/10.1007/s41114-017-0009-9
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevD.5.1913
https://doi.org/10.1098/rspa.1976.0090
https://doi.org/10.1103/PhysRevLett.120.231103
https://doi.org/10.1103/PhysRevLett.120.231103
https://doi.org/10.1016/j.nuclphysb.2018.06.019
https://doi.org/10.1016/j.nuclphysb.2018.06.019
https://doi.org/10.1007/JHEP10(2019)030
https://doi.org/10.2969/aspm/08510407
https://doi.org/10.2969/aspm/08510407
https://doi.org/10.1088/1361-6382/ab586d
https://doi.org/10.1088/1361-6382/ab586d


[14] P. L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).
[15] R. M. Wald, Phys. Rev. Lett. 41, 203 (1978).
[16] J. M. Stewart, Proc. R. Soc. A 367, 527 (1979).
[17] L. S. Kegeles and J.M. Cohen, Phys. Rev. D 19, 1641 (1979).
[18] J. D. Jackson andL. B.Okun,Rev.Mod. Phys.73, 663 (2001).
[19] L. Barack and A. Ori, Phys. Rev. D 64, 124003 (2001).
[20] A. Ori, Phys. Rev. D 67, 124010 (2003).
[21] T. S. Keidl, A. G. Shah, J. L. Friedman, D.-H. Kim, and

L. R. Price, Phys. Rev. D 82, 124012 (2010); 90, 109902(E)
(2014).

[22] A. Pound, C. Merlin, and L. Barack, Phys. Rev. D 89,
024009 (2014).

[23] A. Pound, Phys. Rev. D 95, 104056 (2017).
[24] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457

(1997).
[25] L. Barack and C. O. Lousto, Phys. Rev. D 72, 104026 (2005).
[26] L. Barack and N. Sago, Phys. Rev. D 75, 064021 (2007).
[27] M. V. Berndtson, Ph.D. thesis, University of Colorado,

Boulder, 2007, arXiv:0904.0033.
[28] E. Poisson, A. Pound, and I. Vega, Living Rev. Relativity

14, 7 (2011).
[29] S. R. Dolan and L. Barack, Phys. Rev. D 87, 084066 (2013).
[30] S. Akcay, N. Warburton, and L. Barack, Phys. Rev. D 88,

104009 (2013).
[31] J. Miller and A. Pound, Phys. Rev. D 103, 064048 (2021).
[32] N. Warburton, A. Pound, B. Wardell, J. Miller, and L.

Durkan, Phys. Rev. Lett. 127, 151102 (2021).
[33] B. F. Whiting and L. R. Price, Classical Quantum Gravity

22, S589 (2005).
[34] M. Campanelli and C. O. Lousto, Phys. Rev. D 59, 124022

(1999).
[35] C. O.Lousto andB. F.Whiting, Phys.Rev.D66, 024026 (2002).
[36] S. R. Green, S. Hollands, and P. Zimmerman, Classical

Quantum Gravity 37, 075001 (2020).
[37] N. Loutrel, J. L. Ripley, E. Giorgi, and F. Pretorius, Phys.

Rev. D 103, 104017 (2021).
[38] J. L. Ripley, N. Loutrel, E. Giorgi, and F. Pretorius, Phys.

Rev. D 103, 104018 (2021).
[39] V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A.

Pound, and S. R. Green, Classical Quantum Gravity 39,
015019 (2022).

[40] O. Lunin, J. High Energy Phys. 12 (2017) 138.
[41] S. R. Dolan, Phys. Rev. D 100, 044044 (2019).
[42] B. Wardell and C. Kavanagh, Phys. Rev. D 103, 104049

(2021).
[43] S. Chandrasekhar, The Mathematical Theory of Black Holes

(Oxford University Press, Oxford, 1985).
[44] C. Merlin, A. Ori, L. Barack, A. Pound, and M. van de

Meent, Phys. Rev. D 94, 104066 (2016).
[45] M. van De Meent, Classical Quantum Gravity 34, 124003

(2017).
[46] S. Aksteiner, L. Andersson, and T. Bäckdahl, Phys. Rev. D

99, 044043 (2019).
[47] J. M. Cohen and L. S. Kegeles, Phys. Rev. D 10, 1070

(1974).
[48] S. R. Green, Lorenz-gauge reconstruction for Teukolsky

solutions with sources in electromagnetism, in Presentation
at the 24th Capra meeting on Radiation Reaction in
General Relativity (2021), https://pirsa.org/21060044.

