
Emergence and Breaking of Duality Symmetry in Generalized
Fundamental Thermodynamic Relations

Zhiyue Lu *

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA

Hong Qian †

Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-3925, USA

(Received 13 November 2021; revised 22 January 2022; accepted 11 March 2022; published 15 April 2022)

Thermodynamics as limiting behaviors of statistics is generalized to arbitrary systems with probability
a prioriwhere the thermodynamic infinite-size limit is replaced by a multiple-measurement limit. A duality
symmetry between Massieu’s and Gibbs’s entropy arises in the limit of infinitely repeated observations,
yielding the Gibbs equation and Hill-Gibbs-Duhem equation (HGDE) as a dual pair. If a system has a
thermodynamic limit satisfying Callen’s postulate, entropy being an Eulerian function, the symmetry is
lost: the HGDE reduces to the Gibbs-Duhem equation. This theory provides a de-mechanized foundation
for classical and nanothermodynamics and offers a framework for distilling emergence from large data, free
from underlying details.

DOI: 10.1103/PhysRevLett.128.150603

For macroscopic equilibrium systems approaching infin-
ite-size limit, classical thermodynamics emerges system-
atically in Gibbs’s ensemble theory of statistical mechanics
[1–3]. It states that equilibrated macroscopic homogeneous
systems (i.e., simple systems) can be fully described by a
number of extensive quantities S, U, V, N that are related
by the fundamental relation U ¼ UðS; V; NÞ or, equiva-
lently, S ¼ SðU;V;NÞ. All other thermodynamic proper-
ties, such as temperature, pressure, heat capacity, and
Helmholtz free energy, can be obtained through partial
derivatives or Legendre transforms of the fundamental
equation. Moreover, there exist a set of universal relations
despite the system’s specific details entailed by the par-
ticular functional form: Based upon the extensivity of S, U,
V, N and Euler’s theorem for homogeneous degree one
functions (1), one obtains the Gibbs-Duhem equation as a
differential form (2) of the universal relation [1]. Taking the
entropy representation of the fundamental relation in a
compact vector representation, the two relations are

S ¼ β · Y; ð1Þ

0 ¼ Y · dβ; ð2Þ

where β ¼ ð1=T; P=T;−μ=TÞ and Y ¼ ðU;V;NÞ.
For small systems without the thermodynamic limit, in

contrast, SðU;V;NÞ is not a Eulerian function of U, V, N
and the Gibbs-Duhem equation is no longer valid.
Moreover, proper definitions of U, V, S, N become
nontrivial: They become dependent upon the methods
for measurements due to fluctuations. To recover thermo-
dynamiclike principles for small systems, there have been

two main approaches: One carefully redefines thermo-
dynamic quantities for small systems (e.g., volume) that
satisfy relations that preserve the form of macroscopic
thermodynamics. The recent works of Seifert [4] and
Jarzynski [5] have taken up this bottom-up approach.
Another approach developed by Hill, more “phenomeno-
logical and thermodynamic” in nature, introduced additive
observables of a small system as extensive quantities and
presented thermodynamic relations with a finite-size cor-
rection term to the entropy function [6–9]. The latter theory
evoked a replica averaging technique and obtained a
modified Gibbs-Duhem equation through Legendre trans-
form of a non-Eulerian entropy function:

S ¼ β · Y −
E
T
; ð3Þ

d

�
E
T

�
¼ Y · dβ: ð4Þ

The relations (3) and (4) are general; one natural example
for E is the surface-effect correction to bulk thermody-
namics; see Ref. [8] for a recent treatment of this problem.
In Hill’s nanothermodynamics, which was inspired by ideal
solution where solutes are replicas of small systems, the
thermodynamic limit is replaced by a replica ensemble
limit.
Although the mathematical foundation of classical

