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We use a novel scanning electron Mach-Zehnder interferometer constructed in a conventional
transmission electron microscope to perform inelastic interferometric imaging with free electrons. An
electron wave function is prepared in two paths that pass on opposite sides of a gold nanoparticle, where
plasmons are excited before the paths are recombined to produce electron interference. We show that the
measured spectra are consistent with theoretical predictions, specifically that the interference signal formed
by inelastically scattered electrons is π out of phase with respect to that formed by elastically scattered
electrons. This technique is sensitive to the phase of localized optical modes, because the interference
signal amounts to a substantial fraction of the transmitted electrons. Thus, we argue that inelastic
interferometric imaging with our scanning electron Mach-Zehnder interferometer provides a new platform
for controlling the transverse momentum of free electrons and studying coherent electron-matter
interactions at the nanoscale.
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Introduction.—Free electrons in transmission electron
microscopes (TEMs) are ideal for probing individual
nanoplasmonic systems [1]. They couple to electromag-
netic fields and form spectrally resolved high-resolution
images via electron energy-loss spectroscopy (EELS),
which is sensitive to the intensity of the probed optical
fields but insensitive to their phase [1]. In general, scattered
free electrons are viable quantum probes for characterizing
nanoplasmonic systems [2], but access to mode phase
requires manipulation of the electron wave function. Here,
we explore the relationship between the phase of both free
electrons and the plasmons they generate by introducing a
new interferometric technique uniquely capable of explor-
ing transverse spatial correlations between free electrons
and condensed-matter excitations.
Several experiments in TEMs have exploited this phase

coherence associated with inelastic electron-matter inter-
actions. In particular, inelastic holography relies on an
electrostatic biprism to interfere different parts of an
electron wave after interacting with the sample and has
been used to measure the coherence properties of bulk and
surface plasmon excitations [3,4], as well as the loss of
coherence due to the electromagnetic interaction with
thermally populated material excitations [5]. However, a
partial degree of electron source coherence and the pro-
duction of multiple final states after electron-sample
interaction complicate the analysis and interpretation of
measured signals [6–8]. Likewise, shaping the electron
wave front to match the spatial distribution of the probed
plasmonic near field followed by postselection of the
scattered electrons has been demonstrated as a method

to filter localized plasmon resonances (LPRs) of dipolar or
quadrupolar character in a metallic nanorod [9]. This
method was also proposed to measure the transfer of
orbital angular momentum [10], although postselecting
wave fronts is inefficient and requires precise alignments
in the mode matching and selection apertures, thus pro-
hibiting concurrent high-quality imaging. Several theoreti-
cal [11–13] and experimental [14] works have addressed
sorting of free electrons into different measurement
bases, but actual realizations have a limited scope so far.
Alternatively, the combination of pulsed lasers and
synchronized electrons has been used to resolve nanoscale
optical fields [15–18], but this approach requires highly
specialized TEMs and ultrafast optical systems.
In this Letter, we use a two-grating electron Mach-

Zehnder interferometer (2GeMZI) that produces two,
spatially separated interaction probes (the �1 diffraction
orders of the first grating) to image the interference of
coherent superpositions of electrons inelastically scattered
by the induced LPR excitations of an individual gold
nanoparticle (NP). After interaction with the sample, the
probes pass through a second grating, recombining the
separate paths for copropagation to a detector and, there-
fore, allowing for complete interference in the interferom-
eter output (see more details in Ref. [19]). The latter is
collected by an EELS system to spectrally resolve the
plasmon-scattered electrons from the zero-loss peak (ZLP)
(Fig. 1). The interference of the inelastic signal as a
function of the interferometer phase demonstrates that
electrons in a coherent superposition of different paths
can interact inelastically with the sample and remain
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coherent after transmission through the interferometer. The
robust 2GeMZI described in this Letter has the ability to
scan spatially separated paths, tune the relative probe
phase, and create discrete, copropagating outputs, opening
the door to a diverse range of electron-wave-based experi-
ments that were not possible before.
Dipolar interactions in the 2GeMZI.—The 2GeMZI

