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It has recently been reported that bacteria, such as Escherichia coli Bhattacharjee and Datta, Nat.
Commun. 10, 2075 (2019). and Pseudomonas putida Alirezaeizanjani et al., Sci. Adv. 6, eaaz6153 (2020).,
perform distinct modes of motion when placed in porous media as compared to dilute regions or free space.
This has led us to suggest an efficient strategy for active particles in a disordered environment:
reorientations are suppressed in locally dilute regions and intensified in locally dense ones. Thereby
the local geometry determines the optimal path of the active agent and substantially accelerates the
dynamics for up to 2 orders of magnitude. We observe a nonmonotonic behavior of the diffusion coefficient
in dependence on the tumbling rate and identify a localization transition, either by increasing the density of
obstacles or by decreasing the reorientation rate.

DOI: 10.1103/PhysRevLett.128.144501

The natural habitat of a wide range of micro-organisms
are complex crowded media. Examples are micro-
organisms that populate and colonize rocks, modeled as
microporous spaces, as well as bacteria that contaminate or
purify soil [1,2]. In living matter, micro-organisms find
themselves in a crowded environment, such as bacteria
invading mucus [3–6] or cells invading tissue [7]. In many
of these instances, it is vital for the micro-organism to move
efficiently through the porous and tortuous environment
that they are stuck in. The search for nutrients as well as the
escape from a poisonous environment has to be sufficiently
fast. Many technical applications, such as water purifica-
tion and decomposition of contaminants trapped in the
ground [8,9] rely on efficient dynamics of bacteria. In
medical applications, bacteria are engineered to sense the
porous environment of a tumor [10,11] or micro-organisms
are designed for drug delivery [12]—fast and efficient
dynamics of the bacteria being essential for their task.
Despite these widespread applications, there is yet no
consensus on how the dynamics of such organisms are
adapted to perform most efficiently in a complex and
crowded medium. This has led us to ask: What is the best
strategy for active agents to explore large porous regions in
short time? To what extent can adaptation to the inhomo-
geneous environment accelerate the dynamics?
Several theoretical studies and simulations have

addressed active particles in a random environment [13–
18]. Frequently the porous medium is modeled by the
Lorentz model [19,20], where static obstacles are placed
randomly in space, covering a volume (area) fraction ϕo.
Zeitz et al. [14] simulated active Brownian particles, whose

diffusion constant is depressed due to the tendency of active
particles to get stuck around obstacles. Reichhardt and
Reichhardt [15] include a drift term; surprisingly, the drift
velocity is nonmonotonic as a function of run time for given
ϕo. Bertrand et al. [16] compute the diffusion constant of
active particles in a lattice gas model and show that the
diffusion constant is nonmonotonic in the tumbling rate as
long as the obstacles are static (or very slow). More
recently, Kurzthaler et al. [17] derived a geometric criterion
for optimal spreading, when the run length of the bacteria is
comparable to the longest straight path in the porous
medium. In contrast to these approaches, we suggest a
local adaptation mechanism of the dynamics. Sensing the
local density allows the micro-organisms to adjust their
hopping rate efficiently in a strongly inhomogeneous
environment. Reorientation in dilute regions is ineffective
and hence suppressed; reorientation in dense regions and,
in particular, in traps is essential and hence fostered.
Local sensing of the environment has been adopted as a

survival mechanism in many phyla throughout the animal
kingdom. Several micro-organisms regulate their behavior
according to the density of neighbors or to local gradients
in phoretic propulsion. For example, a mechanism known
as quorum sensing allows bacteria to change their speed
according to the density of neighbors [21–28]. Schools of
fish have been observed to regulate their speed according to
the density of neighbors [29,30]. Regarding chemotaxis of
bacteria in porous media, it has been suggested that the
tumbling rate [31] as well as the tumbling angle [32]
changes in response to the local chemotactic concentra-
tion. Bacteria with several swimming modes, such as
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Pseudomonas putida [33], can switch between different run
modes in response to chemotactic conditions, optimizing
their chemotactic strategy. Volpe and Volpe [34] argue that
the topography of the environment globally enhances the
random motion as compared to the ballistic one. Recent
experiments by Bhattacharjee and Datta [35] on bacterial
hopping in porous media revealed that random disorder
does not just change the tumbling frequency and, con-
sequently, also the run length. Instead, the bacteria are able
to change their dynamics if trapped, so that hopping
becomes dependent on the geometry of the pore space.
Model.—We consider the dynamics of an elongated

