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We formulate the problem of finding the optimal entanglement swapping scheme in a quantum repeater
chain as a Markov decision process and present its solution for different repeaters’ sizes. Based on this,
we are able to demonstrate that the commonly used “doubling” scheme for performing probabilistic
entanglement swapping of probabilistically distributed entangled qubit pairs in quantum repeaters does not
always produce the best possible raw rate. Focusing on this figure of merit, without considering additional
probabilistic elements for error suppression such as entanglement distillation on higher “nesting levels,” our
approach reveals that a power-of-two number of segments has no privileged position in quantum repeater
theory; the best scheme can be constructed for any number of segments. Moreover, classical commu-
nication can be included into our scheme, and we show how this influences the raw waiting time for
different numbers of segments, confirming again the optimality of “nondoubling” in some relevant
parameter regimes. Thus, our approach provides the minimal possible waiting time of quantum repeaters in
a fairly general physical setting.
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Introduction.—A long-standing problem in the theory of
quantum repeaters involves determining the optimal entan-
glement distribution time as a function of a repeater’s
characteristics like the distribution success probability p for
a single segment and the entanglement swapping proba-
bility a between two segments [1]. It is commonly assumed
that the number of segments n is a power of two, n ¼ 2d,
and the only scheme considered is “doubling,” where the
segments are divided into two equal halves, which are then
treated as independent smaller repeaters. When both halves
have finally distributed an entangled state the last swapping is
attempted. Such a doubling scheme can be useful in a “nested
quantum repeater” allowing for a systematic inclusion of
entanglement distillation [2] or, exploiting the repeater’s
“self-similarity,” for a recursive and approximate calculation
of repeater rates in certain regimes [3]. However, it is
unknown whether “doubling” gives the optimal rates, i.e.,
the shortest repeater waiting times. Furthermore, one may
ask: is there an optimal scheme if n ≠ 2d?
Rate calculations for quantum networks so far have

focused either on the ultimate, information-theoretical
limits independent of experimental constraints such as
nondeterministic gate operations [4] or on more realistic
systems under simplifying assumptions, such as specific
parameter regimes allowing for an approximate treatment
[3] or to determine bounds [5] and certain shapes [6] and
sizes [7,8] of the network reducing its complexity. In this
Letter, we bridge these two approaches for the case of a
sufficiently small quantum repeater chain up to about ten
segments and present its exact, optimal solutions, general-
izing and optimizing our previous, exact results on the
statistics of repeater waiting times in various settings [9]
(see also Refs. [10,11]).

It turns out that, depending on p and a, the “doubling”
scheme does not always deliver the highest raw rate, and for
some values of parameters other schemes perform better.
The corresponding rate enhancement seems to increase for
larger repeaters. Moreover, the assumption that n is a power
of two is superfluous; the optimal scheme is defined for all
combinations of n, p, and a. In this Letter, we show how
this scheme can be found. We will also include the
physically relevant case where the memory qubits have
to wait for classical signals to obtain information regarding
the distributions in other segments. We put no restriction on
how long a state can be kept in memory [12].
Markov chains.—Consider a finite Markov chain with a

single absorbing state. The set of states we denote as S and
the transition probability matrix as P ¼ ðpss0 Þ, where pss0 is
the transition probability from s to s0. With every state s ∈ S
we associate a cost rs⩾0 of making a transition from this
state.Assuming that the cost of the absorbing state is zero,we
define the total cost of absorption Ts from any state s ∈ S
as a sum of all costs rs0 from s to the absorbing state. Clearly,
Ts is a random variable whose distribution depends on the
transitionprobabilities of the chain.What is the averagevalue
of this variable? Denoting vs ¼ E½Ts�, it can be shown that
these quantities satisfy the system of linear equations

vs ¼
X
s0∈S

pss0vs0 þ rs: ð1Þ

Following the convention that the absorbing state is the last
one letQ be the matrix obtained from P by removing its last
row and last column. The system [Eq. (1)] then reads as
v ¼ Qv þ r, and its solution is given by v ¼ ðI −QÞ−1r,
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where I is the identitymatrix of order n − 1, n ¼ jSj, and r is
the (n − 1)-vector of transition costs (except the last com-
ponent, whichwe assumed to be zero). It is known that I −Q
is invertible and thus the system [Eq. (1)] has a unique
solution given by this expression; see Ref. [9]. For large n
such an expression is impractical to deal with, so v must be
computed numerically by solving the system of linear
equations ðI −QÞv ¼ r.
Markov decision problems.—What if the transition

