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The Lieb-Robinson bound asserts the existence of a maximal propagation speed for the quantum
dynamics of lattice spin systems. Such general bounds are not available for most bosonic lattice gases due
to their unbounded local interactions. Here we establish for the first time a general ballistic upper bound on
macroscopic particle transport in the paradigmatic Bose-Hubbard model. The bound is the first to cover a
broad class of initial states with positive density including Mott states, which resolves a longstanding open
problem. It applies to Bose-Hubbard–type models on any lattice with not too long-ranged hopping. The
proof is rigorous and rests on controlling the time evolution of a new kind of adiabatic spacetime
localization observable via iterative differential inequalities.
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A central tenet of relativistic theory is the existence of the
light cone, i.e., an absolute upper bound on the speed of
propagation. It is a remarkable fact that many nonrelativ-
istic condensed-matter systems similarly display an effec-
tive “light” conewhich provides a system-dependent upper
bound on the maximal speed of quantum propagation. In
contrast to its relativistic counterpart, this effective light
cone leaks exponentially small errors as is typically
unavoidable in quantum dynamics. This deep fact was
discovered by Lieb and Robinson [1] for quantum spin
systems on lattices. The resulting Lieb-Robinson bound
showed that the ultraviolet cutoff imposed by the lattice
provides a maximal speed of propagation on the many-
body dynamics. The interest in Lieb-Robinson bounds
rapidly surged in the early 2000s when it became clear that
they are among the very few effective and general tools that
are available for analyzing quantum many-body systems.
Accordingly, they have played a decisive role in contexts as
diverse as quantum information science [2,3], condensed-
matter theory [4–9], and high-energy physics [10–12], to
name a few.
Avariety of improvements of the original Lieb-Robinson

bound have been achieved over the past ten years [8,13–24]
including, e.g., extensions to long-range spin interactions
and fermionic lattice gases. For a more complete discus-
sion, see the survey papers [25–27].
Despite these celebrated successes, a nagging limitation

of the Lieb-Robinson bounds has persisted over the years—
the standard proofs are fundamentally limited to bounded
interactions as enjoyed by quantum spin systems. Certain
oscillator systems with unbounded interactions have been
addressed by different methods [21]. However, for general
unbounded interactions, the standard arguments only yield
an unsatisfactory bound on the maximal speed which is

proportional to the total particle number N, a trivial bound
in the thermodynamic limit.
This limitation largely leaves out the wide field of

bosonic quantum lattice gases since these naturally come
with unbounded interactions, for example the paradigmatic
Bose-Hubbard (BH) model [28]. Experiments with ultra-
cold gases in optical lattices and numerical simulations
have found an effective light cone for the BH model after a
quench [29–34]. On the theoretical side, a fully satisfactory
understanding of this fact is lacking. It is known that the
problem is subtle because superballistic transport can occur
in certain related examples [35].
A small number of theoretical results have established a

maximal propagation speed for bosonic lattice gases for
special initial states. A first maximal speed bound in the BH
model was given in [36] for initial states that have no
particles outside of a fixed region. This condition excludes
states of positive local density, e.g., Mott states (9). Very
recently, a number of groups have made progress on this
problem through novel techniques: The N scaling of the
velocity was improved to

ffiffiffiffi
N

p
[37]; an almost-linear light

cone was derived for special initial states that are local
perturbations of a stationary state satisfying certain expo-
nential constraints on the local particle density [38]; a linear
light cone was derived for commutators tested against the
state e−μN [39]; and [36] was extended to propagation
through vacuum [40].
In this Letter, we show for the first time the finiteness of

the speed of macroscopic particle transport in the BH
model for general initial states. We obtain an explicit
bound (4) on the maximal speed that is independent of the
particle number and easily computable from the hopping
parameters of the Hamiltonian. In particular, our result is
the first to provide a thermodynamically stable ballistic

PHYSICAL REVIEW LETTERS 128, 150602 (2022)

