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Motivated by the famous ink-drop experiment, where ink droplets are used to determine the chaoticity of
a fluid, we propose an experimentally implementable method for measuring the scrambling capacity of
quantum processes. Here, a system of interest interacts with a small quantum probe whose dynamical
properties identify the chaoticity of the system. Specifically, we propose a fully quantum version of the out-
of-time-order correlator—which we term the out-of-time-order tensor—whose correlations offer clear
information theoretic meanings about the chaoticity of a process. We illustrate the utility of the out-of-time-
order tensor as a signature of chaos using random unitary processes as well as in the quantum kicked rotor,
where the chaoticity is tunable.
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The connections between quantum chaos and fast
information scrambling have proven to be of practical
and fundamental importance, particularly in understanding
why isolated quantum systems thermalize [1–5].
Specifically, scrambling processes describe how local
quantum information becomes lost in nonlocal degrees
of freedom, i.e., due to entanglement [1,6,7]. Such proc-
esses look irreversible at the level of a local observable,
analogous to what occurs in classically chaotic systems [8].
This irreversibility is captured via the correlations of

initially commuting local variables, before and after scram-
bling has occurred. This has been explored extensively via
the decay of out-of-time-order correlators (OTOCs) CðtÞ
[9–14]—related to four-point temporal correlation func-
tions of two initially commuting local Heisenberg operators
W and V [15–19],

FðtÞ ¼ hWtVW
†
t V†iρ; ð1Þ

via CðtÞ ¼ 2ð1 − Re½FðtÞ�Þ. Here, h·iρ ¼ tr½·ρ� with initial
state ρ, and Wt is the unitarily evolved operator W in the
Heisenberg picture at time t. For chaotic systems, FðtÞ has
the early-time exponential departure from unity: 1 −
Re½FðtÞ� ≈ eλt where λ > 0 [15,20]. OTOCs thus act as
an indicator of chaoticity by quantifying how quickly a
local perturbation spreads into many-body correlations; the
speed at which Wt and V fail to commute diagnoses the
speed of information scrambling and the presence, or
absence, of chaos [21,22].
While the OTOC has been lauded as a way to capture

many-body quantum chaos [23–28], it actually has strong
overlap with the classical ink-drop experiment presented by
David Bohm [29]. In this experiment, a cylindrical chamber
is filled with a highly viscous fluid (e.g., corn syrup) and
three droplets of ink are carefully placed in it. Because of

the high viscosity of the fluid, the ink does not disperse as it
would in water. Next, the fluid is rotated and the three colors
mix. Remarkably, if the fluid is rotated backward, the
dispersed ink reforms into droplets resembling their initial
shape [see Fig. 1(a) or see [30] for a real demonstration].
In this particular example, the dynamics of the fluid are

regular, leading to a high similarity between the initial and
reversed state of the ink droplets. On the other hand, if the
viscous fluid were replaced with water, the rotation would
cause chaotic (turbulent) dynamics such that the ink
droplets could not easily be reversed to their initial state.
In this sense, the similarity between the initial and reversed
ink drops act as a probe of the chaoticity of the fluid as it is

(a)

(b)

FIG. 1. (a) The ink-drop experiment mixes ink in a viscous fluid
by rotating the fluid, and subsequently demixed by rotating in the
opposite direction. The indistinguishability of the initial and final
states of the ink droplets, subject to a perturbation on the droplets
or the fluid prior to the reverse rotation, quantifies the chaoticity
of the fluid dynamics. (b) The analog OTOC experiment is as a
higher order map (the object outlined in purple) that we refer to as
an OTOT. The input-output correlations of the OTOT, i.e.,
between the preparation A and the measurement C of a small
probe interacting with a large system, quantify the OTOC of this
process.
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being rotated. Importantly, the steps of the ink-drop experi-
ment are directly analogous to those of an experiment
aiming to observe OTOCs. This is shown by expanding
Eq. (1) in the Schrödinger picture [31] to obtain the circuit
shown in the bottom panel of Fig. 1. Can we then adopt this
idea to study quantum processes by interacting the system
with a probe?
In this Letter, we derive an operator, the out-of-time-

