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We consider a PT-symmetric Fermi gas with an exceptional point, representing the critical point between
PT-symmetric and symmetry broken phases. The low energy spectrum remains linear in momentum and is
identical to that of a Hermitian Fermi gas. The fermionic Green’s function decays in a power law fashion for
large distances, as expected from gapless excitations, although the exponent is reduced from −1 due to the
quantum Zeno effect. In spite of the gapless nature of the excitations, the ground state entanglement entropy
saturates to a finite value, independent of the subsystem size due to the non-Hermitian correlation length
intrinsic to the system. Attractive or repulsive interaction drives the system into the PT-symmetry broken
regime or opens up a gap and protects PT symmetry, respectively. Our results challenge the concept of
universality in non-Hermitian systems, where quantum criticality can be masked due to non-Hermiticity.

DOI: 10.1103/PhysRevLett.128.146804

Introduction.—Quantum criticality and universality play
a prominent role in various branches of physics [1–3],
ranging from electrons in solids through ultracold atoms to
quantum plasma of quarks. The emerging scale invariance
dictates the dispersion of the excitation spectrum at the
quantum critical point or the collapse of the gap upon
approaching criticality, which in turn determines the long
distance behavior of real space correlation functions. The
influence of the critical point extends over a wide temper-
ature window, and its universality applies not only in
equilibrium, but extends also to near-adiabatic processes,
such as the celebrated Kibble-Zurek mechanism [4,5].
Recently, non-Hermitian systems have been extensively

investigated [6–14], featuring, among many others, distinct
kinds of criticality and symmetry breakings. PT-symmetric
non-Hermitian Hamiltonians [15–17] possess either real or
complex pairs of eigenvalues, corresponding to eigenstates
preserving or breaking PT symmetry. The transition from the
real to complex spectrum and the associated PT-symmetry
breaking occurs at a non-Hermitian quantum critical
point, which is an exceptional point (EP) [18]. Therein,
not only does the spectrum become degenerate, but also
two (or more) eigenstates coalesce, which then no longer
form a complete basis.
In light of these, it would be important and interesting to

explore to what extent the universality of non-Hermitian
quantum critical points parallel their Hermitian counterparts.
In order to shed light on this issue, we study a PT-symmetric

Fermi gas, tuned to a PT-symmetric quantum critical
point. Similar systems can be realized in various experi-
ments. We find that in spite of the gapless nature of low
energy excitations, the spatial decay of the Green’s
function is faster at long distances than in Hermitian
systems, and cannot be accounted for by the critical
exponents of the PT-symmetric EP. The overlap of the
Hermitian and PT-symmetric ground states resembles the
fidelity near a quantum critical point. The entanglement
entropy saturates to a finite value with increasing sub-
system size as if a finite gap was present in the system. All
these features can be explained by measurement induced
quantum Zeno effect [19,20], arresting the propagation of
correlations due to the underlying continuous measure-
ment, required for non-Hermitian dynamics. Interaction
effects are also subtle: repulsive or attractive interactions
open up a gap and protect PT-symmetry or destroy
PT-symmetry and induce a second order EP, respectively.
Hamiltonian.—We study a one-dimensional (direction x),

PT-symmetric non-Hermitian Hamiltonian, which reads as

H ¼
Z

dxiv½RþðxÞ∂xRðxÞ − LþðxÞ∂xLðxÞ�

þ ΔRþðxÞLðxÞ; ð1Þ

where RðxÞ and LðxÞ describe right and left moving
fermionic fields [21,22], respectively, the system is half
filled, and we assume Δ > 0 without loss of generality.
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This Hamiltonian is apparently non-Hermitian due to the
absence of the ΔLþðxÞRðxÞ term, and also resembles a
charge density wave [22,23] Hamiltonian with only half
the couplings. Parity (P) transforms ½Rðx; tÞ; Lðx; tÞ� →
½Lð−x; tÞ; Rð−x; tÞ� while time reversal (T) results
in ½Rðx; tÞ; Lðx; tÞ� → ½Lðx;−tÞ; Rðx;−tÞ� and takes the
complex conjugate of complex numbers [24]. This
Hamiltonian can be realized using an effective Lindblad
description, as discussed below Eq. (11).
Eq. (1) has real eigenvalues, which follows from rewrit-