0031-9007=22=128(15)=150602(6) 150602-1 © 2022 American Physical Society

https://orcid.org/0000-0001-6459-8046
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.150602&domain=pdf&date_stamp=2022-04-12
https://doi.org/10.1103/PhysRevLett.128.150602
https://doi.org/10.1103/PhysRevLett.128.150602
https://doi.org/10.1103/PhysRevLett.128.150602
https://doi.org/10.1103/PhysRevLett.128.150602


particle propagation bound on the prototypical Mott states
(9) which resolves a longstanding open problem. See
Theorem 1 below for the formal statement. Our result is
a new kind of macroscopic-type Lieb-Robinson bound for
particle transport. It remains to be seen if the method can be
adapted to propagation of other physical characteristics,
e.g., entanglement.
Our main idea is to control the time evolution by means

of a new class of observables which we call adiabatic
spacetime localization observables (ASTLOs). The con-
struction is inspired by the method of propagation observ-
ables developed in [41–47] and thereby connects these
developments to the study of many-body lattice gases for
the first time.
Let us explain the conceptual idea that makes our

ASTLOs an effective tool. Monotonic quantities, such as
entropy, have long played a central role in studying
dynamics. The main limiting factors for using these
quantities is that they are global and there exist only few
of them.
ASTLOs widely expand this framework. They are

monotonic up to self-similar terms and small error terms
as summarized in (19) below. The self-similar terms can be
made much smaller because self-similarity allows for
iterative bootstrapping. In effect, this makes the expectation
values of ASTLOs approximately monotonic (i.e., mono-
tonic up to small error terms), which leads to our spacetime
estimates. We are able to flexibly design ASTLOs that
capture the key dynamical information about the localiza-
tion of particles in spacetime precisely because we have
relaxed the monotonicity condition. We believe that this
insight can be used to design and utilize analogs of
ASTLOs for many other problems in quantum dynamics.
These techniques are fully analytical, rigorous, and

robust. Accordingly, the proof applies to a wide variety
of BH-type models with rather long-ranged hopping and on
general lattices.
Setting and main result.—We consider a finite connected

subsetΛ of a latticeL ⊂ Rd. For example,L ¼ Zd andΛ is
a discrete box. We shall prove bounds that are independent
of the number of sites in Λ and which therefore extend to
the infinite-volume limit.
We consider a system of bosons on Λ described by the

generalized Bose-Hubbard model Hamiltonian

HΛ ¼ −
X
x;y∈Λ

JΛxyb
†
xby þ

X
x∈Λ

VxðnxÞ − μ
X
x∈Λ

nx; ð1Þ

acting on the bosonic Fock space F .
We assume that JΛx;y ¼ JΛy;x and we let Vx∶f0;

1; 2;…g → R be an arbitrary local potential. We allow
for long-ranged hopping in the BH Hamiltonian. The
hopping range is quantified by an integer parameter p
and the quantity

κðpÞJ ¼ max
x∈Λ

X
y∈Λ

jJΛxyjjx − yjp ð2Þ

where j � � � j denotes the Euclidean distance. Our bounds

will involve the constant κðpÞJ for some p ≥ 2 and to have a

well-defined infinite-volume limit, we assume that κðpÞJ is
upper-bounded independently of the system size. This is our
main assumption on the hopping elements Jxy.
Suppose that Λ is a box in Zd and we have the decay

bound jJΛxyj≲ ðjx − yj þ 1Þ−α for some exponent α ≥
dþ 3. Then we can take p ¼ α − d − 1 as κðα−d−1ÞJ is
upper-bounded independently of the system size ( [48],
Lemma 14). As another example, the standard BH
Hamiltonian involves nearest-neighbor hopping and quad-
ratic on-site interaction [ [28], Eq. (65)], i.e.,

JΛx;y ¼ Jδx∼Λy; VxðnxÞ ¼
U
2
nxðnx − 1Þ; ð3Þ

where x∼Λ y means x and y are nearest neighbors in Λ.
In this case, κðpÞJ ¼ κð1ÞJ ¼ 2dJ assuming the lattice em-
bedding is such that nearest neighbors have Euclidean
distance 1.
We will show that the maximal propagation speed is

given by

vmax ≡ κð1ÞJ ¼ max
x∈Λ

X
y∈Λ

jJΛxyjjx − yj: ð4Þ

Our main result controls the macroscopic change of local
particle numbers outside of an effective light cone with
slope determined by vmax. To formulate it precisely, we
define for a given subset S ⊂ Λ, the local particle numbers