separates the electron wave function into two parts, as
depicted in Fig. 1. The incident electron state jψ ii is
prepared such that there are two focal spots at the sample
plane that are physically created using the first grating
(G1). The final state of the electron jψfi is postselected
after interacting with the sample by means of a second
grating (G2) combined with the entrance aperture of
the electron energy analyzer. Near the sample plane, we
can write the real-space representation of the incident
electron wave function as ψ iðrÞ ¼ hrjψ ii ¼ ½χiðr − r1Þþ
eiϕiχiðr − r2Þ�=

ffiffiffi
2

p
, where χi is a normalized function

describing each of the two nonoverlapping spots (centered
at positions r1 and r2, respectively) and ϕi is a relative
phase shift produced by stray potentials or any other
differences between the two electron paths, such as the
alignment of G1 relative to the optical axis (see below).
Ignoring off-axis diffracted beams after G2, the state jψfi
takes the same functional form as the time reversal
of jψ ii (i.e., it can be regarded as the mirror image of
jψ ii through the sample plane, but with the electron
traveling backward). Consequently, we can write ψfðrÞ ¼
hrjψfi ¼ ½χfðr − r1Þ þ eiϕfχfðr − r2Þ�=

ffiffiffi
2

p
. Additionally,

for a lateral displacement x0 of G1 (or G2) along a
direction across the grooves, we have that ϕi (or ϕf) is
modified by a termΔϕint ¼ 2k0 · x0, where jk0j ¼ 2π=Λ is
the wave number of the gratings with pitch Λ. This term
arises directly from the phase difference between the two

first-order diffraction orders introduced by a translation
of G2.
In the absence of a sample, the arguments above allow us

to write the measured electron intensity output of the
interferometer (i.e., the ZLP) as

IZLP ∝ jhψfjψ iij2 ∝ cos2ðΔϕ=2Þ; ð1Þ

where the total relative path phase Δϕ ¼ Δϕint þ Δϕext
receives contributions from the interferometer alignment
Δϕint and the noted path-related phases Δϕext ¼ ϕf − ϕi.
In contrast, when a sample is inserted, the inelastic signal
becomes ∝

P
e jhψfjhejHIjgijψ iij2, where HI is the elec-

tron-sample interaction Hamiltonian, jgi represents the
initial sample ground state, we sum incoherently over all
final excited sample states jei, and each term in the sum
may involve a different final electron energy. However, the
electron wave function can still be approximated by ψfðrÞ
for each jei (i.e., the energy loss does not significantly
affect electron propagation, other than in the spectral
separation performed at the analyzer [20]). For a dipolar
sample excitation of transition dipole p placed at a position
rc ¼ ðr1 þ r2Þ=2 (the sample is centered between the two
electron spots) and oriented along the interspot direction
r2 − r1, we have HIðrÞ ∝ p · ðr − rcÞ. So, for a small spot
size compared to rc, the inelastic signal becomes

Idipole ∝ sin2ðΔϕ=2Þ: ð2Þ

In general, for an excitation characterized by an angular
momentumnumberm, we haveHIðrÞ ∝ eimφ, whereφ is the
azimuthal angle relative to rc. Following the same procedure
as above, the inelastic signal is ∝ cos2½ðΔϕþmΔφÞ=2�,
whereΔφ ¼ φ2 − φ1 is the relative azimuthal angle between
the two electron positions with respect to rc. By directly
applying this analysis to eachmultipole of a spherical particle,
and if the two spots are each at a radial distance R from the
sphere’s center, the inelastic plasmon 2GeMZI signal is

IsphereðΔϕÞ ∝
e2

cℏω

X∞

l¼1

Xl

m¼−l
CE
lmImftEl ðωÞgK2

m

�
ωR
vγ

�

× cos2½ðΔϕþmΔφÞ=2�; ð3Þ

where CE
lm are electric coupling coefficients, tEl are Mie

scattering matrix elements,Km aremodified Bessel functions
of the second kind, v is the electron velocity, γ is the
relativistic Lorentz factor, and ℏω is the energy loss. In this
expansion, we retain only electric modes (E) that dominate
the response of the consideredNP, and, in particular, the l ¼ 1
terms stand for the dipolar excitations, with jmj ¼ 1 corre-
sponding to the sample-plane-oriented dipole and m ¼ 0
denoting the along-the-beam dipole (see Supplemental
Material [21]). Furthermore, we find it useful to define the
interference part of the inelastic signal:

FIG. 1. Illustration of experiment. An electron is split by a
grating (G1) with pitch Λ ¼ 2π=jk0j, preparing it in the super-
position state jψ ii. The separated paths are focused and steered by
magnetic lenses to interact with the dipolar plasmon of a gold
nanoparticle (interaction Hamiltonian HI) producing the final
state jψfi. The paths are recombined using a second grating (G2
with the same pitchΛ) that is continuously translatable by x0. The
position x0 of G2 tunes the relative path phase in the interfer-
ometer output as Δϕint ¼ 2k0 · x0. The output of the interfer-
ometer is dispersed in a spectrometer to resolve the elastic ZLP
(green) and an inelastic peak corresponding to excitation of a
dipolar plasmon (orange).
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Iinterference ¼ IsphereðΔϕint ¼ 0Þ − IsphereðΔϕint ¼ πÞ ð4Þ

(see below).
We probe spherical NPs of ≈60 nm diameter and set a

80 nm path separation in the 2GeMZI [Figs. 2(a) and 2(b)].
With these parameters, the l ¼ 1 dipole mode in Eq. (3) is
dominant, while higher-order terms can be safely neglected
(see Supplemental Material [21]). Additionally, we have
recently shown that multiprobe imaging with the 2GeMZI
induces sample charging that can cause significant relative
phase shifts between the interferometer paths [19]. This
external phase shift can be effectively modeled for the
probes at transverse positions R1 and R2 passing through
an electrostatic potential produced by the sample charg-
ing as Δϕext ¼ σ½VzðR2Þ − VzðR1Þ�, where σ ¼ e=ℏv
is the first-order interaction parameter and VzðRÞ ¼R
dzVðrÞ is the projected potential [25] (see Supplemental

Material [21]).

Description of the experiment.—The 2GeMZI was con-
structed in an image-corrected 80–300 keV FEI Titan TEM
by placing the input grating G1 in the condenser aperture
holder above the specimen plane and G2 in the selected
area aperture holder below the specimen plane (see
Ref. [19]). The TEM was operated at 80 keV, such that
the STEM probe convergence angle was tunable from 1 to
10 mrad. Both binary diffraction gratings,G1 andG2, were
milled into a 30-nm-thick freestanding Si3N4 membrane
with 300 nm pitch and optimized to maximize intensity in
the �1 diffraction orders while yielding a minimum in the
zeroth order. Approximately 30% of the transmitted inten-
sity was placed in each of the �1 orders and < 6% in any
other order. A subsequent condenser aperture [19] limited
the beam to a 3 mrad convergence angle. Then, a postspeci-
men lens was used to project a focused image of G1 onto
G2. In addition, the post-G2 projection lenses were used to
produce a real-space image of the interferometer output
into the entrance aperture of the EELS system, yielding a
ZLP of 0.8 eV full width at half maximum. In this

FIG. 2. Demonstration of inelastic interferometry. (a) Dark-field STEM image of a 60 nm gold NP on the edge of a carbon substrate.
(b) Sketch of the 2GeMZI, consisting of a STEM with two gratings used as beam splitters. The first grating (G1) prepares electrons in a
superposition of two separate paths, each of them interacting with the NP sample, with some probability of losing energy to a plasmon
resonance (orange). (c),(d) The electron paths are recombined using the second grating (G2), which can be positioned for (c) destructive (blue
borders) and (d) constructive (green borders) interference, conversely modifying the elastic and inelastic signals. TwoNPs are observed in the
image because of the two-spot beam configuration, with the central frame selecting the interference region (i.e., each beam passing by one side
of theNP). (e),(f) For both alignment schemes,we integrate over theplasmon (yellow-shaded) andZLP (red-shaded) regions of the energy-loss
spectra plotted in (f) at every scan location to create the spectral images shown in (e). The raw spectra in (f) correspond to the dotted positions in
(e). (g),(h)We simulate the experiment with an external potentialVzðRÞ (g) and show that the calculated results (h) are qualitatively consistent
with the experimental spectral images in (e). (i) Interference term of the loss probability, obtained as the difference of the plasmon-integrated
spectral images from the two different interferometer alignments in (e) and (h) [Eq. (4)].
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configuration, the scan and descan coils were used to raster
the probes over a 200 × 200 nm2 region in the specimen
plane while maintaining the alignment of G1, G2, and the
EELS aperture. The�1 diffraction-order probes were 5 nm
wide and separated by 80 nm. Nevertheless, our demon-
strated 2GeMZI can be applied to a wide range of sample
sizes and beam-spot separations by suitably adjusting lens
magnifications or grating placement and pitch.
Gold was chosen as a NP material for its resistance to