ing it in momentum space for a given momentum mode as

Hp ¼
�
vp Δ
0 −vp

�
; ð2Þ

whose spectrum is purely real as ε�ðpÞ ¼ �vjpj,
independent from Δ. It thus describes a critical system
with dynamical critical exponent z ¼ 1. Therefore, the
partition function Tr½expð−H=TÞ� is formally identical to
that in a Hermitian Fermi gas. In the following, we show
that in spite of this, many physical properties are affected
by the presence of Δ through a correlation length
associated to v=Δ.
SinceHp is PT symmetric and possesses a real spectrum,

it can be brought to Hermitian form after a similarity
transformation [15,16,24] as

S−1HpS ¼
�
vp 0

0 −vp
�
; S ¼

�
1 − Δ

2vp

0 1

�
: ð3Þ

In Eq. (2), the p ¼ 0 point corresponds to an EP
[11,18], when the Hamiltonian becomes defective.
The Hp is tuned to the brink of PT-symmetry breaking:
by replacing the 0 with Γ, the spectrum changes to
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2 þ ΓΔ

p
. In Eq. (1), this amounts to adding

Γ
R
dxLþðxÞRðxÞ to the Hamiltonian. For Γ > 0, a finite

gap opens, preserving PT symmetry while for Γ < 0, a
second order EP [18] is induced as �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2 − jΓjΔ

p
, and

PT symmetry is broken.
Since the spectrum of Eq. (1) is real, we can construct

the ground state of the system as the minimal energy
configuration [25], similar to the Hermitian realm [27].
Green’s functions.—We start analyzing the peculiar

properties of Eq. (1) by evaluating the equal time
fermionic Green’s functions, which are the normalGðxÞ≡
hRþðxÞRð0Þi and anomalous FðxÞ≡ hRþðxÞLð0Þi propa-
gators. The conventional one reads [25] as

GðxÞ ¼
Z

∞

0

dp
2π

Δ2eipx−αp

ð2vpÞ2 þ Δ2
þ
Z

0

−∞

dp
2π

eipxþαp; ð4Þ

where the first term arises from the non-Hermitian
coupling between the right and left movers and is
absent for Δ ¼ 0, while the second term represents the

conventional right-moving propagator [29] and is respon-
sible for the 1=x decay of the noninteracting Hermitian
Fermi gas. Here, we introduced the momentum space
cutoff expð−αjpjÞ for momentum integrals [21] with α the
short distance cutoff. In Eq. (4), the time dependence
drops out completely since the spectrum is real. In our
case, we find that

GðxÞ ¼ −
i

2πx
×

�
1 x ≪ v=Δ
−2ð2vΔxÞ2 v=Δ ≪ x

: ð5Þ

Most importantly, we observe that in spite of the gapless
nature of excitations [3] with z ¼ 1 and the complete
absence of Δ in the single particle spectrum, the real space
Green’s function decays as x−3 beyond the non-Hermitian
correlation length as opposed to the x−1 decay of free
Hermitian fermions. This is interpreted as the quantum
Zeno effect [12,19], where the propagation of correlations
is arrested by the continuous measurement within non-
Hermitian quantum mechanics; thus significantly reduced
correlations are present in the system in the end. We note
that within the correlation length, the conventional fer-
mionic decay is revealed. Similar conclusions apply to the
hLþðxÞLð0Þi correlator.
The decay of GðxÞ is analogous to that in gapped or

pseudogapped systems, where correlation functions decay
differently within and outside of the correlation length.
However, in that case, an additional energy scale makes its
presence felt already in the excitation spectrum; while
this feature is completely missing in our non-Hermitian
scenario, its spectrum �vjpj is featureless.
Since the right and left moving fields are coupled byΔ in

Eq. (1), an anomalous Green’s function is also present,
similarly to density waves [23], as

