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We study a non-Markovian and nonstationary model of animal mobility incorporating both exploration
and memory in the form of preferential returns. Exact results for the probability of visiting a given number
of sites are derived and a practical WKB approximation to treat the nonstationary problem is developed.
A mean-field version of this model, first suggested by Song et al., [Modelling the scaling properties of
human mobility, Nat. Phys. 6, 818 (2010)] was shown to well describe human movement data. We show
that our generalized model adequately describes empirical movement data of Egyptian fruit bats (Rousettus
aegyptiacus) when accounting for interindividual variation in the population. We also study the probability
of visiting any site a given number of times and derive a mean-field equation. Our analysis yields a
remarkable phase transition occurring at preferential returns which scale linearly with past visits. Following
empirical evidence, we suggest that this phase transition reflects a trade-off between extensive and intensive
foraging modes.
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Introduction.—Movement is a vital part of life and is key
in a wide range of physical, biological, and ecological
systems. Theoretical and empirical frameworks are thus
amply used to study the mechanisms underlying movement
patterns in all organisms [1]. In particular, individual-based
modeling of movement has played a crucial role in studying
dynamic systems across multiple spatiotemporal scales
[2–4]. These models can be applied to infer behaviors
and draw causal links between observed phenomena and
their underlying mechanisms beyond phenomenological
description of the observed patterns [5].
Most theoretical models assume Markovianity to capture

the properties of animal trajectories. Yet memory and
similar cognitive mechanisms are key to understanding
patterns observed in animal foraging [6,7]. A range of taxa,
from insects to primates, were shown to exhibit spatial
learning and memory, and researchers have just begun to
understand how to experimentally measure and control
such effects [8]. While memory can appear at many
different levels in this context (risk-avoidance, habituation,
social learning, ...), the tendency of many organisms to
repeatedly return to previously visited sites as a part of their
regular foraging strategies represent a paradigmatic exam-
ple. This has been recurrently observed for many species
[4,9–12], and stochastic models have been proposed to
justify how organisms store and manage cognitive infor-
mation during that process [13].

Notably, memory patterns must be properly balanced by
the organisms with some level of behavioral plasticity to
enhance flexibility and exploration (see, e.g., Ref. [14]).
For all these reasons, correctly incorporating memory
within stochastic models is an important research line
for improving both predictive and descriptive tools of
movement [6,15–17]. Indeed, it has been shown that
heuristic models of memory can be derived from micro-
scopic consideration for limited cases [18,19]. At the same
time, new experimental methods are allowing to disen-
tangle, even under field conditions, memory effects on
movement from other cognitive or perception mechanisms
[10,20]. As long as such experimental and theoretical
advances can nourish each other, new levels of detail in
our understanding of living organisms can be potentially
reached.
Dealing with memory and similar cognitive mecha-

nisms still represents a significant theoretical challenge.
Stochastic models that allow the individual to return to its
original position (resettings) have attracted much attention
recently [21–23], but these only incorporate memory in an
elementary way. More complex self-avoiding random
walks or preferential returns (PR), where the individual
returns to any previous location with a probability propor-
tional to the number of previous visits have also been
studied [24–28]. These models are non-Markovian (and
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typically also nonstationary), requiring that the individual
identifies and keeps record of its entire trajectory. While the
propagator of these models [29], and some properties of
relocation times [30], have been computed, characterizing
the revisits complete statistics to each particular location
remains an open problem.
Here we study a non-Markovian and nonstationary

mechanistic model of animal mobility, explicitly incorpo-
rating both the tendency of an individual to return to
previously visited locations (PR) and the tendency to
explore new sites. Versions of this model have been used
to model the mobility of humans [24] and monkeys [31],
the latter suggesting that monkey movement is nonrandom
due to the use of memory and visitation patterns driven by
resource availability. We generalize the model by account-
ing for stochasticity, incorporating interspecific variability
in the population, and allowing for nonlinear PR [32]. We
provide analytical solutions to this non-Markovian, non-
stationary model that go well beyond previous mean-field
results. In particular, we present several approaches to
analytically find the probability of having visited n sites at
time t and study the statistics of how revisits are distributed
through the available locations. Our approach, based on the
Wentzel-Kramers-Brillouin (WKB) approximation, is thus
useful to deal with explicitly time-dependent problems.
Remarkably, by allowing for nonlinear PR we find a phase
transition as a function of the strength of the PR, where
above some threshold the most visited site dominates the
dynamics, receiving practically all new visits. We suggest
that this phase transition reflects a balance between the
tendency to return to known sites and the will to explore
new ones [22]. Our predictions are verified using simu-
lations, and are shown to adequately describe the space use
patterns and the revisitation dynamics of Egyptian fruit bats
(Rousettus aegyptiacus) to fruit trees.
Model.—Our model includes (i) exploration—with prob-