[49] S. R. Green, S. Hollands, and V. Toomani (to be published).
[50] S. R. Green and V. Toomani (Private communication).
[51] E. Mustafa and J. M. Cohen, Classical Quantum Gravity 4,

1623 (1987).
[52] R. P. Geroch, A. Held, and R. Penrose, J. Math. Phys. (N.Y.)

14, 874 (1973).
[53] S. Aksteiner and T. Bäckdahl, J. Math. Phys. (N.Y.) 60,

082501 (2019).
[54] S. Aksteiner, Geometry and analysis on black hole

spacetimes, Ph.D. thesis, Leibniz Universität, Hannover,
2014.

[55] I. Khavkine, SIGMA 18, 011 (2022).
[56] S. Aksteiner and T. Bäckdahl, Phys. Rev. Lett. 121, 051104

(2018).
[57] L. F. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982).
[58] A. Pound, B. Wardell, N. Warburton, and J. Miller, Phys.

Rev. Lett. 124, 021101 (2020).
[59] B. Wardell, A. Pound, N. Warburton, J. Miller, L. Durkan,

and A. Le Tiec, arXiv:2112.12265.
[60] J. M. Martín-García, Comput. Phys. Commun. 179, 597

(2008).
[61] J. Martin-Garcia, xAct: Efficient tensor computer algebra for

Mathematica, http://xact.es/.

PHYSICAL REVIEW LETTERS 128, 151101 (2022)

151101-6

https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1103/PhysRevLett.41.203
https://doi.org/10.1098/rspa.1979.0101
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/RevModPhys.73.663
https://doi.org/10.1103/PhysRevD.64.124003
https://doi.org/10.1103/PhysRevD.67.124010
https://doi.org/10.1103/PhysRevD.82.124012
https://doi.org/10.1103/PhysRevD.90.109902
https://doi.org/10.1103/PhysRevD.90.109902
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.95.104056
https://doi.org/10.1103/PhysRevD.55.3457
https://doi.org/10.1103/PhysRevD.55.3457
https://doi.org/10.1103/PhysRevD.72.104026
https://doi.org/10.1103/PhysRevD.75.064021
https://arXiv.org/abs/0904.0033
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.103.064048
https://doi.org/10.1103/PhysRevLett.127.151102
https://doi.org/10.1088/0264-9381/22/15/003
https://doi.org/10.1088/0264-9381/22/15/003
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1007/JHEP12(2017)138
https://doi.org/10.1103/PhysRevD.100.044044
https://doi.org/10.1103/PhysRevD.103.104049
https://doi.org/10.1103/PhysRevD.103.104049
https://doi.org/10.1103/PhysRevD.94.104066
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1103/PhysRevD.99.044043
https://doi.org/10.1103/PhysRevD.99.044043
https://doi.org/10.1103/PhysRevD.10.1070
https://doi.org/10.1103/PhysRevD.10.1070
https://pirsa.org/21060044
https://pirsa.org/21060044
https://doi.org/10.1088/0264-9381/4/6/020
https://doi.org/10.1088/0264-9381/4/6/020
https://doi.org/10.1063/1.1666410
https://doi.org/10.1063/1.1666410
https://doi.org/10.1063/1.5092587
https://doi.org/10.1063/1.5092587
https://doi.org/10.3842/SIGMA.2022.011
https://doi.org/10.1103/PhysRevLett.121.051104
https://doi.org/10.1103/PhysRevLett.121.051104
https://doi.org/10.1016/0550-3213(82)90049-9
https://doi.org/10.1103/PhysRevLett.124.021101
https://doi.org/10.1103/PhysRevLett.124.021101
https://arXiv.org/abs/2112.12265
https://doi.org/10.1016/j.cpc.2008.05.009
https://doi.org/10.1016/j.cpc.2008.05.009
http://xact.es/
http://xact.es/

