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Many quantum technologies rely on high-precision dynamics, which raises the question of how these
are influenced by the experimental uncertainties that are always present in real-life settings. A standard
approach in the literature to assess this is Monte Carlo sampling, which suffers from two major drawbacks.
First, it is computationally expensive. Second, it does not reveal the effect that each individual uncertainty
parameter has on the state of the system. In this Letter, we evade both these drawbacks by incorporating
propagation of uncertainty directly into simulations of quantum dynamics, thereby obtaining a method
that is orders of magnitude faster than Monte Carlo simulations and directly provides information on how
each uncertainty parameter influences the system dynamics. Additionally, we compare our method to
experimental results obtained using the IBM quantum computers.

DOI: 10.1103/PhysRevLett.128.150503

Technologies based on quantum information may lead
to ground-breaking progress within numerical search [1],
cryptography [2], simulation [3,4], optimization [5,6], and
machine learning [7,8]. Realization of these technologies
requires improvements in our ability to measure, design,
build, and realistically model subparts of these quantum
systems [9]. The latter necessitates the incorporation of
experimental uncertainties that are omnipresent in real
quantum systems into numerical simulations of such
systems.
Propagation of uncertainty (or error) is a standard tool for

understanding how experimental uncertainties transform in
calculations [10]. Here we incorporate propagation of
uncertainty into quantum dynamical simulation and char-
acterization by drawing on methods from gradient-based
quantum control theory [11–14]. We demonstrate a sig-
nificant speed up relative to Monte Carlo sampling, which
is the current standard in the literature (cf. Refs. [15–28] for
recent examples).
Moreover, our method allows for in-depth analysis

of how experimental uncertainties independently or co-
operatively influence the dynamical observables in the
system. This is valuable for investigating the consistency
between models and experimental results, as well as the
characterization of noise, uncertainty levels, and the influ-
ence of different experimental parameters. For example,
within circuit QED we have, in recent years, seen improve-
ments in one- and two-qubit gate operations due to better
understanding and calibration of experimental systems
[29–33]. Careful study of these systems’ uncertainties
and their influence on quantum dynamics is necessary to
push this frontier further.
The methods proposed here apply also to the construc-

tion of composite control sequences specifically designed

to perform robustly against fluctuations in the system
parameters [34–37], as well as enhancing quantum control
and optimization protocols [11,16,17,38–43]. That is, the
sensitivity to parameter uncertainties can be maximized or
minimized for tomographic reconstructions, system identi-
fication, and quantummetrology. For example, the presented
method could aid physicists in designing quantum compu-
tation architectures [44–49]. These need to perform stably
under smaller fluctuations in the system parameters, and as
such, a detailed analysis of their performance under realistic
and expected uncertainties could help assess a given
architecture’s robustness. We term our approach quantum
uncertainty propagation in dynamics (QUPID).
Theory.—Let ZðtÞ denote a function that depends on the

evolution of the system, e.g., the expectation value of a
Hermitian operator ZðtÞ ¼ hẐi or the Haar-averaged gate
fidelity ZðtÞ ¼ R

ψhψ jUðtÞ†Utargetjψidψ. Now let the
Hamiltonian operator and other system evolution variables
depend on a set of normally distributed parameters
θ ¼ ðθ1; θ2;…; θMÞ with mean θ̄ ¼ ðθ1; θ2;…; θMÞ and
covariances σi;j ¼ E½ðθi − θiÞðθj − θjÞ�, which we assume
are relatively small [50]. Here σ2j ¼ σj;j denotes the
variance. Thus, Z is a function of the parameters θ, which
we may Taylor expand around the mean values θ,

Zðθ; tÞ ≃ Zðθ̄; tÞ þ
X
j

∂Zðθ̄; tÞ
∂θj ðθj − θ̄jÞ

þ 1

2

X
i;j

∂2Zðθ̄; tÞ
∂θi∂θj ðθi − θ̄iÞðθj − θ̄jÞ; ð1Þ

where truncating the Taylor expansion to second order is
justified by assuming that the uncertainty in the system
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parameters only induces small changes in Z (e.g., with
small covariances). Under this assumption, evaluating the
mean (as in the Supplemental Material [54]) reveals [51,52]