ability Pnew the animal visits a new site, and (ii) PR—with
probability 1 − Pnew the animal visits a previously visited
site i with probability ΠiðmiÞ, where mi is the number of
previous visits to site i. Following empirical data in humans
and animals [24,31] we assume

Pnew ¼ qn−β; ΠiðmiÞ ¼
mα

iP
n
j¼1m

α
j
: ð1Þ

Here n is the number of previously visited sites, and β > 0
and 0 < q < 1 control the animal’s tendency to visit new
sites indicating a power-law decay controlled by conformity
exponent β. On the other hand, the PR exponent α > 0,
governs the tendency to return to a previously visited
location. Furthermore, and without loss of generality, we
order the sites by rank such that i ¼ 1 is the most visited
site with m1 visits. Notably, we assume that the number of
available sites is unbounded.

Cumulative number of sites.—The probability Pðn; tÞ of
having visited n sites in t ≫ 1 time steps follows

∂Pðn; tÞ=∂t ¼ qðn − 1Þ−βPðn − 1; tÞ − qn−βPðn; tÞ; ð2Þ

with initial condition Pðn; 0Þ ¼ δn;1. Although this master
equation is interpreted here in the context of movement
between spatially distributed sites, it can equivalently
describe a birth-death process of population of size n,
where the growth rate is proportional to n−β [33]. In

particular, for β ¼ 0 the birth-death process is ∅→
q
A

and for β ¼ −1 the birth-death process is A!q 2A. While
these special cases have known exact solutions, in this
Letter we are primarily interested in the regime β > 0,
which describes a growth which decreases [or saturates, see
Eq. (1)] with the number of sites (or population size). To the
best of our knowledge this regime has not been analytically
studied.
An equation for the first moment hni ¼ P

n nPðn; tÞ can
be obtained from Eq. (2) by multiplying the latter by n,
summing over all n’s, and using the definition for hni. This
yields dhni=dt ¼ qhn−βi, which under the mean-field
approximation hn−βi ≃ hni−β is solved by

hni ¼ ½ð1þ βÞqt�1=ð1þβÞ; ð3Þ

predicting a power-law dependence on the time of meas-
urement, in agreement with Ref. [24]. A similar derivation
for the second moment yields hn2i ¼ hni2 þ hni such that
the variance follows σ2n ≡ hn2i − hni2 ¼ hni, i.e., the
variance of the number of sites is equal to the mean as
in a Poisson process. This result, however, turns out to be
inaccurate as it involves various uncontrolled assumptions,
and is not consistent with simulations, as elaborated below.
An exact solution to Eq. (2) can be found by Laplace

transforming it and solving the resulting recurrence
equation [36]. The exact solution for β ≠ 0 has the form
(see Supplemental Material, Sec. S1A [37])

Pðn; tÞ ¼ ð−1Þn−1nβ
Xn
k¼1

k−βe−qt=k
β

Q
n
j¼1;j≠k ðj

β

kβ − 1Þ
: ð4Þ

For special values of β this result simplifies to

Pðn; tÞ ¼

8>><
>>:

e−nqtðeqt −1Þn−1 β¼−1
1

ðn−1Þ!ðqtÞn−1e−qt β¼ 0

1
ðn−1Þ!