tracer particle in a two-dimensional medium of static
obstacles with area fraction ϕo. The tracer is modeled as
a rigid trimer, consisting of three beads of radius Rt. The
position vector of the central bead is denoted by r. The two
peripheral beads are rigidly attached to the central bead,
forming a linear configuration, whose orientation is speci-
fied by a unit vector n ¼ ðcosφ; sinφÞ. The position
vectors of the two peripheral beads are thus given by
r� ¼ r� 2Rtn. The trimer is considered a model for an
elongated particle of aspect ratio 3. The obstacles are
modeled as disks (2D), much larger than the beads of the
trimer. In the following, we choose for the ratio of obstacle
radius to tracer radius Ro=Rt ¼ 10. The interaction of the
beads with the obstacles FðrÞ is taken as a contact potential,
modeled by a stiff spring.
Since the trimer is modeled as a rigid body, its dynamics

is fully characterized by an equation for the translational
motion of the center of mass, which is taken to coincide
with r, and an equation of motion for the orientation φ. We
assume overdamped dynamics, according to

_r ¼ va þ
1

γ

XNo

i¼1

Fi: ð1Þ

The total force on the center of mass due to obstacle
i at position vector Ri, is given by Fi ¼ Fðr − RiÞþ
Fðrþ − RiÞ þ Fðr− − RiÞ. The active velocity va is applied
along the direction of the trimer n. Interactions with the
obstacles cause the trimer to rotate,

_φ ¼
XNo

i¼1

τi; ð2Þ

where the torque τi is explicitly given by τi ¼ ðrþ − rÞ×
Fðrþ − RiÞ þ ðr− − rÞ × Fðr− − RiÞ. The torque is always
normal to the plane of motion and τi is the projection of the
vectorial torque on the normal of the plane of motion.
The occasional tumbling of bacteria has been modeled as

a stochastic reorientation process. For example, the bacteria
reorient in random directions with a given probability. Such
a model is widely accepted for run and tumble dynamics
in solution. Does it apply also in dense porous media?

Recently, it has been shown [35] that bacterial dynamics are
changed when they are trapped. This has led us to introduce
a reorientation mechanism that depends on the local
environment of the tracer. In particular, the reorientations
that disturb the ballistic motion in void space and simulta-
neously prevent the particles from getting trapped are
adapted to the local density in a strongly heterogeneous
environment. In that way, we try to model the experimental
finding that “hops are guided by the geometry of the pore
space” [35].
Physical interactions between bacteria and surfaces are

known to be determined by near-field lubrication forces
[36–38] and steric collisions [39]. Bacterial responses to
such interactions vary from trapping in almost deterministic
circular trajectories [37] to enhanced reorientations [40]
depending on the type of surface and species. It has also
been shown [41–43] that mechanical load on the flagella
alters the flagellar motor kinematics and thereby modulates
reorientations.
With a rate of λ ¼ 1=tre the local volume fraction ϕlocal is

calculated inside a region with radius rl, surrounding the
trimer’s head (see Fig. 1). We use a function GðϕlocalÞ to
generate the probability of performing a random reorien-
tation in the full range from 0 to 2π. The functional form of
GðϕlocalÞ incorporates the sensing mechanism that we refer
to as “density sensing” in the following. Constant G results
in the standard run and tumble dynamics with the rate of
λ ¼ 1=tre, independent of the local environment. For a
more sensitive function to ϕlocal we consider a sigmoidal
form as

GðϕlocalÞ ¼
C

1þ exp−kðϕlocal−ϕ0Þ ð3Þ

for the reorientation probability, with C being the normali-
zation factor. This choice reflects a high probability of
reorientation in a locally dense region and a very low
probability in a locally more dilute region. To approximate
a step function, we choose k ¼ 100 and ϕ0 ¼ 0.63.

FIG. 1. Left: a hypothetical disk (shown in gray) is defined for
each trimer by a concentric area of radius rl centered around the
trimer’s head. The local area fraction ϕlocal is the overlap of the
hypothetical disk with neighboring obstacles. Right: uniform
(blue) and sigmoidal (red) G.
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We want to analyze the dynamics of the tracer particle
as a function of several parameters. Without density-
dependent reorientation, these are the magnitude of the
active velocity va and the packing fraction of the obstacles
ϕo. Including density-dependent reorientation, the impor-
tant parameter is the timescale tre of reorientation. The size
of the region rl to determine the local density should be
comparable to the size of the obstacle. Other functions
GðϕoÞ, mapping ϕlocal to the probability of reorientation,
may be considered in future work.
The parameters can be expressed in timescales. We

measure lengths in units of 2Rt and times in units of the
active timescale ta ¼ 2Rt=va, which is controlled by the
active velocity. In these units, the reorientation time τre ¼
tre=ta is the Péclet number. The collision time is given as
t−1coll ¼ 2vaRoNo=L2 or in dimensionless units ta=tcoll ¼
2RoRtNo=L2. It is controlled by the area fraction
ϕo ¼ NoπR2