NS ¼
X
x∈S

nx; N̄S ¼
NS

NΛ
: ð5Þ

We recall that the total particle numberNΛ ¼ P
x∈Λ nx is

conserved by HΛ. For c ∈ R and S ⊂ Λ, we write PN̄S<c,
PN̄Sc≥c, etc., for the associated spectral projectors of N̄S,
where Sc ¼ ΛnS.
Given a set S ⊂ Λ, we write RminðSÞ for the radius of the

smallest Euclidean ball B so that S ⊆ B. We write hAiψ ¼
hψ ; Aψi for the expectation value of an observable A in
state ψ . Given two subsets of the lattice X; Y ⊂ Λ, we write
dXY for their Euclidean distance.
Theorem 1 (main result).—Consider the HamiltonianHΛ

given by (1) and let p ≥ 2. Fix numbers v > vmax and
0 ≤ η < ξ ≤ 1.
Let X and Y be disjoint subsets of Λ and let ϕ be any

normalized state. Consider the time-evolved state

ψ t ¼ e−itHPN̄Xc≤ηϕ: ð6Þ
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Then we have the decay estimate

hPN̄Y≥ξiψ t
≤ C

κðpÞJ ;ξ−ηd
1−p
XY ; ð7Þ

whenever dXY ≥ vtþ 2RminðXÞ.
To interpret the result, see Fig. 1 and consider an initial

state ϕ so that PN̄Xc≤ηϕ ¼ ϕ, meaning the fraction of
particles outside of X is at most η (say, η ¼ 0.6 and so
at most 60% of all particles are outside of X). Then (7)
shows that the time it takes to raise the fraction of particles
inside Y to ξ > η (say, to 61% of all particles) is at least
proportional to the distance dXY . In short, moving ðξ − ηÞN
particles from X to Y takes time proportional to dXY . This
proves that macroscopic many-body transport is at most
ballistic.
A few remarks on Theorem 1 are in order. (i) The

notation C
κðpÞJ ;ξ−η means that the constant depends on the

values of κðpÞJ and ξ − η. It also depends on v − vmax, but
importantly neither on t nor dXY. (ii) The left-hand side of
(7) vanishes at t ¼ 0. We prove that it remains small as long
as one stays outside of an effective light cone

dXY ≥ vtþ 2RminðXÞ ð8Þ

[see (7)]. For finite-range hopping, we can take p ≥ 2
arbitrarily large and so the decay outside of the effective
light cone is faster than any polynomial. (iii) The maximal
speed vmax from (4) is independent of particle number and
of the observables X and Y. It only depends on model
parameters similarly to the Lieb-Robinson velocity.
(iv) The result applies to a broad class of initial states
including ones that can have positive local particle density.
This allows us, for the first time, to consider the important
class of Mott states

ϕ ¼ ⊗
x∈Λ

ða†xÞνx j0i; νx ∈ f0; 1; 2;…g: ð9Þ

[A common choice is νx ≡ ν with ν − 1 < ðμ=UÞ < ν
which gives a Mott insulating ground state of (3) in the
limit U ≫ J.] (v) The term 2RminðXÞ in the condition
following (8) plays no role when X is a fixed bounded set.
Moreover, if d0Y ¼ dXY þ RminðXÞ (e.g., if X has sym-
metry) then (8) can be relaxed to dXY ≥ vt even if X grows
with system size. The constant 2 can be replaced by any
number> 1. (vi) It is an open question if Theorem 1 can be
extended to include the case p ¼ 1.
We mention that a well-known experimental setup which

encapsulates the zero-temperature phase diagram of the
Bose-Hubbard model places the bosons in a large radial
trap generated by a radially decreasing local chemical
potential. In this setup, the ground state is comprised of
concentric annuli which alternate between Mott insulating
phases (of different densities) and superfluid phases [ [28],
Fig. 13]. Now consider two such Mott phases separated by a
superfluid annulus ofwidthw such that theMott phase on the
smaller annulus contains at least ð1 − ηÞN particles. If we
turn off the trap at time t ¼ 0, then our result predicts that it
will require a time proportional tow=vmax to raise the particle
number on the outer annulus above ξN for any ξ > η.
ASTLOs: Definition and basic properties.—The over-

arching idea behind our approach is to construct special
adiabatic spacetime localization observables (ASTLOs)
[see (11) below] which are quasimonotonic along quantum
trajectories. An important ingredient to make ASTLOs
work is to use smooth, slowly varying (adiabatic) cutoff
functions instead of sharp ones because this makes the time
derivative comparatively small.
Given v > vmax, let ϵ ∈ ð0; 1