P
n
k¼1

�
n
k

�
ð−1Þn−kkn−1e−qt

k β¼ 1

: ð5Þ

Though Eq. (4) is an exact solution, it is given as a sum of
large terms of alternating sign, which converges due to a
precise balance between the terms. Thus, in practice this
convergence is very slow for n ≫ 1, and may result in a
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significant loss of accuracy when evaluated numerically
[42]. To circumvent these issues, we develop a time-
dependent WKB approximation.
Time dependent WKB.—In the limit of a large number of

sites n ≫ 1, we substitute the time-dependent ansatz
Pðn; tÞ ∼ e−Sðn;tÞ into Eq. (2) [43–45]. Neglecting terms
of order Oðn−1Þ, in the leading order we obtain a classi-
cal Hamilton-Jacobi equation for the action function
Sðn; tÞ: ∂tS¼Hðn;∂nSÞ≡Hðn;pÞ, where we have defined
the HamiltonianHðn;pÞ¼qð1−e−pÞn−β, and denoted p ¼
−∂nS as the conjugate momentum. Instead of directly
solving the Hamilton-Jacobi equation, we use the Hamilton
approach for the classical equations of motion

_n ¼ qe−pn−β; _p ¼ βqð1 − e−pÞn−β−1: ð6Þ

We write the action on a classical trajectory as [44]
Sðn; tÞ ¼ Et −

R
n pðn0Þdn0, where the energy E≡

H½nðtÞ; pðtÞ� is constant along a dynamical trajectory
given by pðnÞ ¼ log ½q=ðq − EnβÞ�. To find the energy
we solve Eq. (6) for _n on a given constant-energy
dynamical trajectory. This yields (Supplemental Material,
Sec. S1C [37])

Pðn; tÞ ∼ e−hniSðxÞ;

SðxÞ ¼ fðxÞx−β
β þ 1

þ xfðxÞ−1=βB½fðxÞ; 1þ 1=β; 0�

þ x log½1 − fðxÞ�; ð7Þ

with x≡ n=hni and fðxÞ ¼ 1 − xβ½βðx − 1Þ þ x�. Here,
B½z; a; b� ¼ R

z
0 u

a−1ð1 − uÞb−1du is the incomplete beta
function. This calculation of the probability of having
visited n ≫ 1 sites at time t is one of our main results. In the
low energy limit, E ≪ 1, SðxÞ becomes [37]

SðxÞ ≃ ðβ þ 1=2Þðx − 1Þ2; ð8Þ

in agreement with Eq. (7) in the limit jx − 1j ≪ 1 (i.e., in
the Gaussian vicinity of n ¼ hni). Notably, Eq. (8) can also
be obtained by using the Fokker-Planck approximation to
Eq. (2) (Supplemental Material, Sec. S1C [37]). While the
latter aptly captures the variance, see below, it misses the
distribution tails [46]. In Fig. 1(a) we find good agreement
between the exact result for the distribution [Eq. (4)], time-
dependent WKB approximation [Eqs. (7), (8)], and sim-
ulations (see also Supplemental Material, Figs. S1 and S2
[37]). Here the exact result and WKB approximation are
practically indistinguishable, whereas the low energy
approximation can capture only the distribution’s
Gaussian vicinity. As stated, for n ≫ 1 the exact result’s
accuracy rapidly deteriorates due to summation of alter-
nating large terms, making the time-dependent WKB
approach highly advantageous in this case [42].
The variance can be computed using the action in the

Gaussian vicinity of the distribution [Eq. (8)] [47], which

yields σ2n ¼ hni=jS00ðxÞjx¼1 ¼ hni=ð1þ 2βÞ. Thus, the dis-
tribution is narrower by a factor of (1þ 2β) than that
predicted by the naïve mean-field approach above. In the
inset of Fig. 1(a) both the average [Eq. (3)] and variance of
number of sites agree well with simulations for β ¼ 1 (see
also Supplemental Material, Fig. S2, for β ¼ 0.5 [37]).
In empirical studies, individual preferences and deci-

sions can affect movement and behavior, hence individuals
will not have identical movement patterns [48,49]. To
account for interindividual variation, we generalize our
model by allowing different β values across individuals.
Assuming β is sampled from a normal distribution
N ðβ0; σ2Þ with mean β0 and variance σ2 ≪ 1 (indicating
the interindividual variability in β around β0, see empirical
results analysis below), PnðtÞ satisfies