order tensor (OTOT), that simultaneously captures OTOCs
with respect to all operators V and W, i.e., a full quantum
generalisation of the OTOC. The OTOT is a higher-order
mapping from preparations to measurement outcomes, with
an intermediate perturbation. It is shown to capture all
possible correlations for an out-of-time-order process. The
OTOT allows us to recast the decay of the OTOC in terms
of information theoretic quantities such as the (conditional)
quantum mutual information to indicate the chaoticity of
the system. To illustrate this point, we study the OTOT for a
spin-1

2
probe attached to a system S, where S is either a

random unitary process or a quantum kicked rotor, whose
chaoticity is tunable.
Out-of-time-order tensor.—In classical physics the

Kolmogorov-Sinai entropy [35] relates temporal correla-
tions of a process to its chaoticity. In the quantum realm,
multitime correlations become higher-order maps, and their
entropies can also be indicators for chaos [36–40]. With
this intuition, chaotic processes should have fewer corre-
lations between an initial and time reversed probe, while
regular processes should retain correlations faithfully
throughout an out-of-time-order process. The complexity
and chaoticity of a process in a system (e.g., the fluid) can
hence be quantified by measuring the information of a
coupled probe (e.g., the ink droplets). We now construct a
fully quantum representation for the OTOC, i.e., a tensor
capturing all facets of the out-of-time-order process.
We begin by considering the action of a set of operations

on a small probe P, interacting with S. The probe is subject
to a preparation A at the initial time, after which it evolves
with S under the unitary map U t½ρ� ≔ UtρU

†
t for a time t.

Next, a local perturbation B is applied either to P or S.
Finally, SP is evolved back to the initial time with the
adjoint unitary map Uad

t ½ρ� ≔ U†
t ρUt, whereupon P is

measured with a measurement C. This process, depicted
in Fig. 2, defines the out-of-time-order map Ot

Ot½C;B;A� ≔ trðC∘Uad
t ∘B∘U t∘A½ρ�Þ

¼ tr½ϒO
t ðϒ̂A ⊗ ϒ̂B ⊗ ϒ̂CÞT �; ð2Þ

where A, B, and C are superoperators acting on density
matrices with compositionA∘B½ρ� ≔ A½B½ρ��. For technical
details on superoperators see, for example, Refs. [41,42].
Ot acts on quantum mapsA, B, and C, and thus is said to

be an higher-order map [43–45] that must possess non-
Markovian quantum correlations [46], as we show below.

Rather than working with an abstract map, it is often
convenient to work with its matrix representationϒO

t , which
is the out-of-time-order tensor (OTOT). The OTOT is given
in the second line of Eq. (2), obtained by means of the Choi-
Jamiołkowski isomorphism [47,48], which translates a
quantum map, representing a process, to a many-body
quantum state [41]. The isomorphism is shown in the bottom
panel of Fig. 2, where each line fromOt toϒO

t is an operator
on space of P [31]. The resultant OTOT is a density matrix
satisfyingϒO

t
† ¼ ϒO

t ,ϒO
t ≥ 0, and tr½ϒO

t � ¼ 1. By contrast,
the Choi states ϒ̂X of the superoperatorsX ∈ fA;B; Cg play
the role of observables and the hat denotes that they are not
normalized; for a trace-preserving operation tr½ϒ̂X� equals
the dimension of the Hilbert space. Hence, Eq. (2) has the
interpretation as the spatiotemporal version of the Born
rule [49].
The importance of the OTOT lies in the fact that it is a full