o=L2. Both tumbling as well as collisions
randomize the velocity of the active particle and give rise
to diffusion and hence cause a crossover from ballistic to
diffusive motion.
We used HOOMD-BLUE [44] to integrate Eq. (1) and run

molecular dynamics simulations on a graphics processing
unit (ΔtMD ¼ 10−2). The FREUD package [45] is used to
investigate the local environment. For each set of (τre, ϕo),
10–50 simulations are performed, each with 100 indepen-
dent trimers and No ¼ 2500 random obstacles without
overlaps.
Results.—We focus here on the dynamics of tracer

particles adapted to their local environment. In Fig. 2 we
show the mean square displacement (MSD) for GðϕlocalÞ
(full line) in comparison to a constant G (dashed line). The
most striking observation is the strong boost of the
dynamics for density sensing, when the reorientation time
is comparable to the timescale of active motion. The
acceleration is due to uninterrupted ballistic motion as
well as reduced trapping times. For moderate densities,

such as ϕo ¼ 0.4 shown in Fig. 2, the first mechanism
dominates, whereas for rather dense systems, such as
ϕo ¼ 0.7, the latter dominates (see below).
To quantify the acceleration due to density sensing, we

extract a diffusion constant as the slope of the MSD in the
diffusive regime. It is plotted in the inset of Fig. 2 as a
function of τre for both uniform and sigmoidal G. The
diffusion constant is larger by almost 2 orders of magnitude
for density sensing and τre ∼ 1, i.e., when the reorientation
time is comparable to the timescale of active motion.
Furthermore, the diffusion constant is nonmonotonic in
τre, as already observed in Fig. 2. The fastest dynamics is
found for τre ∼ 5 and slows down for increasing as well as
decreasing τre. This nonmonotonic behavior has been
observed previously for constant reorientation rate [16],
where it is in fact more pronounced. It can be explained by
the following intuitive argument: For large τre the particles
are stuck for a long time in a locally dense region of
obstacles, so that the diffusion constant is small and
approximately inversely proportional to τre. For small
τre, randomization of the active motion is fast, so that
the crossover from ballistic motion to diffusive behavior
happens at early times, resulting in small values of the
diffusion constant for small τre. These two effects together
give rise to an optimal value for τre, for which the dynamics
is fastest.
The difference between uniform and sigmoidal G dis-

appears for very long reorientation times, when reorienta-
tion is so rare that ballistic motion is mainly interrupted by
collision events that are the same for both models. It has
been suggested recently [17] that reversing the velocity of
the active particle is an efficient means to accelerate the
dynamics. For the sigmoidal G, random reorientation and
run-reverse dynamics can hardly be distinguished (see
Fig. 1 in the Supplemental Material).
The boost of the dynamics with density sensing can be

traced back to the distribution of waiting times, defined as
the time interval between two reorientation events. The
distribution is a simple exponential for a uniform G and all
densities, characterized uniquely by τre. In contrast, sig-
moidal G gives rise to a second exponential, which slows
down dramatically as the density decreases, see Fig. 3(a). In
fact, the decay rate β of the distribution increases approx-
imately exponentially with ϕo. The long relaxation times
for moderate ϕo are directly related to increasingly long
straight paths for dilute systems. Following Refs. [17,46]
we compute the distribution of straight paths that lie
entirely in the void space of the porous medium. The
distribution of these so-called chord lengths is shown in
Fig. 3(b). The distribution strongly resembles the distribu-
tion of waiting times. The average waiting time hτwrei is the
average distance the trimer travels from one trap to another,
divided by the swimming speed. We estimate this distance
as the mean chord length [extracted from Fig. 3(b)] times
the average number of collisions (evaluated by tracking

FIG. 2. MSD of trimers for ϕo ¼ 0.4 and different reorientation
times τre. Comparison of sigmoidal (full line) and constant G
(dashed line). Inset: diffusion coefficient versus τre; a sigmoidal
function G (blue) is compared to a constant G (red).
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trajectories) between two tumbling events. The inset of
Fig. 3(b) compares this estimate for hτwrei to the values
computed from the distribution of waiting times [Fig. 3(a)].
The good agreement gives further support to our conclusion
that the frequency of reorientation is determined by the
geometry of the environment. The latter determines the
optimal path for the active particle [47], which is clearly
seen in the videos in the Supplemental Material [48].
Interestingly, the mean waiting time hτwrei for optimal
transport in our model (τre ∼ 5) lies in a similar range as
the experimental data [35] suggest (for details, see the
Supplemental Material [48]).
The dependence of the dynamics on the area fraction of

obstacles is shown explicitly in Fig. 4. As one expects, we
see ballistic motion for short times and then a crossover to
diffusion at long times. As the density of obstacles ϕo is
increased, the diffusion constant is reduced and, eventually,
at ϕo ¼ 0.7 all particles are localized, exhibiting a plateau
in the MSD. The size of the plateau is the average squared
localization length and independent of the dynamics. At the
localization transition, we observe subdiffusive behavior.
The localization transition in the Lorentz model with
nonoverlapping obstacles is a percolation transition.