thermodynamics emerging from the macroscopic limit
has been extensively studied in statistical mechanics,
neither the theoretical nor probabilistic foundation of
Hill’s nanothermodynamics is well understood. In this
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Letter, we explicitly discuss the concept of the mean values
of repeated measurements as mesoscopic thermodynamic
quantities and a general framework that includes both
Gibbs’s ensemble and Hill’s replica approaches. We also
demonstrate that Hill’s replica approach can be extended to
arbitrary stochastic systems with certain stationarity, for
example, translational invariance in either space or time.
This setting allows for applying the large deviation prin-
ciple from the theory of probability, upon which we derive
a set of relationships that captures and generalizes Hill’s
thermodynamic relations. We find that the generalized
fundamental equation obtained through the large deviation
approach exhibits a duality symmetry under a full,
Legendre-Fenchel transform (LFT). According to the large
deviation theory, the LFT based on variational calculus [as
in Eq. (8)] rather than the traditional Legendre transform
based on the derivative is critical for recognizing this
duality, as echoed in a recent study [10]. The duality
symmetry is apparently broken in the classical macroscopic
thermodynamics theory.
With the generalized thermodynamic framework, when

one takes the thermodynamic limit, the symmetry broken
can be explicitly illustrated as a subextensive term. Our
result shows the large deviation theory as the mathematical
foundation to the emergence of universal thermodynamic-
like behavior for arbitrary stationary systems with or
without detailed balance condition, in terms of generalized
physical quantities not limited to the traditional S, U, V, N.
In classical thermodynamics [1] the fundamental relation

S ¼ SðU;V;NÞ, e.g., entropy and other thermodynamic
potentials as Eulerian degree-one functions of the extensive
quantities, is an asymptotic limiting behavior of statistics
[11–13]. The mathematical theory of large deviations in
probability provides not only powerful tools for statistical
mechanics [14–18], but more importantly a novel organi-
zational principle for the theory of thermodynamic behav-
ior itself [19], in particular the origin of the maximum
entropy principle [20,21] as a consequence of the con-
traction principle and Gibbs conditioning [18]. To take
advantage of the large deviation principle in an arbitrary
stationary system of an arbitrary size, we explicitly discuss
the repeated measurement limit inspired by Hill’s work
[6,22]. Consider a general stochastic system with state
space S and a priori probability density function fxðxÞ,
x ∈ S, the large deviation theory (LDT) states that for a
large number M repeated measurements of an array of K
real observables gðxÞ ¼ ðg1;…; gKÞðxÞ, one can construct
the mean value

ḡM ¼ gð1Þ þ � � � þ gðMÞ

M
; ð5Þ

in which the vector gðiÞ is the ith measurement outcome and
ḡM is the mean of the M repeated measurements. For a
stationary stochastic system, we can treat each gðiÞ as

identically distributed random variables. As M → ∞, the
law of large number expects ḡM converges to the expect-
ation value of gðxÞ defined as

E½g� ¼
Z
S
fxðxÞgðxÞdx: ð6Þ

However, whenM ≫ 1 is large and finite, the LDT predicts
that the probability distribution for the measurement mean
ḡM follows an asymptotic expression,

ln Prfy < ḡM ≤ y þ dyg ¼ MηðyÞ þ oðMÞ; ð7Þ

where the negative large deviation rate function ηðyÞ is a
generalized entropy function, the term oðMÞ is vanishingly
small compared to MηðyÞ in the repeated measurement
limit M → ∞. According to Cramér’s theorem [14,16,18]
for independent gðiÞ’s, one can also obtain a pair of
conjugate functions

ηðyÞ ¼ min
β
fβ · y þ ψðβÞg; ð8Þ

ψðβÞ ¼ ln
Z
S
fxðxÞ expð−β · gðxÞÞdx; ð9Þ

in which y ¼ ðy1;…; yKÞ are dummy variables represent-
ing the possible values that the K measurement means
could take, and β ¼ ðβ1;…; βKÞ serves as their conjugates.
See Ref. [21] for a highly condensed but self-contained
tutorial of the large deviation analysis when K ¼ 1.
In this Letter we will show that ηðyÞ is analogous to
Hill’s modified thermodynamic fundamental equation
S ¼ SðU;V;NÞ and ψðβÞ is a subextensive term that is
present for small systems but negligible in the thermo-
dynamic limit. Notice that the repeated measurement limit,
M → ∞, needs to be distinguished from the thermo-
dynamic limit where a system’s size approaches infinity.
The repeated measurement limit allows us to apply large
deviation theory to systems of arbitrary size.
Reduction to classical thermodynamics and statistical