probabilities and the associated transition cost in each state
depend on a parameter, so-called action? These actions can
be freely chosen at will, and any choice is referred to as a
policy. A (finite) Markov decision process (MDP) consists
of a finite set S of states and a finite set of actions As for
each state s ∈ S. For every policy we have an instance of
the problem considered above, with the transition proba-
bilities pα

ss0 and transition costs rαs now depending on the
actions α ∈ As chosen for all s ∈ S. One can say that an
MDP embeds many Markov chain absorption problems
into one framework. How can one determine the policy
with minimal average absorption cost?
A straightforward approach is to compute the average

cost of all embedded problems [Eq. (1)] and take the best
value. In total, there are N ¼ Q

s∈S jAsj embedded prob-
lems, and this number becomes ridiculously large even for
problems of moderate size. We show that there is a more
practical approach based on solving a proper linear opti-
mization problem.
Theorem 1.—Any solution of the linear optimization

problem which maximizes the sum
P

s∈S vs under the
constraints

vs ⩽
X
s0∈S

pα
ss0vs0 þ rαs ; α ∈ As ð2Þ

is a solution of the following system of nonlinear equations:

vs ¼ min
α∈As

�X
s0∈S

pα
ss0vs0 þ rαs

�
: ð3Þ

As the objective function one can use any linear combi-
nation

P
s∈S csvs with positive coefficients cs. The prob-

lem [Eq. (2)] has at least one solution.
The proof of this theorem is given in the Supplemental

Material [12]. If for any concrete choice of α ∈ As for all
s ∈ S, i.e., for any policy π, we leave just one equation in
Eq. (3), we get a system of linear equations of the form
given by Eq. (1). The solution vπ of this system is the vector
of the average costs of the absorption problem correspond-
ing to the policy π. It is in this sense that an MDP embeds
many absorption problems—every choice of actions pro-
duces a problem, and all these problems are contained in
one framework described by Eq. (3). Note that any solution
of Eq. (3) (which has at least one solution according to the
previous theorem) corresponds to a policy—for any s ∈ S

take an action α ∈ As that minimizes the right-hand side of
Eq. (3). For some s there can be more than one minimizing
action, so the policy corresponding to a solution may not be
unique. We now show that any solution of Eq. (3) is at least
as optimal as the solution for any policy.
Theorem 2.—Let v� be a solution of Eq. (3). Then for

any policy π we have v� ⩽ vπ , where this inequality is
meant componentwise.
The proof is also given in the Supplemental Material [12].

From this theorem we derive the following property of
optimal solutions: v�s ¼ minπvπs , where the minimum is
taken over all possible policies. We conclude that the system
of nonlinear equations [Eq. (3)] has a unique solution, which
can be obtained by solving the linear optimization problem
given by Eq. (2). Having found the optimal solution v� we
can obtain an optimal policy corresponding to this solution
by taking an action α ∈ As that minimizes the right-hand
side in Eq. (3) for all s ∈ S. Such a scheme may not be
unique.
Application to quantum repeaters.—We now apply the

presented theory to the problem of finding the minimal
waiting time in quantum repeaters. In a state where there
are segments trying to distribute an entangled state and
those that have already distributed, there is always a choice:
either wait for nonready segments or try to swap a pair of
neighboring ready segments. Clearly, different actions have
different probabilistic evolutions, so the entanglement
distribution process in a quantum repeater fits into an
MDP model.
Here we focus on the case with equal segment lengths L0

and connection efficiencies and thus identical character-
istics, p and a, for all segments and connections. The more
general and practical network scenario of unequal L0