quantum embodiment of all possible OTOCs [39,50,51],
including 2k-OTOCs [16]. Moreover, unlike the OTOC
which looks at correlations between two fixed observables,
the OTOT provides a mapping from any state preparation to
measurement outcomes. The total correlations of the OTOT
thus generalize the notion of an OTOC by providing a
measure of the scrambling capacity of the process, indepen-
dent of either preparation or measurement. The OTOT
reduces to the conventional OTOC when A½ρ� ¼ Cad½ρ� ≔
V†ρ1 and B½ρ� ≔ W†ρW, i.e., we recover Eq. (1), with
FðtÞ ¼ Ot½C;B;A� [52]—see Supplemental Material [31].
Information in OTOT.—Signatures of chaos can be seen

in the correlations between subparts of the OTOT.
(Henceforth, we assume an uncorrelated initial state SP
and drop ao since, in practice, one would introduce a probe
that is independent of the system [54,55].) We now adopt
the quantum mutual information (QMI) and conditional

(a)

(b)

FIG. 2. (a) OTOC from OTOT obtained by contracting OTOT
with superoperators A, B, C and tracing over the output, as per
Eq. (2). This reduces to the conventional OTOC when
A½ρ� ¼ V†ρ1, B½ρ� ¼ W†ρW, and C½ρ� ¼ tr½1ρV� [31]. This is
equivalent to contracting the Choi state of the OTOT with the
Choi states of superoperators A, B, and C. (b) Choi state of
OTOT, obtained by inserting half of a maximally entangled state
ψþ into each input of the OTOT. Each of the five wires of the
OTOT represent the Hilbert space for different times in the
process. Thus, the OTOT is a map on superoperatorsA, B, and C,
which is commonly said to be a higher order map for the out-of-
time-order process depicted in shaded purple in Fig. 1(b).

PHYSICAL REVIEW LETTERS 128, 150601 (2022)

150601-2



quantum mutual information (CQMI) to quantify bipartite
and tripartite correlation, respectively. The former is
defined as Iðx∶yÞ ≔ SðxÞ þ SðyÞ − SðxyÞ, where SðxyÞ ≔
−tr½ϒxy logϒxy� is the von Neumann entropy of the density
matrix ϒxy and ϒxðyÞ ¼ tryðxÞ½ϒxy�. The CQMI Itðx∶yjzÞ is
defined by replacing each entropy in the last equation by a
conditional entropy SðxyjzÞ ≔ sðxyzÞ − sðzÞ. The QMI in
ai → boðbi → coÞ quantifies the capacity of this channel to
transmit information of the input aiðbiÞ to the output
boðcoÞ. The correlations between aibo and bico quantify
how much the latter channel depends on the former. These
are also known as non-Markovian correlations, and a
process is Markovian if and only if these correlations
are vanishing [46].
In chaotic systems, we anticipate information scrambling

and thus the forward ai → bo and backward bi → co
channels will be highly noisy leading to low information
transfer and consequently low two-time correlation.
However, as stated above, the OTOT must be non-
Markovian and the coherent coupling between these chan-
nels must possess nontrivial four-time (or non-Markovian)
correlations. That is, we expect that information lost by the
probe to the system upon forward chaotic evolution must
return back to the probe subject to reversing the dynamics,
even if an intermediate perturbation is made. In Fig. 3, we
show that, unlike traditional OTOCs, the OTOT is capable of
identifying such non-Markovian correlations—some of
which are genuinely quantum, i.e., entangled—and hence
distinguishing between decoherence due to noisyMarkovian
dynamics and information scrambling due to chaotic non-
Markovian dynamics.
We plot the QMI for various partitions of the Choi state

for Haar random unitary interactions (averaged over 50
iterations) between a spin-1

2
probe and an N-dimensional

system. That is, the role of U in Fig. 1(a) and Eq. (2) is
taken to be from a uniform distribution of unitaries. It is
known that such unitaries are in fact highly entangling and

generate ergodic (chaotic) dynamics. The left panel shows
how the correlations in the channels feature a powerlaw
decay, corresponding to exponential decay in the “number
of qubits” log2ðNÞ. The right panel instead shows the
correlations between the channels ai → bo and bi → co
(including entanglement), decay to a finite value. The fast
decaying local and slowly decaying global correlations
indicate increasing scrambling of the process with N. This
is in contrast to decoherence where both local and global
correlations decay rapidly. For random circuits, non-
Markovianity may also decay rapidly [56,57], but this is
not the case for the OTOT because the forward and reversed
dynamics are highly correlated.
A direct consequence of the above discrepancy is that the

channel ai → co can behave radically differently depending
on the choice of operation B, i.e., the effect of a small
perturbation can lead to amplified effects over time—the
so-called “butterfly effect” [58,59]. Here, the perturbation
is applied only to a single qubit of a many-qubit system.
The Choi state, conditioned on a butterfly operation B, is