mechanics.—Although the proposed multiple-measure-
ment approach can be applied to arbitrary stationary
system, equilibrium or nonequilibrium, or even athermal
(e.g., systems very far removed from a molecular under-
standing and the possibility of a Hamiltonian conception,
such as those in ecology), the large deviation theory
analysis bears a unmistakable resemblance to those in
statistical mechanics. We emphasize that the various
ensembles originating from the microcanonical ensemble
in statistical thermodynamics are achieved by partially
replacing a subset of the components of g by its conjugate
in β in Eqs. (8) and (9), which we denote as partial LFTs
and will be discussed elsewhere. Here we focus on the full
LFT, replacing all of y by β. For illustrative purposes, let us
identify x as the phase space point, and equal a priori

PHYSICAL REVIEW LETTERS 128, 150603 (2022)

150603-2



measure for x ∈ S, and perform a scalar measurement
(K ¼ 1) gðxÞ ¼ HðxÞ as the mechanical energy
(Hamiltonian). Then ḡðxÞ is the statistical sampling mean
of internal energy and the integral in Eq. (9) is the canonical
partition function. Moreover, −β−1ψðβÞ is the Helmholtz
free energy and kBψðβÞ is known as the Massieu-Planck
free entropy [23]. More interestingly, noting that ψðβÞ is a
convex function, the LFT in Eq. (8) can be carried out with
differentiation:

ηðyÞ¼
�
−β

�∂ψ
∂β

�
þψðβÞ

�
β∶∂ψ=∂β¼−y

¼∂½β−1ψðβÞ�
∂ð1=βÞ : ð10Þ

This shows that kBηðyÞ corresponds to the thermodynamic
entropy as a function of internal energy SðUÞ.
To make a more precise analogy to the thermodynamic

fundamental relation S ¼ SðU;V;NÞ, let us consider the
K ¼ 3 scenario where measurable quantities in gðxÞ
represent the Hamiltonian, volume, and number of particles
of an ergodic mechanical system that satisfies detailed
balance condition (y ¼ ðU;V;NÞ), then the integral in
Eq. (9), as a function of y’s conjugate variables
β ¼ ðkBTÞ−1ð1; P;−μÞ, corresponds to a special partition
function for the β ensemble. This β ensemble partition
function is not frequently discussed in the literature
(see Guggenheim’s work [24]), but could be related to
the full Legendre transform of SðU;V;NÞ: If one performs
the full Legendre transform of the fundamental relation
S ¼ SðU;V;NÞ in the classical thermodynamic theory, one
apparently expects to obtain 0. However, by performing a
statistical mechanical analysis of the β ensemble, the
corresponding partition function exp½ψðβÞ� becomes the
so-called Guggenheim’s generalized partition function
[24]. For macroscopic thermodynamics, this corresponding
thermodynamic potential is ignored because it is subex-
tensive [25]. In nanothermodynamics, however, the free
energy like term −kBTψ is named the subdivision potential
by Hill [22]. Although our approach can be applied to
non-detail-balanced systems and the choices of measurable
quantities are not limited by thermodynamics (U, V, N),
we borrow the names from thermodynamics and name
ψ the Massieu-Guggenheim free entropy and, correspond-
ingly, η the Gibbs entropy. For simplicity, we will
denote them as free entropy and entropy in the rest of
the Letter.
Free entropy–Gibbs entropy duality symmetry.—It is

always important to identify a thermodynamic potential
function together with its appropriate independent variables
in thermodynamics. The mathematics in Eqs. (7)–(10)
reproduces some of the key steps associated with the
changing from one set of variables (ensemble) to another
in statistical mechanics. In thermodynamics, such changes
of ensemble are represented by Legendre transformations.
More importantly, the large deviation rate function ηðyÞ in
our general approach is a convex function of y since it is the