FðxÞ ¼ −
Z

∞

0

dp
2π

2Δvpeipx−αp

ð2vpÞ2 þ Δ2
; ð6Þ

exhibiting

FðxÞ ¼ Δ
4πv

×

(
ln Δjxjeγ

2v x ≪ v=Δ

ð2vΔxÞ2 v=Δ ≪ x
ð7Þ

behavior, γ ≈ 0.5772 is Euler’s constant [30], and Fð0Þ ¼
ðΔ=4πvÞ lnðΔαeγ=2vÞ. In a conventional gapped density
wave, this correlation function decays exponentially as
expð−jxjΔ=vÞ. In contrast, a long distance power law decay
is identified here due to gapless excitations. Since FðxÞ is
directly proportional to Δ and vanishes in a Hermitian
Fermi gas, it can be used to reveal the presence ofΔ at short
distances too. The correlator hLþðxÞRð0Þi follows similar
behavior in spite of the fact that no LþR coupling is present
in the Hamiltonian. By moving away from the critical
point, the Green’s function decays exponentially deep in
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the PT-symmetric phase with an exponent reduced by
the quantum Zeno effect, while in the PT-broken regime,
a power law decay ∼x−3=2 shows up due to the second
order EP.
The ground state carries a finite current since the

non-Hermitian term in Eq. (1) converts left to right
movers. The particle current density [21,22] j is

j ¼ vhRþðxÞRðxÞ − LþðxÞLðxÞi ¼ Δ
4
; ð8Þ

independent of x. At the same time, our system realizes a
charge density wave as the real space density profile nðxÞ
oscillates as

nðxÞ − n0 ¼
Δ
2πv

ln

�
Δαeγ

2v

�
cosð2kFxÞ; ð9Þ

where n0 is the homogeneous particle density in the Δ ¼ 0
system and kF is the Fermi wave number.
Fidelity.—To investigate the relation between the gapless

Hermitian (Δ ¼ 0) and PT-symmetric (Δ ≠ 0) ground
states, their overlap, the fidelity [31,32], is evaluated to
yield

hΨ0jΨΔi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðLΔ=4vÞp ¼
(
e−

LΔ
8vþln2

2
LΔ
v ≫ 1

1− ðLΔ
8v Þ2 LΔ

v ≪ 1.
ð10Þ

This is analogous to the behavior expected in Hermitian
systems around a Hermitian quantum critical point [32],
although in the present case, both systems with Δ ¼ 0 and
Δ ≠ 0 are identically critical with identical gapless spectra.
This supports the narrative associated to non-Hermitian
correlation length, masking the gaplessness of the spectrum
in various physical quantities.
Lattice realization.—Our system can be realized with

fermions in a one-dimensional half-filled tight binding
chain with periodic boundary condition (PBC) and even
number of sites as

Htb ¼
X
n

Jþ iδð−1Þn
2

ðcþn cnþ1 þ cþnþ1cnÞ þ ð−1Þngcþn cn;

ð11Þ

where J is the uniform hopping, g is an alternating on site
potential, δ stems from a non-Hermitian alternating
hopping, and c’s are fermionic annihilation operators.
The non-Hermitian term arises from an effective Lindblad
equation without the recycling term [33] using jump
operators for bonds [34–37] as

ffiffiffi
δ

p ðcn � cnþ1Þ on even
(þ) and odd (−) bonds, and neglecting a constant shift,
proportional to the total particle number. In momentum
space, the ensuing Hamiltonian in the basis of ðck; ck−πÞ
with 0 ≤ k < π reads as

Htb
k ¼

�
J cosðkÞ gþ δ sinðkÞ

g − δ sinðkÞ −J cosðkÞ

�
ð12Þ

with dispersion E�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 þ δ2Þ cos2ðkÞ þ g2 − δ2

p
.