ϒaicojB
t ≔ trbobi ½ϒO

t ϒ̂
T
B� [41]. We define the ratio of the

minimum to maximum CQMI,

Δ ≔
minBIðai∶cojBÞ
maxBIðai∶cojBÞ

; ð3Þ

to quantify the sensitivity to butterfly operations. The
recent results by the Google group [55] study the numerator
of Δ as a function of circuit depth.
For concreteness, we confine ourselves to unitary per-

turbations B, which ensures the decay in correlations are
purely due to scrambling. Without loss of generality, we
take B½ρ� ¼ e−iϕσzρeiϕσz . This channel has the form [31]

ϒaicojB
t ¼ cos2ðϕÞψþ þ sin2ðϕÞtrS½Ztψ

þ ⊗ ρSZ
†
t �

þ i cosðϕÞ sinðϕÞtrS½Ztψ
þ ⊗ ρS − ψþ ⊗ ρSZ

†
t �;
ð4Þ

where Zt ≔ Utσz ⊗ 1U†
t , ρS is the initial state of the

system and ψþ ≔ jψþihψþj, where jψþi ≔ ð1= ffiffiffi
2

p Þðj00iþ
j11iÞ is the Bell state of the probe together with an ancillary
two-level system [31].
In the absence of a butterfly perturbation (ϕ ¼ 0), all cor-

relations trivially survive the process: maxBIðai∶cojBÞ → 2.
Conversely, the minimum of Iðai∶cojBÞ is at ϕ ¼ π=2,

corresponding to ϒaicojB
t ¼ trS½Ztψ

þ ⊗ ρSZ
†
t �, which for

highly entanglingprocesses displays no correlations between
ai and co. Thus, the decay ofΔ depends on the chaoticity of
the process. To see this, we now consider a physically
realisable model where the chaoticity is tunable.
Example: Quantum kicked rotor with a spin-1

2
probe.—

We compute the correlations in an OTOT as a measure of
the scrambling capacity of the quantum kicked rotor

(a) (b)

FIG. 3. Information scrambling in the case of random unitary
interactions between a spin-1

2
probe and an N-dimensional

system. (a) Mutual information in the channels ai → bo and bi →
co as in Fig. 2. We also plot Δ, given in Eq. (3), whose fast decay
is a result of the probe’s strong sensitivity to chaos. (b) Non-
Markovian correlations in terms of the quantum entanglement
[EðNÞ], the QMI between aibo and bico, and the CQMI between
ao and co given bobi. The entanglement is given by the negativity
E ≔ 1

2
ðkϒT

Xk − 1Þ with k · k denoting the trace norm.
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(QKR). This is a well-known model in both the classical
and quantum chaos literature with tunable chaoticity, as
well as a clear correspondence between classical and
quantum chaos. This makes it an ideal candidate for this
investigation.
The classical kicked rotor (CKR) is paradigmatic to

study transitions from integrability to chaos [60], especially
due to its simple dynamics [61]. Specifically, the CKR
describes a freely rotating pendulum which is subject to
periodic kicks with period τ. Its dynamics are governed by
the (dimensionless) Hamiltonian [62],