Pðn; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z

∞

−∞
Pβðn; tÞe−

ðβ−β0Þ2
2σ2 dβ; ð9Þ

where Pβðn; tÞ is the probability at a given β, given by
Eq. (7). Although analytical progress is possible only in the
limit of small σ (Supplemental Material, Sec. S1D [37]),
Eq. (9) can generally be solved numerically [Figs. 1(b),
S2(b) of [37] ]. Notably, we checked that while interindi-
vidual variability almost does not affect the mean number
of sites, it strongly affects the variance of the number of
sites (Supplemental Material, Fig. S3 [37]).
Statistics of number of visits to a site.—Having computed

the statistics of number of sites, we now turn to study the
probability Wiðmi; tÞ of having mi visits at time t to an
already visited site i, which follows

∂Wi

∂t ¼ ð1 − PnewÞ½Πiðmi − 1ÞWiðmi − 1; tÞ
−ΠiðmiÞWiðmi; tÞ�; ð10Þ

FIG. 1. The probability Pðn; tÞ for β ¼ 1 and t ¼ 1500. (a) No
variation in β (σ ¼ 0). We compare simulations (circles), exact
result [black dashed-dotted line, Eq. (4)], WKB approximation
[red dashed line, Eq. (7)], and WKB approximation at low
energies [blue dashed line, Eq. (8)]. (b) Variability in β with
σ ¼ 0.1: simulations (circles) are compared with a numerical
solution of Eq. (9) (dashed line). Insets show hni and σ2n (red and
black marks, respectively) versus t, compared with theory
(dashed lines).
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where Pnew and Πi are given by Eq. (1). Here the initial
conditions aremiðt ¼ tiÞ ¼ 1, where ti is the first time site i
was visited and is a stochastic variable governed by Eq. (2).
Below, we focus on the limit t ≫ ti ≥ 1 where Pnew → 0
[50], and approximate ti by its average (as evaluated from
data). In general, Πi depends on the number of visits to
other sites; thus Eq. (10) couples between different sites.
Moreover, the dependence on previous visits makes this a
non-Markovian evolution equation [19,51].
The case of α ¼ 1.—Here

P
i mi ¼ t, i.e., the total

number of visits to all sites equals the total number of
time steps t, which yields ΠiðmiÞ ¼ mi=t. In addition, for
Pnew ≃ 0, Eq. (10) is solved byWiðmi;tÞ¼ tit−miðt−tiÞmi−1,
with average and variance of hmii ¼ t=ti, and σ2mi

¼
hm2

i i − hmii2 ¼ tðt − tiÞ=t2i ≃ t2=t2i .
The case of α ≠ 1.—For α < 1, we a priori assume thatPhni
j¼1 hmjiα ∼ tξ, where ξ is a priori unknown and

satisfies α < ξ < 1. The average number of visits to any
site i can then be shown to asymptotically follow
hmii ∼ tð1−ξÞ=ð1−αÞ½1þOðtξ−1Þ�. Plugging this back into
the sum over hmjiα we find that ξ ¼ ξ0ð1þ ϵÞ, where
ξ0 ¼ ð1þ αβÞ=ð1þ βÞ and ϵ ≪ 1 is an unknown function
of α, β. For 1 − α ≫ ϵ [β ¼ Oð1Þ], we further find
hmii ∼ tβ=ð1þβÞ, independent of α; yet, the condition
1 − α ≫ ϵ breaks down as α → 1. Importantly, in the
limit t ≫ 1, for any α < 1 we find that all sites scale
similarly with time. In contrast, for α > 1 not all sites scale
similarly with time. Here hmii ≃ t for i ¼ 1, while hmii≃
Ci½1þOðt1−αÞ� for i > 1, where Ci ¼ CiðtiÞ is a constant.
In the Supplemental Material [37], Sec. S2A-C, and
Figs. S4, S5 we provide a rigorous proof of the above
calculations. Also, in Sec. S2D and Fig. S6 we numerically
corroborate the scaling of hmii and σ2mi

on time for different
α and sites, while in Sec. S2E and Fig. S7, we numeri-
cally study the statistics of the visits to the first visited site
versus α [37].
These results reveal a phase transition at α ¼ 1 (see also