between the stations and unequal connection efficiencies
can be treated as well with no real increase of complexity,
and we give an explicit example for this in the
Supplemental Material [12]. First, we need to list all
possible states of a quantum repeater. We use a simple
model where an attempt to distribute entanglement takes
one unit of time and an attempt to swap segments takes no
time at all. Under these assumptions the state of a repeater
can be characterized by a string of nonnegative numbers,
where 0 marks a segment trying to distribute entanglement,
and i > 0 marks a group of i successfully distributed and
swapped segments. For the simplest case of a two-segment
repeater the states are 00 (the initial state), 01, 10, 11, and 2
(the final, absorbing state). An optimal strategy must have
identical actions on the states which are mirror images of
each other, like the states 01 and 10 above, so we can apply
the lumpability trick—we lump the mirror images into one
new state and recompute the transition probabilities. This
allows us to compress the size of the problem by reducing
the number of states and actions, which will be very helpful
for larger repeaters. In the case above from the two states 01
and 10 we form a new state f01; 10g. So, in this simple case
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we have four states s1 ¼ 00, s2 ¼ f01; 10g, s3 ¼ 11, and
s4 ¼ 2. In each of these states only one action is possible,
so our MDP reduces to the Markov chain problem of the
form [Eq. (1)]:

v1 ¼ q2v1 þ 2pqv2 þ p2v3 þ 1

v2 ¼ qv2 þ pv3 þ 1

v3 ¼ ð1 − aÞv1 þ av4; ð4Þ

wherev4 ¼ 0 (andwe setq ¼ 1 − p).Note that the transition
probabilityp12 ¼ Pðs1 → s2Þ ¼ 2pq has a factor of 2, since
s2 ¼ f01; 10g and s1 ¼ 00 can go to s2 in twoways—when
either of the segments distributes entanglement. The prob-
ability of each path ispq, so the total transition probability is
2pq. The constant terms on the right-hand side of the
system [Eq. (4)] express our assumption that a distribution
attempt costs one unit of time and a swapping attempt costs
zero. Solving this system of linear equations, we obtain
v1 ¼ ð3 − 2pÞ=½apð2 − pÞ�, which is a well-known expres-
sion for the waiting time of a two-segment repeater.
Example.—Now consider a three-segment repeater.

In this case there are nine states: s1 ¼ 000, s2 ¼ 001,
s3¼010, s4¼011, s5¼101, s6¼111, s7 ¼ 02, s8 ¼ 12,
and s9 ¼ 3, where any nonsymmetric sequence like 001
denotes the corresponding class f001; 100g in order to not
overload the notation. In the state s4 ¼ 011 (which denotes
f011; 110g) two actions are possible: waiting while the last
segment distributes entanglement, which costs one time
unit per attempt, or trying to swap the other two segments,
which costs nothing (in the state 111 the two possible
swappings represent one action in the compressed system).
The MDP equations in this case read as

v1 ¼ q2ðqv1 þ 2pv2 þ pv3Þ þ p2ð2qv4 þ qv5 þ pv6Þ þ 1

v2 ¼ q2v2 þ pqv4 þ pqv5 þ p2v6 þ 1

v3 ¼ q2v3 þ 2pqv4 þ p2v6 þ 1

v4 ⩽ qv4 þ pv6 þ 1

v4 ⩽ ð1 − aÞv1 þ av7

v5 ¼ qv5 þ pv6 þ 1

v6 ¼ ð1 − aÞv2 þ av8

v7 ¼ qv7 þ pv8 þ 1

v8 ¼ ð1 − aÞv1;

and v9 ¼ 0. If we remove the first inequality for v4, we get
the scheme where we always swap in the states 011 and
110, removing the second inequality we get the scheme
where we always try to distribute entanglement in these
states. Maximizing the sum

P
8
i¼1 vi under the constraints

given above, for each p and a we obtain the best waiting
time v�1 and the optimal scheme (which may depend on

p and a). It turns out that for all p and a the former scheme
(always swapping when ready) is better, and the analytical
expression for the waiting time is the same as we have

already given in Ref. [9], where it is denoted as K̄ðdynÞ
3 .

Nondoubling optimal schemes.—For a four-segment
repeater the corresponding MDP has 20 variables (exclud-
ing the variable for the absorbing state, whose value is zero)
and 29 constraints. For every state there is at most one “wait
for distribution” action and zero or more “swapping”
actions. Somewhat surprisingly, the “doubling” scheme
is not always the best one. We have solved the MDP for all
0.01 ⩽ p, a ⩽ 1.0, and for each pair of probabilities p and
a we determined the best scheme for these parameters. We
found that there are three schemes that are optimal in
different regions of the probability square; see Fig. 1. The
equations of the curves between the regions and exact
values of their intersections with the square boundary are
given in the Supplemental Material [12].
In the lower-left corner of the square, which corresponds