Hðp; θ; tÞ ¼ p2

2
þ k

X
n

δ
�
t
τ
− n

�
V0ðθÞ; ð5Þ

where V0ðθÞ¼cosðθÞ, giving rise to the Chirikov map [62]:
fpnþ1¼pnþksinðθnÞmod 2π;θnþ1¼ θnþpnþ1 mod 2πg,
where θ is the angle of rotation, p is the angular
momentum, k is the kicking strength. The chaoticity of
the system varies with kicking strength; the phase space
dynamics remain regular for values of k ≪ 1, mixed (with
both regular and chaotic orbits) for 1≲ k≲ 5, and com-
pletely ergodic (chaotic) for k≳ 5 [63–65]. The transition
from integrability to chaos is evident in the diffusion of the
momentum expectation value, which also occurs in its
quantum analog [66] and has been observed experimentally
[67–71].
The QKR is easily extended from the CKR by a canonical

transformation of the position and momentum coordinates,
i.e., mapping momentum in Eq. (5) to p → −iℏeffð∂=∂θÞ,
where ℏeff is an effective Planck’s constant. Instead of a
rotating rod, the QKR describes a particle which is confined
to move on a ring and is subjected to a periodic potential
which is turned on and off instantaneously. Here, we attach a
spin-1

2
probe to the QKR [72] and compute the input-output

correlations of its OTOT. This is achieved by mapping
V0ðθÞ →

P
3
i¼0 ViðθÞ ⊗ σi, where fσigi¼0;1;2;3 are the

2 × 2 identity and Pauli spin operators on the Hilbert space
of the probe and Vi are 2π-periodic potentials of the
form fV0ðθÞ ¼ cosðθÞ; VjðθÞ ¼ vj sinðjθÞgj¼1;2;3. We have

checked that the qualitative behavior of our results is
independent of the precise choice of Vi. As in the classical
case, this Hamiltonian becomes chaotic in the large kick
regime [32]. In particular, for an entangling SP coupling the
OTOT correlations decay for a chaotic S.
In our numerics, we approximate the momentum space

of the QKR by 2048 levels, and restrict B to a single qubit.
We compute Δ with the unitary dynamics U t governed by
the total Hamiltonian. k values are taken in the regular,
intermediate, and chaotic regime. The effective ℏ is set to
unity to reflect that we are working in the quantum regime
[73]. Figure 4 (red and blue lines) demonstrates, by direct
contrast to the corresponding classical phase profiles, that
OTOT correlations provide a signature of the chaoticity in
the QKR. In the regular regime (left panel), the process is
approximately reversible (coherent) leading to high reten-
tion of information in the OTOT, as quantified by Δ in
Eq. (3). Conversely, in the chaotic regime (right panel), Δ
decays rapidly and saturates to zero; the OTOT becomes
effectively irreversible and the quantum information that is
initially stored in P becomes lost in S due to scrambling.
Finally, in the intermediate case (middle panel), the OTOT
shows a combination of both irreversible and reversible
processes. In each case, a strong correspondence exists
between the classical phase profiles and the correlations in
OTOT. These results are in strong agreement with existing
literature for OTOCs [74,75]. In addition, we show that
although Δ (and consequently OTOC) decay rapidly when
the QKR is chaotic, the entanglement E in the OTOT
(yellow line) will still grow, due to non-Markovian corre-
lations between the forward and backward channels.
We further observe in Fig. 4 a remarkable similarity in

the behavior of OTOT correlations regardless of whether
the perturbation is applied to either S or P directly. This
illustrates that the dynamics are sensitive to any perturba-
tion. This makes the OTOT a particularly useful tool which
can provide insight into the chaoticity of a quantum system,
regardless of whether the system can be interacted with
directly or not.
Conclusions.—We have introduced a fully quantum