E½Zðθ; tÞ� ≃ Zðθ̄; tÞ þ 1

2

X
i;j

∂2Zðθ̄; tÞ
∂θi∂θj σi;j; ð2Þ

informing us directly how uncertainties in the system
dynamics may lead to shifts away from the expected value
Zðθ̄; tÞ at different times. For example, this term could
cause a reduction in the predicted average gate fidelity. This
is especially critical to analytical protocols for parameter
estimation, where stochasticity in the parameter may
modify the mean estimation. Consequently, the intuitive
approach of assessing robustness via first derivatives will
fail to capture the expected loss in average fidelity, as its
effect will simply average to zero [52]. In the case that the
uncertainties are statistically independent (σi;j ¼ 0 if i ≠ j),
we can further see that the individual parameter uncertain-
ties are additive, allowing them to be calculated individu-
ally by, e.g., Monte Carlo simulations, or more efficiently,
as we show below, by propagation of uncertainty through
the dynamics. Note, Eq. (2) works for all symmetric
probability distributions. In the Supplemental Material
[54], we generalize this result to any probability distribu-
tion and order of Taylor expansion [53].
A similar calculation for the variance yields

Var½Zðθ; tÞ� ≃
X
i;j

∂Zðθ̄; tÞ
∂θi

∂Zðθ̄; tÞ
∂θj σi;j

þ 1

2

X
i;j;k;l

∂2Zðθ̄; tÞ
∂θi∂θj

∂2Zðθ̄; tÞ
∂θk∂θl σi;kσj;l; ð3Þ

which we detail in Ref. [54], commenting further on the
truncation error in Eqs. (2) and (3). Now we sketch how
to obtain the derivatives that appear in Eqs. (2) and (3)
through analysis of the dynamics. Although this Letter
focuses on quantum dynamics, our approach is also
applicable to other areas (e.g., classical physics); we only
require access to a model Zðθ; tÞ from which the derivatives
are obtainable (numerically or analytically). To demon-
strate this, we apply our method to a classical damped
pendulum in the Supplemental Material [54].
To calculate the dynamical uncertainties in system

observables with the above equations, it is necessary to
efficiently propagate the equations of motion for the
derivatives of these observables. To do this, we draw on
established methods from the field of quantum optimal
control theory [11–14]. There are several candidate
methods to obtain the first and second-order derivatives
[13,14,60–62]. We outline one approach based on matrix
diagonalization [13,14] in the main text, and provide an
alternative by finite difference [61] in the Supplemental

Material [54,63]. We have so far tacitly assumed that Z
was a functional of the current state of the system χðtÞ,
which solves the dynamic equation of motion ð∂=∂tÞχðtÞ ¼
AðtÞχðtÞ. This could be, e.g., the Schrödinger equation
AðtÞ ¼ −iHðtÞ with ℏ ¼ 1 and χ being a single quantum
state, a unitary operator, a collection of states, or a density
matrix with evolution governed by the von Neumann or the
Lindblad master equation (cf. Supplemental Material [54]).
We discretize the time evolution for a total duration T in

N equidistant steps Δt and numerically solve the equation
of motion using the time evolution operator χnþ1 ¼ Unχn,
where χðtnÞ ¼ χn and Un ¼ eAðtnþΔt=2Þ is the midpoint
interpolation of the truncated Magnus series [66], leading
to a global second order error in χðTÞ that can be made
arbitrarily small by suitable choice of Δt. The derivatives
of Z ultimately depend on the derivative of χ, which give
via the chain rule

∂
∂θj χnþ1 ¼

� ∂
∂θj Un

�
χn þ Un

∂
∂θj χn; ð4Þ

and similarly for the Hessian

∂2

∂θi∂θj χnþ1 ¼
� ∂2

∂θi∂θj Un

�
χn þ

� ∂
∂θj Un

� ∂
∂θi χn

þ
� ∂
∂θi Un

� ∂
∂θj χn þUn

∂2

∂θi∂θj χn: ð5Þ

To calculate the derivatives for each time slice one
solves [67]

d
dη

eχðηÞ ¼
Z

1

0

eαχðηÞ
dχðηÞ
dη

eð1−αÞχðηÞdα; ð6Þ

which has a known solution in terms of the eigenvalues
of χ [13,14,64]. Further steps in the derivation are given in
the Supplemental Material [54].
Comparison to Monte Carlo simulations.—We consider

here a two-level Hamiltonian given by (ℏ ¼ 1)