2
Þ be small enough such that

v0 ¼ ð1 − ϵÞv > vmax still. We define the smeared out light
cone indicator as

χtðjxjÞ ¼ χ

�jxj − RminðXÞ − v0t
ϵdXY

�
; ð10Þ

where χ is a smoothed out indicator function of the semi-
interval ½0;∞Þ; see Fig. S1 in [48]. (A precise definition
will be given below.) By translation, we may assume that
X ⊂ Λ is contained in BRminðXÞ, the Euclidean ball of radius
RminðXÞ centered at 0.
We consider s ¼ ϵdXY as the large adiabatic parameter

that makes χtðxÞ slowly varying. The ASTLO is then the
Fock space operator At given by the (normalized) second
quantization of χt, i.e.,

At ¼
1

NΛ

X
x∈Λ

χtðjxjÞnx: ð11Þ

Physically, the first-order ASTLOAt can be thought of as a
smeared-out localized relative number operator. It measures
how many particles are at least distance v0t away from the
ball BRminðXÞ, but it only fully counts the particles whose
distance from the light cone is at least of order ϵdXY.

FIG. 1. As shown in Theorem 1, the transport of 1% of the
particles from X to Y takes time proportional to dXY . A macro-
scopic cloud of particles moves at most at speed vmax.
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Conversely, the particles whose distance from the
light cone is positive but ≪ ϵdXY contribute almost
nothing to At.
The ASTLOs At are useful because, in addition to

decreasing quasimonotonically along quantum trajectories,
they satisfy the following two somewhat competing proper-
ties: (I) They are closely connected to the more sharply
varying local particle numbers NXc and NY . (II) Their
adiabatic nature leads to a slow time evolution (small
commutators).
Let us explain point (I) further. We begin by noting that

local particle number operators and ASTLOs are sums of
nx’s and thus commute. Then x ∈ X ⊂ BRminðXÞ implies
χ0ðjxjÞ ¼ 0 and so we have the operator inequality

N̄Xc ≥ A0: ð12Þ

Since X contains the origin, we have for any y ∈ Y that
jyj ≥ dXY . The assumption dXY ≥ vtþ 2RminðXÞ and our
choice of ϵ then imply that χtðjyjÞ ¼ 1. Hence, we obtain
the second operator inequality

N̄Y ≤ At ð13Þ

which clarifies point (I) above.
Sketch of proof of Theorem 1.—To treat positive den-

sities, we introduce an augmented ASTLO by taking a
monotonic function of the operator At via the spectral
theorem. Let f be a monotonic smooth cutoff function that
goes from 0 to 1 between η and ξ. To be precise, f belongs
to the following class of cutoff functions Cη;ξ. In words,
these are smooth (infinitely differentiable) and non-
negative functions which interpolate smoothly between 0
and 1 on the interval ½η; ξ� and are identically zero to its left
and identically 1 to its right. Formally, with f0 ≡ fð1Þ
denoting the first derivative,

Cη;ξ ¼ ff ∈ C∞ðRÞ∶f; f0 ≥ 0;
ffiffiffiffi
f0

p
∈ C∞ðRÞ; f ¼ 0 on

ð−∞; ηÞ; f ¼ 1 on ðξ;∞Þ; supp f0 ⊂ ðη; ξÞg:

We emphasize that the class of cutoff functions is inde-
pendent of the adiabatic parameter s ¼ ϵdXY and of time t.
Now we define the approximate spectral projector for the
ASTLO via the spectral theorem as

ΦðtÞ ¼ fðAtÞ ¼
X

λ∈specAt

fðλÞPλðAtÞ;

with PλðAtÞ the projector onto the λ eigenspace of At.
The fact that f ∈ Cη;ξ implies thatΦðtÞ is an approximate

spectral projector in the sense that

PN̄Xc≤ηΦð0Þ ¼ 0; PN̄Y≥ξ ¼ PN̄Y≥ξΦðtÞ: ð14Þ

We denote hAit ¼ hAiψ t
. The above relations (14) give

hΦð0Þi0 ¼ 0; hPN̄Y≥ξit ≤ hΦðtÞit: ð15Þ

As anticipated, we see that the task reduces to controlling
the dynamical growth of the function t ↦ hΦðtÞit governed
by the differential equation

d
dt

hΦðtÞit ¼ hDΦðtÞit; ð16Þ

where DΦðtÞ ¼ ∂
∂tΦðtÞ þ i½H;ΦðtÞ�: ð17Þ

DΦðtÞ is called the Heisenberg derivative ofΦðtÞ. Here and
in the following, we may assume without loss of generality
that ψ0 lies in the domain of the unbounded operator H by
using a standard approximation argument.
Reverting from ΦðtÞ to fðAtÞ and introducing the

notation

χ0tðjxjÞ ¼ χ0
�jxj − RminðXÞ − v0t

s

�
; ð18Þ

we can now formulate the key technical result.
Theorem 2 (bound on the Heisenberg derivative).—Let

f ∈ Cη;ξ and χ ∈ C1=2;1. Then, there exist a constant C > 0

and cutoff functions f̃ ∈ Cη;ξ and χ̃ ∈ C1=2;1 such that for all
t and all sufficiently large s,