representation of out-of-time-order correlators as a higher

FIG. 4. The decay of Δ when the perturbation is made to the probe (blue lines) or to the system (red lines), contrasted against the
Chirikov map (insets) [31] for the corresponding kicking strength. The value of the kicking strength for the Chirikov map and for the
QKR is equal in all panels and set to 0.1, 1, and 5, from left to right. The entanglement E (yellow lines) is also shown for each k. The data
has been smoothed using a moving average filter [76].
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order map that we have termed the out-of-time-order tensor
(OTOT). The OTOT provides a number of new theoretical
insights into the nature of quantum chaos and is opera-
tionally grounded and readily accessible for experimental
investigations. First, the information theoretic measures
employed here give us a basis independent assessment of
chaoticity of the process. Second, we demonstrate that
while a quantum chaotic system may have a fast decaying
OTOC, it must have slow or nondecaying non-Markovian
correlations in the OTOT, which can be measured exper-
imentally. Third, we highlight the important connection
between the multitime correlations in OTOT and the
multitime classical correlations and classical chaos in terms
of the so-called dynamical entropy or Kolmogorov-Sinai
entropy.
On the practical side, we illustrated the utility of the

OTOT as a signature for chaos in the quantum kicked rotor.
Our results can be directly experimentally probed in an
ultracold atomic gas. Here, the QKR has already been
realized by using a pulsed standing wave lattice [77], and it
has been demonstrated that a very high resolution is
achievable using a Bose-Einstein condensate [78]. The
practical realization of the QKR with spin furthermore
requires the atom’s momentum to be coupled to its internal
state, which has recently been realized in the context of a
quantum walk in momentum space [79].

We are grateful to Zhe-Yu Shi for early contributions to
this work, and to Haydn Adlong, Neil Dowling, Kris
Helmerson, and Shaun Johnstone for useful discussions.
K.M., J. L., and M.M. P. are supported through Australian
Research Council Future Fellowships No. FT160100073,
No. FT160100244, and No. FT200100619, respectively.
J. L. and M.M. P. acknowledge support from the Australian
Research Council Centre of Excellence in Future
Low-Energy Electronics Technologies (CE170100039).
K.M. acknowledges the support of Australian Research
Council’s Discovery Projects No. DP210100597 and
No. DP220101793.

*kavan.modi@monash.edu
[1] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[2] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)

452, 854 (2008).
[3] C. Murthy and M. Srednicki, Phys. Rev. Lett. 123, 230606

(2019).
[4] M. Žnidarič, Phys. Rev. Lett. 125, 180605 (2020).
[5] M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
[6] Q. Zhuang, T. Schuster, B. Yoshida, and N. Y. Yao, Phys.

Rev. A 99, 062334 (2019).
[7] K. Landsman, C. Figgatt, T. Schuster, N. Linke, B. Yoshida,

N. Yao, and C. Monroe, Nature (London) 567, 61 (2019).
[8] S. H. Strogatz, Nonlinear Dynamics and Chaos with Student

Solutions Manual: With Applications to Physics, Biology,
Chemistry, and Engineering (CRC Press, Boca Raton,
2018).

[9] C. B. Dağ and L.-M. Duan, Phys. Rev. A 99, 052322 (2019).
[10] J. Marino and A. M. Rey, Phys. Rev. A 99, 051803(R)

(2019).
[11] C. Sünderhauf, L. Piroli, X.-L. Qi, N. Schuch, and J. I.

Cirac, J. High Energy Phys. 11 (2019) 106.
[12] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier,

P. Zoller, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 124,
240505 (2020).

[13] P. Zanardi and N. Anand, Phys. Rev. A 103, 062214 (2021).
[14] G. Styliaris, N. Anand, and P. Zanardi, Phys. Rev. Lett. 126,

030601 (2021).
[15] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev.

Lett. 118, 086801 (2017).
[16] D. A. Roberts and B. Yoshida, J. High Energy Phys. 04

(2017) 121.
[17] C.-J. Lin andO. I.Motrunich, Phys.Rev.B 97, 144304 (2018).
[18] J. Lee, D. Kim, and D.-H. Kim, Phys. Rev. B 99, 184202

(2019).
[19] K. Slagle, Z. Bi, Y.-Z. You, and C. Xu, Phys. Rev. B 95,

165136 (2017).
[20] J. Maldacena, S. H. Shenker, and D. Stanford, J. High

Energy Phys. 08 (2016) 106.
[21] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and

A.M. Rey, Nat. Commun. 10, 1581 (2019).
[22] E. Lantagne-Hurtubise, S. Plugge, O. Can, and M. Franz,

Phys. Rev. Research 2, 013254 (2020).
[23] J. Rammensee, J. D. Urbina, and K. Richter, Phys. Rev. Lett.