LFT of the convex function ψðβÞ as a function of β, and
Eq. (8) has an inverse relation [26]:

ψðβÞ ¼ max
y

f−β · y þ ηðyÞg: ð11Þ

Even though we first obtain ψðβÞ from fxðxÞ and gðxÞ
through the partition function, some detailed information
concerning the original system is lost in the statistics of the
mean value [27]. Transcending the original stochastic
system, the free entropy ψðβÞ and entropy ηðyÞ in
Eqs. (8) and (11) now form a dual under LFT: A duality
symmetry emerges. This symmetry can be expressed as the
generalized Euler’s equation with Hill’s correction for the
entropy or the free entropy:

ηðyÞ ¼ β · y þ ψðβÞ; ð12aÞ

ψðβÞ ¼ −y · βþ ηðyÞ: ð12bÞ

where β is the gradient of ηðyÞ and y is the gradient of ψðβÞ.
Notice that our Eq. (12a) extends Hill’s equation

S ¼ U
T
þ PV

T
−
μN
T

−
E
T

ð13Þ

to be applicable for arbitrary stationary stochastic systems.
One can also express the symmetry in terms of the exact
differentials:

dηðyÞ ¼ β · dy; ð14aÞ

dψðβÞ ¼ −y · dβ: ð14bÞ

If we again identify y as ðU;V;NÞ in statistical mechan-
ics, kBηðyÞ as entropy SðU;V;NÞ, and, correspondingly,
β ¼ ðkBTÞ−1ð1; P;−μÞ, we see that Eq. (14a) is a gener-
alization of the Gibbs equation,

dS ¼
�
1

T

�
dU þ

�
P
T

�
dV −

�
μ

T

�
dN; ð15aÞ

which holds for both Hill’s nanothermodynamics and the
classical macroscopic thermodynamics. Moreover, our
Eq. (14b) generalizes a key result of Hill’s nanothermo-
dynamics [6,28], in which we can find the exact differential
of the free entropy:

d

�
E
T

�
¼ Ud

�
1

T

�
þ Vd

�
P
T

�
− Nd

�
μ

T

�
: ð15bÞ

Bedeaux et al. termed the relation in Eq. (15b) the Hill-
Gibbs-Duhem equation [9]. We shall follow their terminol-
ogy to call our Eq. (14b) the generalized Hill-Gibbs-Duhem
equation. One specific example of E is surface energy,
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see Refs. [8] and [29] for recent studies of surface and
interface nanothermodynamics.
These emerging thermodynamiclike results from the

multiple-measurement limit presented so far are generally
true for any stochastic systems and can be reduced to
the description of nanothermodynamics. The symmetry
between the generalized entropy ηðyÞ and generalized
Massieu-Planck free entropy ψðβÞ, shown by Eqs. (12a),
(12b), (14a), and (14b), implies a similar symmetry in Hill’s
nanothermodynamics: All information about the thermo-
dynamic properties of a given substance, captured by the
fundamental equation S ¼ SðU;V;NÞ, is simultaneously
contained in Hill’s subdivisional function E ¼ EðT; P; μÞ,
which is previously understood as a finite-size correction to
the macroscopic thermodynamics. Below, we show that in
the thermodynamics limit when the system size approaches
infinity, such a symmetry can be broken as one neglects the
subextensive quantities.
Broken duality symmetry in the classical thermodynamic

limit.—According to classical thermodynamics, a macro-
scopic system in the thermodynamic limit is represented by
a set of extensive variables, which we denote as the vector
g. We adopt Callen’s postulate on classical thermodynam-
ics which states that in the thermodynamic limit, entropy is
an Eulerian degree-one homogeneous function of all the
extensive variables [1]. Thus for a large system approach-
ing the macroscopic limit, we have y → ∞ and ηðyÞ → ∞
simultaneously:

ηðyÞ¼y1
∂η
∂y1þ���þyK

∂η
∂yKþoðyÞ¼ y ·βþoðyÞ; ð16Þ

in which the notion oðyÞ represents a subextensive term that
scales sublinearwith respect to the system’s size:oðyÞ=y → 0
as y → ∞. Substituting Eq. (16) into Eq. (11), one can
show that ψðβÞ is purely subextensive and disappears in the
thermodynamic limit, and thus Eq. (14b) is the Gibbs-Duhem
equation y · dβ ¼ 0 in the (macroscopic) thermodynamic
limit. Similarly, Hill-Gibbs-Duhem equation (15b) reduces to
the Gibbs-Duhem equation

−SdT þ VdP − Ndμ ¼ 0 ð17Þ

as is expected for classical thermodynamics of macroscopic
systems. As a consequence, in the thermodynamic limit for
extensive large systems, the duality symmetry between
Eqs. (14a) and (14b) is apparently lost, if one ignores the
subextensive termwhich becomes negligible compared to the
extensive terms. When the subextensive term is ignored,
the full Legendre transformation, which serves as a bridge
between the entropy and free entropy becomes problemati-
cally defined as shown below.
Legendre-Fenchel transformation of a homogeneous

function.—A Eulerian homogeneous function of degree
1 cannot be a strictly convex function: If ηðαyÞ ¼ αηðyÞ,

where α is any real number, then ηðyÞ ¼ y ·∇yη, and
∇yη ¼ ∇yηþ y · ∇y∇yη. This implies

y ·∇y∇yη ¼ 0: ð18Þ

So ηðyÞ loses strict convexity along the constant y direction
in which the Hessian matrix ∇y∇yη is singular. The LFT of
such an ηðyÞ can exist only if the y is restricted to a compact
and convex domain, and the LFT is non-differentiable on
the submanifold defined by Eq. (18) [30]. When the y is
extended to the entire RK , the domain of its LFT is
contracted to a K − 1 submanifold which defines the
equation of state in classical thermodynamics. Since the
thermodynamic limit dictates ηðyÞ being a degree 1
homogeneous function of y [1], it is the mathematical
origin of broken duality symmetry in the thermodynamic
limit.
Generalized conjugate forces β.—In thermodynamics

β’s take the forms of 1=T, p=T, and μ=T and they can be
considered as conjugate forces that govern the spontaneous
change of energy U, volume V, and number of particles N.
We can briefly show that the β derived in the generalized
thermodynamics framework can also be considered as a
driving force for exchange of the corresponding physical
quantities. In the context of a large number, M i.i.d.
measurements, it suffices to say that when conditioned
on an observation that ḡM ¼ y, there is a posterior dis-
tribution fxðxÞe−βðyÞgðxÞ among the M samples [31]. If one
has two sets of samples with ḡðaÞ ¼ ya and ḡðbÞ ¼ yb, then
the joint samples that pooled two together will have
minfya; ybg ≤ ḡða∪bÞ ≤ maxfya; ybg. Since βðyÞ is a mon-
otonic function of y, this also implies a new β that is
between the βa and βb. Thus one can find the spontaneous
direction of equilibration using β as it is done in traditional
thermodynamics. It has been shown recently that canonical
distribution can also be understood as a limit theorem of
an infinitesimal portion of a large system [32], which
gives the canonical distribution and its β an alternative
interpretation.
Integral and differential β’s.—It is worth pointing out

that the conjugate force can have two distinct definitions.
Consider again K ¼ 1 with both y and β being scalars.
Then Eq. (11) immediately suggests that

−
dηðyÞ
dy

þ ηðyÞ
y

¼ −β þ ηðyÞ
y

¼ ψ

y
: ð19Þ

If we take the thermodynamic limit, both ηðyÞ and y are
extensive quantities, as both tend to ∞ if their ratio ηðyÞ=y
exists. Then according to l’Hôspital’s rule the dηðyÞ=dy
will have the same limit as y → ∞. Thus, in the thermo-
dynamic limit the right-hand side of Eq. (19) vanishes (ψ is
subextensive). In other words, the integral and differential
definitions of β are equivalent to each other in the
thermodynamic limit. In Ref. [22] Hill has introduced a
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notation ηðyÞ=y ¼ β̂, called the integral form of β in
contrast to the differential β ¼ ∂ηðyÞ=∂y. Then