Expanding this around the Fermi wave number π=2 for half
filling, we get Eq. (1) for g ¼ δ as v ¼ J and Δ ¼ 2g. As
long as g ≥ δ, the system is PT symmetric, and the spectrum
is real. However, for g < δ, there is always a region close to
k ¼ π=2 with imaginary pairs of eigenvalues; thus, the PT
symmetry is broken. From this point on, we consider the
g ¼ δ case, when Htb is tuned to the boundary of PT
symmetry and represents a lattice realization of Eq. (1). For
more details of Htb, see Ref. [25].
First, we evaluate numerically the fermionic Green’s

function, GtbðmÞ ¼ hcþmþncni. Due to the commensurate
Fermi wave number π=2, this measures directly GðxÞ
or FðxÞ for odd or even n, because they are multiplied
by the sinðkFmÞ and cosðkFmÞ factors in the full
fermionic Green’s function, respectively. In particular,
for g ¼ δ ¼ 0, we recover the conventional expression
GtbðmÞ ¼ sinðπn=2Þ=nπ. For finite g ¼ δ, the system
indeed exhibits a charge density wave pattern with
gapless, linearly dispersing excitations. In Fig. 1, we
numerically evaluate the tight binding Green’s function in
the thermodynamic limit, which agrees with GðxÞ and
FðxÞ, as advertised above.
Entanglement.—With the knowledge of the single

particle Green’s function, we address the entanglement
properties of our system. In particular, we evaluate the
von-Neumann entanglement entropy SðmÞ between the
subsystem of size m and the rest of the chain using
Refs. [38–41]. We have also checked on small systems up
to 26 sites that by numerically exact diagonalizing
the many-body problem of Eq. (11) and brute force

100 101 102 103
10-10

10-8

10-6

10-4

10-2

100

FIG. 1. The absolute value of the lattice Green’s function is
plotted for even (blue) and odd (red) spatial separation and
g ¼ δ ¼ 0.2J. The reduction caused by the quantum Zeno effect
is clearly visible in the long distance asymptotics, which agrees
with the continuum limit calculation. The black dashed lines
show the m−2 and m−3 power law decays.
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calculating the subsystem entanglement agrees with the
Green’s function based approach. We find that for a small
subsystem size m, the entanglement entropy follows a
SðmÞ ¼ 1

3
lnðmÞ growth [42,43]. This indicates that the

central charge [31,44–46] of the non-Hermitian system
with EP in Eq. (1) remains 1. Upon further increasing the
subsystem size such that m ≫ J=g, the entanglement
entropy saturates to a constant value, shown in Fig. 2,
similarly to what happens in one-dimensional gapped
systems. However, our Hamiltonian is gapless, but the
presence of non-Hermitian coherence length stops the
logarithmic entanglement growth, similarly to how it
affects the decay of the Green’s function through the
quantum Zeno effect [19]. The scaling of the saturation
value of the entanglement entropy for a large subsystem
agrees surprisingly with Ref. [42] as Sðm ≫ J=gÞ ¼
1
3
lnðJ=gÞ þ 2

3
after identifying the correlation length with

the non-Hermitian coupling. This behavior is highly
unusual and challenges the interpretation of criticality
and universality in non-Hermitian systems: in spite of the
typical gapless excitation spectrum in one dimension, the
entanglement entropy still saturates as if the system was
gapped. This “contradiction” is cured upon realizing that
in spite of the gapless spectrum, the asymptotic decay of
the Green’s function gets suppressed by the quantum Zeno
effect, which results in an effective gapped type subsystem
entanglement entropy.
We mention that in related nonunitary conformal field

theories and critical systems [47–50], the conventional
SðmÞ ∼ lnðmÞ behavior was found. The difference between
these and our findings follows from the fact that either a
distinct definition of the reduced density matrix is used [49]
or in the models of Refs. [47,48,50] the right ground states

of both H and Hþ are equal to each other, which is not the
case [25] for Eq. (2).
Interaction effects.—Since low dimensional systems are

susceptible to various instabilities, we address here the role
of electron-electron interactions on Eqs. (1) and (11). On
the lattice, this amounts to considering the nearest-neighbor
interaction as Hint ¼ V

P
m cþmcmcþmþ1cmþ1. This interac-

tion preserves PT symmetry. In similar situations [21], one
typically performs a renormalization group calculation to
address the relevance of interaction processes. In our case,
however, a perturbative Hartree-Fock calculation already
suffices as