The critical packing fraction for localization ϕcrit depends
on the size ratio Ro=Rt and has been computed in [49].
A finite fraction of particles is localized even for ϕo <

ϕcrit due to the existence of finite size void regions,
coexisting with the macroscopic void area. In fact, the
size of these cages is widely distributed; for ϕo ¼ 0.4 it
varies over more than 2 orders of magnitude (see Fig. 3 in
the Supplemental Material [48] for an example). A quanti-
tative measure of partial localization is provided byQðt; dÞ,
the fraction of particles which have moved less than d in
time t. Choosing d ¼ 0.3L, we observe that Qðt; dÞ decays
to a finite value even well below ϕo ¼ 0.7, implying that a
finite fraction of the particles is localized [see Fig. 5(a)]. As
the percolation transition is approached, the relaxation time
of Qðt; dÞ diverges as can be seen in Fig. 5(b), where we
plot τQ, defined as QðτQ; dÞ ¼ 0.6. The fraction of local-
ized particles Q∞ðdÞ for ϕo ≤ 0.7 depends, of course, on
the chosen value of d. In Fig. 5, this was chosen comparable
to system size in order to show that a finite fraction of
particles is localized on scales comparable to system size.
For dense systems, e.g., ϕ ¼ 0.6, the dominant mecha-

nism responsible for the speedup of transport is the
enhanced escape from cages. Whereas, for uniform G,
particles reorient as close to the inner boundaries and dead
ends of the cage as they do in the center of the cage, for
sigmoidal G they effectively reorient only at dead ends,
resulting in a negligible number of reorientations, unless it
is necessary to escape a trap. Thereby, the mean trapping
time is reduced by a factor of approximately 2 for sigmoidal
G as compared to uniform G and most pronounced for the
highest densities [see Fig. 5(c)].
Localization can also occur for smaller ϕo, such as

ϕo ¼ 0.4, if the reorientation time is increased accordingly.
This is apparent in Fig. 2, where we observe the emergence
of a plateau for ϕo ¼ 0.4 and τre ≥ 500. Reorientations are
a rare event, but will take place for sufficiently long times.

(a) (b)

FIG. 3. (a) Probability density function (PDF) of waiting
times between two reorientation events. (b) PDF of chord
lengths. Inset: mean waiting time from the distribution in the
left (Sim.) compared to estimate from chord lengths (Est.). All
for different ϕo, a sigmoidal G, and τre ¼ 5.

(a)
(b)

(c)

FIG. 5. (a) Qðt; dÞ for d ¼ 100, τre ¼ 5, and several values of
ϕo (color coding as in Fig. 4). (b) The relaxation time τQ, defined
by QðτQ; dÞ ¼ 0.6, versus ϕo. (c) Comparison of mean trapping
time for uniform (red) and sigmoidal (blue) G as a function of ϕo.

FIG. 4. MSDof trimers for τre ¼ 5 and different area fractionϕo;
comparison of sigmoidal (full line) and constant G (dashed line).
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Hence we expect to see a crossover to diffusive behavior for
even longer times, in contrast to tracers above the perco-
lation threshold (light blue curve in Fig. 4), which are truly
localized. Increasing τre thus provides another route to
glassy dynamics in active matter (see Fig. 1 in the
Supplemental Material [48]).
We have introduced a model for bacterial spread in a

porous medium, which substantially accelerates the
dynamics. It is based on a sensing mechanism of the local
density and thereby reduces adverse tumbling in locally
dilute regions and enhances necessary reorientations, when
the bacteria are trapped in local cages. The extremely long
waiting times between successive tumbling events for
moderate densities can be traced to the geometry of the
porous structure that determines the optimal path of the
active agent. For the fully random structure under consid-
eration, the diffusion constant can be enhanced by 2 orders
of magnitude. We expect the effect to be even stronger in a
structured system whose inhomogeneities extend over
finite length scales.
The model can be easily extended to other transport

phenomena that require scanning of the environment. A
prominent example is chemotaxis, requiring local sensing
of food or poison. Here a concentration-dependent tum-
bling rate may be the simplest model to account for directed
motion in a concentration gradient.
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