DfðAtÞ≤−
v0−vmax

s
f0ðAtÞA0

tþ
C
s2
f̃0ðÃtÞÃ0

tþ
C
sp

: ð19Þ

Here A0
t, Ãt, and Ã0

t are mutually commuting, positive
operators defined in the natural way: namely, by replacing
χt by respectively χ0t, χ̃t, and χ̃0t in (11), while replacing
ϵdXY by s.
The proof of Theorem 2 is lengthy and deferred to the

Supplemental Material (SM) [48]. A key ingredient in the
proof is the bound

k½J; jxj�k ≤ κð1ÞJ ≡ vmax ð20Þ

where JfðxÞ ¼ P
y Jxyfy is an operator on the one-particle

space l2ðΛÞ. The bound (20) follows from the Schur test; it
is where formula (4) for vmax arises in our argument.
Proof of Theorem 1.—The key idea is to iterate (19). We

fix f ∈ Cη;ξ and χ ∈ C1=2;1. We use s ¼ ϵdXY , take the
expectation of (19) and integrate over time. Using (16),
hΦðtÞit ≥ 0 and, by (15), hΦð0Þi0 ¼ 0, as well as v0 −
vmax ¼ ϵv > 0 and t ≤ ðs=ϵvÞ, we obtain

Z
t

0

hf0ðArÞA0
rirdr ≤ Cs−1

Z
t

0

hf̃0ðÃrÞÃ0
rirdrþ Cts1−p:

Since this holds for any f ∈ Cη;ξ, we can iterate. It follows
that there exist f̃ ∈ Cη;ξ and χ̃ ∈ C1=2;1 so that

PHYSICAL REVIEW LETTERS 128, 150602 (2022)

150602-4



Z
t

0

hf0ðArÞA0
rirdr ≤ Cs1−p

Z
t

0

hf̃0ðÃrÞÃ0
rirdrþ Cts1−p

≤ Cts1−p ð21Þ
where the second estimate uses that kf̃0ðÃrÞk ≤ kf̃0k∞ ≤ C
by the functional calculus and that hÃ0

rir ≤ C.
Integrating the expectation of (19) over time and using

hΦðtÞit ¼ hΦðrÞir þ
R
t
rhDΦðrÞirdr and (21), we obtain,

for any t ≥ r ≥ 0,

hΦðtÞit ≤ hΦðrÞir þ Cðt − rÞs−p; ð22Þ
showing the essential monotonicity of hΦðtÞit under the
evolution. Setting here r ¼ 0 and using (15) gives the
desired bound hPN̄Y≥ξit ≤ Cts−p. ▪
Conclusions.—We have resolved a longstanding open

problem in the area of quantum lattice gases by providing
the first derivation of a maximal speed for macroscopic
particle transport in the Bose-Hubbard model. Our result is
a new kind of macroscopic-type Lieb-Robinson bound for
particle transport. It complements other recent results
[37–40] which hold for special initial states and are other-
wise closer to the original formulation of the Lieb-
Robinson bound.
Our result could be used to control the temporal rate of

change of the expected local particle fraction NU=N inside
a region U for suitable initial states. This would open the
door to a finer investigation of the dynamical behavior of
the local particle fraction.
The central physical idea underpinning our proof is to

engineer the ASTLOs, adiabatic and quasimonotonic
spacetime observables whose support dynamically tracks
and controls the surplus of particles outside the effective
light cone. The analytical method that we use is quite
robust. For example, it applies without significant change
to a wide variety of BH-type models with different
hoppings and different lattice structures.
Regarding broader extensions, we note that our ASTLOs

here are specifically designed to track particle transport and
thereby naturally give rise to the commutator ½J; x�. To
control propagation of other physical quantities, e.g.,
entanglement, one would use adapted observables which
have to satisfy the appropriate analog of (20) uniformly in
Λ. This change would also affect the value of the maximal
speed bound (but not its existence).
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