HHF
int ¼ V

X
m

2hcþmþ1cmþ1icþmcm − hcþmþ1cmicþmcmþ1

− hcþmcmþ1icþmþ1cm þ const; ð13Þ

where the expectation values are taken with respect to the
noninteracting ground state. The first Hartree term on the rhs
renormalizes g by 2Vg=ðπJÞ lnð2J=gÞ, while the last two
Fock terms mostly induce a shift to the Fermi wave vector,
which turns out to be irrelevant at weak interactions, and the
first term in Eq. (13) governs the weak coupling physics.
For repulsive interactions, the renormalized g is enhanced;
thus a clean gap opens up in the spectrum and protects PT
symmetry. On the attractive side, g gets renormalized to
smaller values; hence δ becomes larger than the renormal-
ized g, the PT symmetry gets broken, and part of the
excitation spectrum becomes imaginary.
This conclusion is corroborated by studying Htb þHint

numerically using exact diagonalization on a system with
26 lattice sites and 13 particles and PBC. We study the
spectrum around the ground state energy E0 for weak
interactions, where E0 represents the eigenenergy with the
lowest real part. This turns out to be unique and purely real
in this case. The many-body spectrum for the six lowest
lying states above the ground state are plotted in Fig. 3.
There is a finite gap in the noninteracting, V ¼ 0 limit due
to finite level spacing; therefore the PT-symmetry breaking
is shifted to finite negative V. This together with the finite
noninteracting gap vanishes with increasing system size.
Relation to sine-Gordon model.—One-dimensional

quantum systems are often studied via bosonization [21].
By applying it to Eq. (1), we get

H ¼
Z

dx
2π

vf½πΠðxÞ�2 þ ½∂xϕðxÞ�2g þ
Δ
2πα

e−i2ϕðxÞ; ð14Þ

where Π and ϕ are dual fields satisfying ½ϕðx1Þ;Πðx2Þ� ¼
iδðx1 − x2Þ at equal times. This is the non-Hermitian “half”
of the conventional sine-Gordon model, and both the
imaginary sine and real cosine potentials have equal
strengths [24,36]. Due to this, the absolute value of the
potential term is constant and is unable to localize the ϕ
field. This is manifested in the linear energy-momentum
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FIG. 2. The von-Neumann entanglement entropy is plotted for
g ¼ δ ¼ 0.01J, 0.03J, 0.05J, and 0.07J from top to bottom. The
black dashed line denotes a 1

3
lnðmÞ þ 2

3
curve. The inset shows

the saturation value of the entanglement entropy for a large
subsystem size as a function of g ¼ δ. The black dashed line
denotes 1

3
lnðJ=gÞ þ 2

3
.
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relationship from the original, fermionic treatment. The fate
of adding ei2ϕðxÞ potential to Eq. (14) is discussed in
Ref. [25]. We speculate that a mapping of this bosonic
Hamiltonian back into the fermionic one could play an
important role when analyzing strongly correlated non-
Hermitian systems [37] at their respective Luther-Emery
point [51].
Experimental possibilities.—Eqs. (1) and (11) can be

realized using a waveguide lattice [52], simulating an
effective non-Hermitian Hamiltonian experimentally.
From Refs. [53–55], our setup can be created with ion
trap physics, simulating our system in a minimal setting
consisting of two atomic levels and a motional degree of
freedom. Ultracold bosonic atoms loaded into an optical
lattice as in Refs. [36,37] with controlled losses represent
another viable route. In this case, the density matrix of the
system evolves according to a Lindblad equation. By
continuously measuring the environment [12,33,56] and
postselecting the data to ensure that the state of the
environment remains unchanged, the effective Hamil-
tonian becomes non-Hermitian and of the form of
Eq. (1). Additionally, one can use single photon interfer-
ometry to realize our momentum space Hamiltonians [57].
Summary.—We have studied the properties of a PT-

symmetric quantum critical point. We find that it is “less
universal” than its Hermitian counterpart: the equal time
Green’s function decays faster for longer distances than
expected from the linear energy-momentum relationship.
This occurs due to the quantum Zeno effect, which slows
down the propagation of excitations due to continuous
measurement. As a result, the spatial entanglement entropy
saturates to a finite value with increasing subsystem size, and
the saturation value is determined by the non-Hermitian
correlation length, in spite of the gapless nature of excita-
tions. Repulsive electron-electron interaction opens up a gap

by protectingPT symmetrywhile attractive interaction breaks
PT symmetry and induces a second order exceptional point.
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