Supplemental Material, Sec. S2F [37]), where for weak PR
(α < 1) the frequency of visits to the most visited site

f1 ≡ hm1i=
Phni

j¼1hmji is only a small fraction of the total
number of visits, while for strong PR (α > 1) f1
approaches 1 as t is increased and site 1 dominates
[Fig. 2(a)]. Importantly, in addition to the phase transition
for f1, the next most visited sites (fk, for k ¼ 2; 3;…) peak
around α ¼ 1 (Figs. 2(b), S8 [37]). Here, for α < 1 the
visitation frequencies to all sites become similar, while for
α > 1 these tend to zero.
Movement of fruit bats.—To study the relevance of our

model for real-life systems and to obtain insights into the
phase transition, we compare our predictions to resource
use patterns and visitation dynamics of wild fruit bats
tracked by ATLAS during winter and summer [52]. In
Figs. 3(a)–3(b) we fit the mean and variance of the number
of visited sites (fruit trees) as a function of the number of

movement steps (defined here as distinguishable movement
between trees [37]) to our theory [53]. We find that during
the summer β0 and σ are higher than during the winter,
entailing a lower rate of visits to new sites (higher levels of
conformity) and larger interindividual variability, respec-
tively. Notably, our results suggest interindividual variabil-
ity in both summer and winter. In Figs. 3(c)–3(d) we show
that during summer hm1i ∼ t0.97 and hm2i ∼ t0.99, which
matches the theory for α ¼ 1. In contrast, during winter

FIG. 2. (a) The average frequency of visits to the most visited
site f1 versus α, for β ¼ 1 (simulations). Each curve corresponds
to a given number of visits t (see legend). (b) Semi-log plot of fk
versus α for different sites (see legend), for β ¼ 1 and t ¼ 105.

FIG. 3. (a)–(b) The mean (blue marks) and variance (red marks)
of the number of sites visited by bats during summer and winter,
compared to theoretical prediction (black dashed lines), with
fitted values of β0 ¼ 0.71 and σ ¼ 0.21 in (a), and β0 ¼ 0.53 and
σ ¼ 0.16 in (b). These are averaged over an ensemble of 38 (a)
and 53 (b) bats. (c)–(d) The mean number of visits hmii to the six
most visited sites, i ¼ 1;…; 6 from top to bottom (different
colors mark different sites), averaged over the same ensembles as
in (a) and (b). Black dashed lines hmii ∼ t correspond to the
theoretical prediction for α ¼ 1. (e)–(f) Variance of the number of
visits σ2mi

to the same six sites, averaged over the same ensembles
for summer (e) and winter (f). Black dashed lines σ2mi

∼ t2

correspond to the theoretical prediction for α ¼ 1.
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hm1i ∼ t0.89 and hm2i ∼ t0.87 which is consistent with α
values slightly below 1. Moreover, hmii versus ti agrees
with our theoretical predictions [see Figs. 3(e)–3(f),
Sec. S2D and Fig. S9 also for the dependence of σ2mi

on
time [37] ]. These seasonal differences may be attributed to
the fact that bats during the summer feed of highly
abundant and palatable fruits—mulberries or figs with
high levels of sugar content—and hence do not need to
explore for feeding alternatives (high β0) and can strongly
rely on a limited number of sites (α ¼ 1). In contrast,
during winter there is less motivation to return to less
favorable fruits (chinaberries) and a higher motivation to
explore alternative trees, such as nonseasonal (unpredict-
able) fruit from the Ficus family.
In light of the phase transition at α ¼ 1, and in agreement

with experimental results, we hypothesize that in animal
movement the value of α will tend towards 1. This max-
imizes the frequencies of visits to preferred sites [Fig. 2(b)],
yet avoids an exclusive choice of a preferred site which
occurs at α > 1 [see Fig. 2(a)]. In this manner the animal
combines intensive search patterns (committing to a few
sites) with extensive searches (returning to all sites with
some probability), a balance which is essential to optimize
between energy expenditure and risk management
[22,54,55]. Indeed, for fruit bats we find α ≈ 1, and similar
results were obtained for humans [24] and monkeys [31].
Furthermore, the strategy of avoiding an exclusive site
resembles bet-hedging strategies, e.g., bacterial persistence
[56]. In addition, the value of α may be correlated to the
total number of known sites: for large β0 (few sites,
summer) the bats will show stronger PR, while for smaller
β0 (more sites, winter) the strategy may tend towards a
more uniform visitation rate to all trees (weaker PR).
More generally, we expect our results to also provide key