121, 124101 (2018).
[24] M. Blake, R. A. Davison, and H. Liu, J. High Energy Phys.

10 (2018) 035.
[25] M. Blake, H. Lee, and H. Liu, J. High Energy Phys. 10

(2018) 127.
[26] Y. Liao and V. Galitski, Phys. Rev. B 98, 205124 (2018).
[27] J. Cotler and N. Hunter-Jones, J. High Energy Phys. 12

(2020) 205.
[28] B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T.

Olund, J. E. Moore, D. Stanford, and N. Y. Yao, Phys.
Rev. Lett. 126, 030602 (2021).

[29] D. Bohm, Wholeness and the Implicate Order (Routledge,
London, New York, 2002), pp. 188–189.

[30] https://youtube/UpJ-kGII074.
[31] See Supplemental Material http://link.aps.org/supplemental/

10.1103/PhysRevLett.128.150601 for details, which in-
cludes Refs. [32–34].

[32] L. Zhou and J. Gong, Phys. Rev. A 97, 063603 (2018).
[33] L. Zhou and J. Pan, Phys. Rev. A 100, 053608 (2019).
[34] T. Čadež, R. Mondaini, and P. D. Sacramento, Phys. Rev. B

96, 144301 (2017).
[35] Y. G. Sinai, Dokl. Akad. Nauk SSSR 124, 768 (1959).
[36] G. Lindblad, Commun. Math. Phys. 65, 281 (1979).
[37] W. Słomczyński and K. Życzkowski, J. Math. Phys. (N.Y.)

35, 5674 (1994).
[38] M. H. Partovi, Phys. Rev. Lett. 89, 144101 (2002).
[39] J. Cotler, C.-M. Jian, X.-L. Qi, and F. Wilczek, J. High

Energy Phys. 09 (2018) 093.
[40] A. Piga, M. Lewenstein, and J. Q. Quach, Phys. Rev. E 99,

032213 (2019).
[41] S. Milz, F. Pollock, and K. Modi, Open Syst. Inf. Dyn. 24,

1740016 (2017).
[42] S. Milz and K. Modi, PRX Quantum 2, 030201 (2021).

PHYSICAL REVIEW LETTERS 128, 150601 (2022)

150601-5

https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.123.230606
https://doi.org/10.1103/PhysRevLett.123.230606
https://doi.org/10.1103/PhysRevLett.125.180605
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevA.99.062334
https://doi.org/10.1103/PhysRevA.99.062334
https://doi.org/10.1038/s41586-019-0952-6
https://doi.org/10.1103/PhysRevA.99.052322
https://doi.org/10.1103/PhysRevA.99.051803
https://doi.org/10.1103/PhysRevA.99.051803
https://doi.org/10.1007/JHEP11(2019)038
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1103/PhysRevA.103.062214
https://doi.org/10.1103/PhysRevLett.126.030601
https://doi.org/10.1103/PhysRevLett.126.030601
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.99.184202
https://doi.org/10.1103/PhysRevB.99.184202
https://doi.org/10.1103/PhysRevB.95.165136
https://doi.org/10.1103/PhysRevB.95.165136
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1103/PhysRevResearch.2.013254
https://doi.org/10.1103/PhysRevLett.121.124101
https://doi.org/10.1103/PhysRevLett.121.124101
https://doi.org/10.1007/JHEP10(2018)035
https://doi.org/10.1007/JHEP10(2018)035
https://doi.org/10.1007/JHEP10(2018)127
https://doi.org/10.1007/JHEP10(2018)127
https://doi.org/10.1103/PhysRevB.98.205124
https://doi.org/10.1007/JHEP12(2020)205
https://doi.org/10.1007/JHEP12(2020)205
https://doi.org/10.1103/PhysRevLett.126.030602
https://doi.org/10.1103/PhysRevLett.126.030602
https://youtube/UpJ-kGII074
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.150601
https://doi.org/10.1103/PhysRevA.97.063603
https://doi.org/10.1103/PhysRevA.100.053608
https://doi.org/10.1103/PhysRevB.96.144301
https://doi.org/10.1103/PhysRevB.96.144301
https://doi.org/10.1007/BF01197883
https://doi.org/10.1063/1.530704
https://doi.org/10.1063/1.530704
https://doi.org/10.1103/PhysRevLett.89.144101
https://doi.org/10.1007/JHEP09(2018)093
https://doi.org/10.1007/JHEP09(2018)093
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1103/PRXQuantum.2.030201