HðtÞ ¼ ΔẐ þ ΩmaxuðtÞX̂; ð7Þ

with detuning Δ ¼ 0, maximum amplitude Ωmax, Pauli
operators X̂ and Ẑ, and dimensionless control function
−1 ≤ uðtÞ ≤ þ1. We consider a state transfer j0i → j1i
where the dynamical evolution is subject to uncertainties in
the system parameters Ωmax and Δ. The transfer itself is
induced by a Gaussian π pulse [Fig. 1(a)]. We time evolve
the system for T ¼ 6=Ωmax with independent uncertainties
σðΩmaxÞ=Ωmax ¼ σðΔÞ=Ωmax ¼ 3.0 × 10−2 using 10 000
Monte Carlo simulations. We calculate the average trajec-
tory over the Pauli observable hẐi and define the con-
fidence interval as twice the standard deviation �2σðhẐiÞ
from the average trajectory, which we truncate between�1,
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as this is a physical limitation on hẐi [Fig. 1(a)]. We
compare the predictions of QUPID, Eqs. (2) and (3), to the
Monte Carlo simulations by zooming in on the end of the
trajectory in Fig. 1(b). Here we calculate the variance
as Var½Z� ¼ ð1=NÞPN

j¼1ðZ − Z̄Þ2. From the figure, we see
how uncertainties in the system parameters induce a shift in
the mean value away from the ideal, uncertainty-less case
hẐi ¼ −1. In addition, we see excellent agreement between
the Monte Carlo simulations and QUPID. On a standard
laptop computer, the Monte Carlo simulations take
≈30 min, whereas QUPID takes ≈0.2 sec, providing a
significant speed up.
An additional benefit of QUPID over Monte Carlo

methods is that Eq. (2) allows us to directly track how
each uncertainty parameter influences the system dynam-
ics. To this end, we may define the error contribution for
each parameter as 1

2
ð∂2hẐi=∂θ2ÞσðθÞ2 with θ ¼ Ωmax;Δ.

We plot in Fig. 1(c) the error contribution for each
parameter along the trajectory. Interestingly, we see that
around halfway through the trajectory, the error contribu-
tions from the amplitude and detuning are opposite in sign
and thus cancel each other out to some extent; such
fortuitous cancellations can be analyzed and exploited
when designing pulse sequences using our method. We
also see at the end of the trajectory that the two error
contributions converge on different specific values. This
analysis is useful in determining, e.g., which parameters
are most sensitive in an experiment and thus where efforts
must be concentrated when improving the precision of
experimental systems.
Experimental comparison.—We compare the predictions

of QUPID to a single-qubit experiment via pulse-level
control of IBM’s ibmq_armonk single-qubit system

accessible via Qiskit pulse [68–70]. Such pulse-level
control has previously been used to optimize the fidelity
of cross-resonance gates [29], the CV gate [71], and to
build a quantum compiler implementing basis gates and
qudit operations [72].
First, we determine Gaussian and composite BB1 [34]

pulse sequences that drive π=2 (Hadamard) and π (bit-flip)
transitions. After calibration (see Supplemental Material
[54]), we artificially add amplitude noise to each aforemen-
tioned pulse sequence, sampled from a Gaussian distribution
centered around the optimal amplitudes with width ϵ ¼
σðΩmaxÞ=Ωmax for Θ ¼ π=2 and π [73]. We compare the
predictions of our theory to the experimental results in Fig. 2
with ϵ ¼ 0.05 for Gaussian and BB1 π and π=2 pulses. The
data and simulations match well throughout the duration of
the pulses for both cases, although our theory cannot fully
account for measured BB1 errors at the final time due to
discrimination or shot noise (see blue error bars) being larger
than the BB1 final error, which has intrinsic robustness up to
sixth order in amplitude error [34,36]. To determine how the
error scales with ϵ, we compare the experimental data and
theoretical predictions for the final expectation value hẐi of a
Gaussian π=2 pulse in the inset of Fig. 2(c), where we again
obtain excellent agreement between theory and experiment.
Thus, when compared with experimental data, our theory
can determine at what point various experimental uncertain-
ties dominate the error, which can be useful for experimental
debugging, theoretical model building, or designing new
systems. Moreover, by calibrating to the exact value of ϵ in
the model, one can readily use Eq. (2) to remove the
correction term coming from uncertainty and thereby esti-
mate the true model parameters, e.g., for Hamiltonian
learning or quantum sensing.