insights into revisit dynamics in other areas like human
mobility [57–59], COVID-19 spread [60], human migra-
tion [61], and languages dynamics [62].
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Jammes, How memory-based movement leads to
nonterritorial spatial segregation, Am. Nat. 185, E103
(2015).

PHYSICAL REVIEW LETTERS 128, 148301 (2022)

148301-5

https://doi.org/10.1073/pnas.0800375105
https://doi.org/10.1073/pnas.0800375105
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.3389/fevo.2021.732514
https://doi.org/10.3389/fevo.2021.732514
https://doi.org/10.1111/1365-2656.12379
https://doi.org/10.1111/ele.12165
https://doi.org/10.1371/journal.pone.0136057
https://doi.org/10.3389/fevo.2021.681704
https://doi.org/10.3389/fevo.2021.681704
https://doi.org/10.1098/rspb.2014.3042
https://doi.org/10.1098/rspb.2014.3042
https://doi.org/10.1073/pnas.2014856118
https://doi.org/10.1073/pnas.2014856118
https://doi.org/10.1016/j.cub.2020.07.079
https://doi.org/10.1126/science.aax6904
https://doi.org/10.1098/rsif.2020.0026
https://doi.org/10.1098/rsif.2020.0026
https://doi.org/10.1016/j.anbehav.2021.02.005
https://doi.org/10.1890/03-0269
https://doi.org/10.1016/j.tree.2007.10.009
https://doi.org/10.1086/680009
https://doi.org/10.1086/680009


[18] S. Hod and U. Keshet, Phase transition in random walks
with long-range correlations, Phys. Rev. E 70, 015104(R)
(2004).

[19] G. M. Schütz and S. Trimper, Elephants can always
remember: Exact long-range memory effects in a non-
Markovian random walk, Phys. Rev. E 70, 045101(R)
(2004).

[20] R. Nathan et al., Big-data approaches lead to increased
understanding of the ecology of animal movement, Science
375, eabg1780 (2022).

[21] M. R. Evans and S. N. Majumdar, Diffusion with Stochastic
Resetting, Phys. Rev. Lett. 106, 160601 (2011).

[22] O. Berger-Tal and S. Bar-David, Recursive movement
patterns: Review and synthesis across species, Ecosphere
6, 1 (2015).

[23] M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic
resetting and applications, J. Phys. A 53, 193001 (2020).

[24] C. Song, T. Koren, P. Wang, and A.-L. Barabási, Modelling
the scaling properties of human mobility, Nat. Phys. 6, 818
(2010).

[25] D. Boyer and C. Solis-Salas, Random Walks with Prefer-
ential Relocations to Places Visited in the Past and their
Application to Biology, Phys. Rev. Lett. 112, 240601
(2014).

[26] A. Falcón-Cortés, D. Boyer, L. Giuggioli, and S. N.
Majumdar, Localization Transition Induced by Learning
in Random Searches, Phys. Rev. Lett. 119, 140603
(2017).

[27] H. Meyer and H. Rieger, Optimal Non-Markovian Search
Strategies with n-Step Memory, Phys. Rev. Lett. 127,
070601 (2021).

[28] O. Benichou, R. Voituriez et al., Self-Interacting Random
Walks: Aging, Exploration and First-Passage Times,
arXiv:2109.13127 [Phys. Rev. X (to be published)].

[29] D. Boyer and J. C. R. Romo-Cruz, Solvable random-walk
model with memory and its relations with Markovian
models of anomalous diffusion, Phys. Rev. E 90, 042136
(2014).

[30] D. Campos and V. Méndez, Recurrence time correlations in
random walks with preferential relocation to visited places,
Phys. Rev. E 99, 062137 (2019).