form oxides, long-term stability, availability, and ease of
sample preparation, although its LPRs overlap with inter-
band transitions, in contrast to silver [26]. A monodisperse
solution of gold NPs (60 nm diameter) was dropcast on a
lacey carbon grid, dried in air, and placed in the TEM. A
single NP was isolated on an edge of the carbon such that
the two electron paths could pass on either side of the NP
through vacuum [Figs. 2(a) and 2(b)], yielding Δφ ≈ π
[Figs. 2(c) and 2(d)]. Then, spectral images were recorded
for both destructive and constructive interferometer outputs
[Fig. 2(e)] (see Supplemental Material [21]). Integration
over the energy ranges ð−1; 1Þ eV for the ZLP and
(1.5,4) eV for the plasmon peaks, as shown in Fig. 2(f),
produced energy filtered spectral images [Fig. 2(e)].
Results and discussion.—Figure 2(a) shows that the

carbon support has a much larger surface area than the
NP and there is a small azimuthal tilt angle offset between
the carbon edge and the horizontal diffraction direction of
the scanning probes. Consequently, we model the contri-
bution of the carbon edge to be 30 times stronger than that
from the NP in the approximate external potential and
further account for a 5° angular misalignment between the
probes and the carbon edge [Fig. 2(g)]. We use this
simulated potential to generate spectral images via
Eq. (3) that are in excellent qualitative agreement with
the experimental results [Fig. 2(h)]. By taking the differ-
ence of the plasmon-integrated spectral images with the
destructive and constructive interferometer alignments, we
can find the spatially resolved interference term in the
energy-loss spectrum [Eq. (4)], which shows the same
structure as the simulated result [Fig. 2(i)].
As a more quantitative visualization, we assign a relative

probe phase to each pixel in Fig. 2(e) by normalizing the
ZLP intensity and inverting Eq. (1). The normalized
integrated ZLP and plasmon intensities of each pixel are
plotted as a function of the assigned relative probe phase in
Fig. 3. We show the mean values binned by every π=12
relative phase interval along with the theoretically predicted
values for Δφ ¼ π. To account for the uncertainty in the
ZLP intensity maxima and minima corresponding to Δϕ ¼
0 and Δϕ ¼ π, we introduce a π=12 systematic error in the
standard deviation of the binned values added in quad-
rature. The error given for the mean integrated plasmon
intensities is the standard deviation for each binned region,
and the phase error is assumed to be the same as the mean
ZLP data. Deviation of the measured ZLP intensity from

the theoretical prediction is well understood by the small,
but nonzero contributions of the higher-order probes from
G1 causing a loss of fringe visibility. This does not have a
substantial effect on the visibility of the plasmon interfer-
ence, because the higher-order probes are further away
from the NP than the main�1 probes and the plasmon loss
probability is exponentially suppressed for large impact
parameters [27]. Additional measurements were per-
formed on a separate gold NP, also demonstrating the
converse dipole interference relation (see Supplemental
Material [21]).
Similar conditional interference relations exist between