(a) (b)

(c)

FIG. 1. Quantum uncertainty propagation when applied to a Gaussian pulse for Rabi driving [Eq. (7)]. (a) The uncertain Gaussian
pulse (solid) and the result of Monte Carlo sampling (dashed line, with 2σ confidence interval shaded in red). (b) Comparison between
QUPID and Monte Carlo sampling, zoomed in on later times. Here, the Monte Carlo mean (solid line) and confidence interval (shading)
are shown in red, while the mean (dotted) and confidence intervals (dashed) derived from our method are plotted in black, showing
excellent agreement. The mean for the uncorrected (uncertainty-free) case is shown in dash-dotted green. (c) The time-dependent error
contribution to the total error (from all sources) resulting from uncertainty in the maximum drive amplitude Ωmax (blue, solid) and
detuning Δ (red, dashed), respectively.
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Scaling and speed up.—Here, we consider how QUPID
scales with the number of parameters compared to
Monte Carlo simulations. Estimating the mean via
Eq. (2) scales linearly (quadratically) with independent
(dependent) parameters. The statistical uncertainty from
Monte Carlo averaging over N samples is given by the
standard deviation of the mean σ̄ ¼ σ=

ffiffiffiffi
N

p
which we may

estimate using Eq. (3). Hence, Monte Carlo simulations
also scale linearly (quadratically) with independent
(dependent) parameters.
However, in practice, many of the mixed derivatives in

Eq. (3) are zero, leading Monte Carlo simulation to have
an effective sublinear (subquadratic) scaling with indepen-
dent (dependent) parameters. Thus, we should compare
the precision of the two methods over a wide range of
uncertainty parameters. We consider the spin-star system
illustrated in the top right of Fig. 3, which consists of
5 qubits with interactions between the nearest and the
next-nearest qubits and an external, global X̂ control. The
Hamiltonian for the spin-star system is

H ¼ −
X
hi;ji

X
k¼x;y;z

Jði;jÞk σðkÞi σðkÞj

−
X
⟪i;j⟫

X
k¼x;y;z

gði;jÞk σðkÞi σðkÞj þ uðtÞ
X
j

σðxÞj ; ð8Þ

where h; i and ⟪;⟫ denotes the sum over nearest and

next-nearest qubits, with couplings J ¼ Jði;jÞk and g ¼
gði;jÞk ¼ J=10 for k ¼ x, y, and z, respectively, giving 30
different parameters. From the initial state jψ0i ¼ j00000i,
we time evolve the system with a control uðtÞ ¼
ϕ1ðtÞ þ ϕ3ðtÞ − ϕ5ðtÞ, where ϕnðtÞ ¼ sinðnπt=TÞ for a

total duration TJ ¼ 10. In the absence of uncertainties
this leads to a final state jψ̃i ¼ jψðTÞi that populates a wide
range of different Fock states in the Hilbert space.
We investigate how uncertainties in the system para-

meters induce population in states other than jψ̃i quantized
by the fidelity F ¼ hPi, with P ¼ jψ̃ihψ̃ j denoting the pro-
jector onto the state jψ̃i. We model normally distributed
uncertainties σðJÞ=J¼σðgÞ=g¼0.01 in 1, 10, 20, and 30
parameters chosen at random, where we perform 100 000

(a) (b)

(c) (d)