[31] D. Boyer, M. C. Crofoot, and P. D. Walsh, Non-random
walks in monkeys and humans, J. R. Soc. Interface 9, 842
(2012).

[32] P. L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of
Growing Random Networks, Phys. Rev. Lett. 85, 4629
(2000).

[33] Similar growth rates appear in self-inhibitory gene regula-
tory networks, where a protein inhibits its own growth, see,
e.g., Refs. [34,35].

[34] Y. Dublanche, K. Michalodimitrakis, N. Kümmerer, M.
Foglierini, and L. Serrano, Noise in transcription negative
feedback loops: Simulation and experimental analysis, Mol.
Syst. Biol. 2, 41 (2006).

[35] E. Roberts, S. Be’er, C. Bohrer, R. Sharma, and M. Assaf,
Dynamics of simple gene-network motifs subject to ex-
trinsic fluctuations, Phys. Rev. E 92, 062717 (2015).

[36] In the Supplemental Material, Sec. S1B [37] we develop an
alternative generating function approach, and Eq. (2)

becomes a fractional integro-differential equation, solvable
in specific cases.

[37] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.148301 for more
details and additional results from our analysis, which
includes Refs. [59–62].

[38] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical
Tables, Ninth Dover Printing, Tenth GPO Printing ed.
(Dover, New York, 1964).

[39] G. B. Arfken and H. J. Weber, Mathematical methods for
physicists (1999).

[40] G. G. Kwiecinski and T. A. Griffiths, Rousettus egyptiacus,
Mammalian species 611, 1 (1999).

[41] P. R. Gupte, C. E. Beardsworth, O. Spiegel, E. Lourie, S.
Toledo, R. Nathan, and A. I. Bijleveld, A guide to pre-
processing high-throughput animal tracking data, bioRxiv
(2020).

[42] M. Assaf and B. Meerson, Spectral formulation and WKB
approximation for rare-event statistics in reaction systems,
Phys. Rev. E 74, 041115 (2006).

[43] M. I. Dykman, E. Mori, J. Ross, and P. Hunt, Large
fluctuations and optimal paths in chemical kinetics, J. Chem.
Phys. 100, 5735 (1994).

[44] V. Elgart and A. Kamenev, Rare event statistics in reaction-
diffusion systems, Phys. Rev. E 70, 041106 (2004).

[45] M. Assaf and B. Meerson, WKB theory of large deviations
in stochastic populations, J. Phys. A 50, 263001 (2017).

[46] M. Assaf and B. Meerson, Spectral theory of metastability
and extinction in a branching-annihilation reaction, Phys.
Rev. E 75, 031122 (2007).

[47] M. Assaf and B. Meerson, Extinction of metastable sto-
chastic populations, Phys. Rev. E 81, 021116 (2010).

[48] N. J. Dingemanse, C. Both, P. J. Drent, K. Van Oers, and
A. J. Van Noordwijk, Repeatability and heritability of
exploratory behaviour in great tits from the wild, Anim.
Behav. 64, 929 (2002).

[49] N. J. Dingemanse and N. A. Dochtermann, Quantifying
individual variation in behaviour: Mixed-effect modelling
approaches, J. Anim. Ecol. 82, 39 (2013).

[50] In this case, Eq. (10) is similar to the master equation in
Ref. [25]. Yet, they only consider the case of β ¼ 0.

[51] P. Hänggi and H. Thomas, Time evolution, correlations, and
linear response of non-Markov processes, Z. Phys. B 26, 85
(1977).

[52] To have proper statistics and ensure no significant resource
depletion, we analyze 10-day periods for each bat. More-
over, we do not explicitly consider spatial effects in our
model; see the Supplemental Material [37] Sec. S3 for
justification. For details on ATLAS see Ref. [12], and on the
species, seasonality, and the segmentation and fitting pro-
cedures, see Supplemental Material [37] Sec. S3.

[53] The power-law dependence of the mean has also been
experimentally observed in humans [24] and monkeys [31];
yet, these studies did not analyze fluctuations around hni.

[54] K. Garg and C. T. Kello, Efficient Lévy walks in virtual
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