−β þ β̂ ¼ ψ

y
¼ ηðyÞ − yη0ðyÞ

y
¼ −

dβ̂
d ln y

: ð20Þ

This is another key result in Hill’s thermodynamics of small
systems [9,22]. The right-hand side of Eq. (20) has a very
clear meaning. To illustrate we take y as the number of
particles N, for example, then

ψ

N
¼ −N

d
dN

�
η

N

�
;

in which η=N is the entropy per particle. Accordingly,
dðη=NÞ=dN is its change due to introducing one additional
particle, and Ndðη=NÞ=dN is the change in the entire
system, of all N particles, due to one additional particle. In
other words, when introducing one additional particle into a
system of N particles, the effect is “subdivided” into all N
particles.
Three entropies and two limits.— In contrast to the

classical thermodynamics with one entropy and one limit,
the present theory is about three entropies and two limiting
processes. In addition to Gibbs entropy η and free entropy
ψ , there is a third lnΩðyÞ corresponding to the prior
probability density function for the observable gðxÞ,

ΩðyÞdy ¼ Prfy < gðxÞ ≤ y þ dyg

¼
Z
y<gðxÞ≤yþdy

fxðxÞdx; ð21Þ

which completely determines the partition function
and ψðβÞ,

ψðβÞ ¼ ln
Z
RK

ΩðyÞ expð−β · yÞdy: ð22Þ

ΩðyÞ is the density of state in terms of the observable gðxÞ.
lnΩ can be identified as Boltzmann’s microcanonical
entropy if g ¼ ðU;V;NÞ. In an essence our theory has a
logic flow captured by the following scheme:

lnΩðyÞ → fψðβÞ ↔ ηðyÞg ð23aÞ

→

�
ψðβÞ
y

¼ 0;
ηðyÞ
yi

¼ dη
dyi

¼ βi

�
: ð23bÞ

If lnΩðyÞ is convex, then lnΩðyÞ ¼ ηðyÞ. In this case,
the microcanonical description in terms of Boltzmann’s
entropy with y as independent variables is equivalent to the
canonical description in terms of Massieu-Guggenheim
entropy with β as independent variables [33]. The yi in
(23b) can be any one component of the extensive y. The
derivative is understood as expressing all other components

of y normalizedby the yi. The “→” inEq. (23a) represents the
repeated-measurement limit; in general there is a loss of
information on the small system. The “↔” in Eq. (23a)
indicates the emergent duality symmetry. This is the domain
of Hill’s nanothermodynamics [22]. The→ in Eq. (23b) then
represents the large system, macroscopic thermodynamics
limit. It results in a breaking of the duality symmetry.
This work builds on the large deviation theory to

construct a unified “probability foundation” of Gibbs’s
and Hill’s theories, and leads to their generalization to
systems beyond thermodynamic equilibrium: It is an
emergent behavior of “certain quantity” becoming large:
be it large measurement time, large number of particles, or
large number of replica. This unified understanding gene-
ralizes the thermodynamic limit into a measurement limit
and is clearly beyond the work of Hill, or Gibbs theory
itself. The thermodynamic structure presented in the
present work, while assumes a probability distribution
a priori, does not require the concept of equilibrium in
connection to detailed balance in stochastic dynamics, nor
ergodicity. Therefore, it is applicable to measurements on
biomarkers from isogenic single living cells [21]. Of
course, if a large system consists of many statistically
identical but independent smaller parts, then the entire
argument based on i.i.d. measurements can be applied to a
single measurement of extensive variables of the large
system as a whole. This mathematics was precisely in
Boltzmann’s theory of 1877, with the probabilistic concept
of “conditioning on the value y” being replaced by
Newtonian “conservation with the value y.”
The present result augments the current understanding of

the nature of thermodynamic behavior, which so far has
been focused on large systems limit and phase transition
through symmetry breaking as a key route for emergent
phenomena [34,35]. We now see there is actually a large
measurements limit that generates a different kind of
emergent order, a duality symmetry, for any small stochas-
tic systems with stationarity or replica. This symmetry is
lost, however, in the large system limit.
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