FIG. 2. Comparison of QUPID to experimental results using the IBM Armonk qubit showing how the uncertainty changes over time
for a Gaussian (a) and BB1 (b) π pulse and a Gaussian (c) and BB1 (d) π=2 pulse. The black points (error bars) denote the uncertainty
(twice the standard deviation on the mean) for 50 experimental runs, where for each run, we sample the amplitude from a Gaussian of
width ϵ ¼ 0.05. The blue points and error bars were generated from data taken with a constant amplitude, i.e., ϵ ¼ 0. Each experimental
run averages over 1024 measurements. The theoretical BB1 uncertainty goes to zero at the end points since the BB1 pulses are robust up
to sixth-order error, but otherwise we obtain excellent agreement between theory and experiment when the amplitude uncertainty errors
dominate over other errors in the system, e.g., measurement errors. The inset in (c) compares the predictions of the final expectation
value hZi to experimental data with respect to changes in the amplitude error ϵ for a Gaussian π=2 pulse.

FIG. 3. Simulation results with the spin-star system (top right
inset). The lines depict the expected error of Monte Carlo
simulations as a function of the number of fidelity evaluations
for 1 (blue solid), 10 (orange dashed), 20 (green, dash-dotted),
and 30 (red dotted) parameters. This is compared to QUPID for 1
(blue circle), 10 (orange, down triangle), 20 (green, up triangle),
and 30 (red square) parameter(s) chosen at random, where the
computational expense has been evaluated with respect to a
finite difference scheme. The horizontal arrows mark the speed
improvement in an equal-accuracy comparison.
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Monte Carlo simulations for each choice. To understand
the scaling of Monte Carlo, we compare the difference
between the fidelity average over the 100 000 samples
(Ftrue) versus averages over a subset of N samples ranging
from 1 to 10 000 (Fapprox). We calculate Fapprox by drawing
N fidelities at random to evaluate the estimation error
Ē ¼ jFtrue − Fapproxj. To obtain an accurate estimate for Ē,
we repeat this procedure 10 000 times. We depict the results
in Fig. 3 for different numbers of uncertainty parameters.
We note the N−1=2 scaling with sample number, consistent
with the standard deviation of the mean but at different
heights due to different standard deviations.
We compare the performance of QUPID to Monte Carlo

simulations in both accuracy and computational expense.
The latter is achieved by comparing the number of fidelity
evaluations required by QUPID via a finite difference
scheme (see Supplemental Material [54]). Since fidelity
evaluation is by far the most expensive step in each
approach, this gives an accurate comparison. We plot the
QUPID results in Fig. 3 as individual data points. Its
relative speed up over Monte Carlo in an equal-accuracy
comparison is obtainable by considering the distance from
the individual data points in Fig. 3 to the lines along the x
axis. For clarity, we have indicated the factor of speed up
with arrows on the figure, which ranges from 6818 for one
parameter to 109 for 30 parameters. Note that the relative
speed up grows smaller with the number of parameters
due to the sublinear Monte Carlo scaling. This implies
that for a large enough number of uncertainty parameters,
Monte Carlo is preferable. From the presented data, we
estimate the breakeven point for the two methods to be in
between 35 to 50 parameters for this particular problem.
An interesting alternative for few parameters is quasi-
Monte Carlo [74], which is designed for numerical inte-
gration [75] but may eventually find use in simulation
methods. For this reason, we have benchmarked our
methods relative to Monte Carlo methods, the standard
in the field [15,18–28].
Outlook.—We have demonstrated QUPID, a method for

analytically incorporating and propagating uncertainties
during quantum dynamical evolution. For a reasonable
(≈10) number of parameters, this method scales dramati-
cally better than Monte Carlo sampling, the method
commonly used in the literature. QUPID has the additional
advantages of (a) separating the role of different error
sources and (b) showing how uncertainties develop over
time. This can be useful for theoretical protocol improve-
ment as well as experimental design and debugging. That
is, with an understanding of the dominant uncertainty
sources in a given protocol, experimentalists can better
understand the level of precision that must be reached
in their system and which parameters are most likely to
cause imprecisions. Likewise, these analytical forms allow
the design of protocols (e.g., pulse sequences) that can
increase or decrease the effect of parameter uncertainty,

which is useful for increased robustness or improved
sensing, respectively.
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