[43] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev.
Lett. 101, 060401 (2008).

[44] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev.
A 80, 022339 (2009).

[45] O. Oreshkov, F. Costa, and Č. Brukner, Nat. Commun. 3,
1092 (2012).

[46] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Phys. Rev. Lett. 120, 040405
(2018).

[47] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[48] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
[49] S. Shrapnel, F. Costa, and G. Milburn, New J. Phys. 20,

053010 (2018).
[50] F. Costa and S. Shrapnel, New J. Phys. 18, 063032 (2016).
[51] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.

Paternostro, and K. Modi, Phys. Rev. A 97, 012127 (2018).
[52] This particular choice of maps are not completely positive

(CP), but could still be realized [53].
[53] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,

Phys. Rev. A 94, 040302(R) (2016).
[54] K. Modi, Sci. Rep. 2, 581 (2012).
[55] X. Mi, P. Roushan, C. Quintana, S. Mandra, J. Marshall, C.

Neill, F. Arute, K. Arya, J. Atalaya, R. Babbush et al.,
Science 374, 1479 (2021).

[56] P. Figueroa-Romero, F. A. Pollock, and K. Modi, Commun.
Phys. 4, 1 (2021).

[57] P. Figueroa-Romero, K. Modi, and F. A. Pollock, Quantum
3, 136 (2019).

[58] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Ann. Phys. (Am-
sterdam) 375, 378 (2016).

[59] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy
Phys. 03 (2015) 051.

[60] D. D. Nolte, in Introduction to Modern Dynamics (Oxford
University Press, Oxford, 2019).

[61] R. V. Jensen, Am. Sci. 75, 168 (1987).
[62] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[63] J. M. Greene, J. Math. Phys. (N.Y.) 20, 1183 (1979).

[64] R. MacKay, Physica (Amsterdam) 7D, 283 (1983).
[65] J.-C. Garreau, C. R. Phys. 18, 31 (2017); prizes of the

French Academy of Sciences 2015 (Prix de l’Académie des
sciences), 2015.

[66] S. Adachi, M. Toda, and K. Ikeda, Phys. Rev. Lett. 61, 659
(1988).

[67] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram,
and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).

[68] H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen,
Phys. Rev. Lett. 80, 4111 (1998).

[69] G. J. Duffy, S. Parkins, T. Müller, M. Sadgrove, R.
Leonhardt, and A. C. Wilson, Phys. Rev. E 70, 056206
(2004).

[70] I. Manai, J. F. Clément, R. Chicireanu, C. Hainaut, J. C.
Garreau, P. Szriftgiser, and D. Delande, Phys. Rev. Lett.
115, 240603 (2015).

[71] M. Bitter and V. Milner, Phys. Rev. Lett. 117, 144104
(2016).

[72] R. Scharf, J. Phys. A 22, 4223 (1989).
[73] D. Delande, Boulder School on Condensed Matter Physics

(2013).
[74] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A.

Silva, and R. Fazio, Phys. Rev. B 98, 134303 (2018).
[75] Q. Hummel, B. Geiger, J. D. Urbina, and K. Richter, Phys.

Rev. Lett. 123, 160401 (2019).
[76] The simple moving average is given by, ĨtðnÞ¼½1=ð2Nþ1Þ�P
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