to small p and a, the optimal scheme is “doubling,” denoted
as π0. A practically more relevant range of parameters may
be at small p and large a, which corresponds to the upper-
left corner of the square, and the optimal scheme there
differs from “doubling,” denoted as π2. In between these
two regions there is a third optimal scheme, π1. These
schemes are described in the Supplemental Material [12].
For some relevant fixed p and a values, Fig. 2 illustrates
that the optimized raw waiting time is a linear function of
the repeater size n [19].
Classical communication.—We can extend our model to

include classical communication (CC), assuming that it
takes one unit of time to restart a segment (and the
swapping process itself takes no time). For example, for
n ¼ 4 in the state 0110 we can try to swap the inner pair of
segments. If the swapping fails, then in the previous model
the system transitions to the initial state 0000, but in this
model it goes to a new state 0(1)(1)0, where the number in
brackets denotes the number of time units after which this
segment returns to the initial state 0. If we make a swapping

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Region used for approximations

Practically more relevant region

0.429

0.631

0.382

FIG. 1. Regions of different optimal schemes, n ¼ 4.
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in the state 012 and fail, this state goes to 0(1)(1)(2). With
probability q the next state is 000(1), and with probability p
it is 100(1). In the former case the next state will be � � �0,
where � � � is any combination of three zeros and ones,
and in the latter case it will be 1 � �0. So, the general
rule is ðiÞ → ði − 1Þ if i > 1 and ð1Þ → 0. Let us illustrate
possible transitions from the initial state 13: 13→
ð1Þð1Þð2Þð3Þ→ 00ð1Þð2Þ→ 110ð1Þ→ ð1Þð1Þ0ð1Þ→ 0000.
We first try to swap and fail, restarting all the segments.
Then, two segments are in the initial state and the other two
are in progress still waiting for classical signals. Next, the
ready segments both distribute entanglement, simultane-
ously succeeding here, another segment goes to the initial
state, and the last segment is still in progress. Then, we try
to perform swapping and fail, restarting the first two
segments (the other two are in the same state since
swapping itself takes no time). Finally, all segments are
in the initial state, since the third segment failed to
distribute entanglement. Note that this is only one of the
possible transition sequences between repeater states in our
model. These transitions illustrate that in multisegment
repeaters several “waves” of restarting are possible—an
earlier restart signal still in progress when a newer one
starts to propagate. The influence of the classical commu-
nication on the raw waiting time is illustrated in the

Supplemental Material [12] for various repeater sizes. It
is interesting to compare the optimal waiting time with the
“doubling” waiting time. The ratio of the two quantities is
shown in Fig. 3 for the model including CC. This figure
shows that there is a small but noticeable advantage of the
optimal scheme. This advantage becomes more visible
for larger repeaters, as Fig. 3 (right) demonstrates for an
eight-segment repeater, in the practically highly relevant
regime of small p and large a (∼1.5% for n ¼ 4 and ∼5%
for n ¼ 8).
Conclusion.—In conclusion, we presented a method to

determine the most efficient entanglement swapping
scheme in a quantum repeater and demonstrated that the
“doubling” scheme is not always the best. Moreover, our
approach shows that when additional elements such as
entanglement distillation on higher levels are excluded the
power-of-two number of segments is not a distinguished
case, since the best scheme can be constructed for any
number of segments. We showed that for small repeaters
the best scheme has a tiny, but noticeable, advantage
over the “doubling” scheme, but this advantage seems to
increase with the repeater’s size. Our most general model
leading to this conclusion includes all necessary classical
communication times, while we were able to treat repeater
sizes up to the order of ten segments. It is currently
intractable to treat 16 repeater segments or more for a
direct comparison.
Our algorithm has exponential complexity and thus is

applicable to fairly “small” repeaters only, but even these
repeaters are still beyond current technological capabilities,
and so our approach here is fully applicable to current
experiments to have meaningful physical benchmarks.
Moreover, a ten-segment repeater can cover a distance
of around 1000 km, which is already of practical interest.
On the other hand, great progress has been made in
algorithms for solving linear optimization problems.
A study of different versions of an optimization software,
CPLEX, performed in Ref. [23], shows a speedup of a
factor of 29 000 only due to algorithmic advantages.
Combined with hardware advances that happened during
this time (two decades), we get an even more impressive
performance boost factor. Of course, no technological
advance can turn an exponential algorithm to a subexpo-
nential one, but what seems intractable now could become
feasible in the near future.
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