the ZLP and higher-order multipolar modes, dependent on
the geometry and symmetry of their spatial distributions
and the probe positions, although they are not spectrally
resolvable in spherical gold NPs. However, multiple
plasmon peaks are resolved in anisotropic NPs [28], NP
assemblies [29], or NPs made of less lossy materials [30],
where such relations could be explored using a 2GeMZI
with improved spectral resolution. Integration of a cath-
odoluminescence collection system with a 2GeMZI could
provide information about the correlation between the
phase-coherent superpositions of scattered electrons and
photons emitted from radiative dipole plasmon decay
[31,32]. This 2GeMZI could also serve to measure the
transfer of orbital angular momentum [11,12,14]. Finally,
we note that inelastic free-electron interference in the
2GeMZI is not exclusive to plasmon scattering and can
be used to probe polaritons and condensed-matter excita-
tions, in general [33].
Conclusion.—We have demonstrated phase-sensitive

interference between coherent superpositions of inelasti-
cally scattered free electrons within a two-probe 2GeMZI
from plasmonic excitations of a single gold NP. The
excitation of a plasmon introduces an expected relative π
phase difference between the two interferometer paths of
the inelastically scattered electrons, which is well described
by a dipolar interaction. Isolating this interferometer output

FIG. 3. Measured and modeled ZLP and plasmon intensities as
a function of total relative probe phase.
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provides a potential way to detect dipolar excitations at
energies below the resolution of the microscope. Beyond
individual modes, the present method should be capable of
retrieving the relative complex amplitude of the nonlocal
electromagnetic Green tensor associated with the optical
response of a specimen. Additionally, the high throughput,
flexibility, scanning capabilities, and ease of operation in a
conventional scanning TEM of this technique provide an
exciting platform for probing quantum mechanics at the
nanoscale and allow for control over the transverse
momentum of the free electron wave function. Further
development of the present technique could lead to tests of
quantum complementarity for free electrons [34], explora-
tions of decoherence theory [35], and manipulation of free
electrons with unprecedented versatility [2].
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[9] G. Guzzinati, A. Béché, H. Lourenço-Martins, J. Martin, M.

Kociak, and J. Verbeeck, Nat. Commun. 8, 14999 (2017).
[10] D. Ugarte and C. Ducati, Phys. Rev. B 93, 205418 (2016).
[11] A. Asenjo-Garcia and F. J. García de Abajo, Phys. Rev. Lett.

113, 066102 (2014).
[12] M. Zanfrognini, E. Rotunno, S. Frabboni, A. Sit, E. Karimi,

U. Hohenester, and V. Grillo, ACS Photonics 6, 620 (2019).
[13] H. Lourenço-Martins, D. Gérard, and M. Kociak, Nat. Phys.

17, 598 (2021).

[14] A. H. Tavabi, P. Rosi, E. Rotunno, A. Roncaglia, L.
Belsito, S. Frabboni, G. Pozzi, G. C. Gazzadi, P.-H. Lu,
R. Nijland, M. Ghosh, P. Tiemeijer, E. Karimi, R. E.
Dunin-Borkowski, and V. Grillo, Phys. Rev. Lett. 126,
094802 (2021).

[15] B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature
(London) 462, 902 (2009).

[16] T. T. A. Lummen, R. J. Lamb, G. Berruto, T. LaGrange, L.
Dal Negro, F. J. García de Abajo, D. McGrouther, B.
Barwick, and F. Carbone, Nat. Commun. 7, 13156 (2016).

[17] L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka,
B. W. Reed, B. Barwick, and F. Carbone, Nat. Commun. 6,
6407 (2015).

[18] A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S.
Schäfer, and C. Ropers, Nature (London) 521, 200 (2015).

[19] C. W. Johnson, A. E. Turner, and B. J. McMorran, Phys.
Rev. Research 3, 043009 (2021).

[20] J. Krehl, G. Guzzinati, J. Schultz, P. Potapov, D. Pohl, J.
Martin, J. Verbeeck, A. Fery, B. Büchner, and A. Lubk, Nat.
Commun. 9, 4207 (2018).

[21] See Supplemental Materials at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.147401 for a de-
tailed derivation of Eq. (3), a discussion of the form of
the charging potential, data collection and processing
methods, and additional experimental data, which includes
Refs. [22–24].

[22] P. B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370
(1972).

[23] F. J. García de Abajo, Phys. Rev. B 59, 3095 (1999).
[24] J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo,
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