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A many-mode laser with nonlinear modal interaction could serve as a model system to study many-body
physics. However, precise and continuous tuning of the interaction strength over a wide range is

challenging. Here, we present a unique method for controlling lasing mode structures by introducing
random phase fluctuation to a nearly degenerate cavity. We show numerically and experimentally that as
the characteristic scale of phase fluctuation decreases by two orders of magnitude, the transverse modes

become fragmented and the reduction of their spatial overlap suppresses modal competition for gain,
allowing more modes to lase. The tunability, flexibility, and robustness of our system provides a powerful

platform for investigating many-body phenomena.
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Many-body interaction has been a general topic in
numerous fields of research, including condensed matter
and particle physics, astronomy, chemistry, biology, neuro-
science, and even social sciences. In optics, many-body
interactions have been studied in a variety of active systems
with different types of nonlinearities, which display a range
of phenomena such as synchronization, pattern formation,
bistability, and chaotic dynamics [1]. A well-known exam-
ple is multimode lasers, where many lasing modes interact
nonlinearly through the gain material. The complex inter-
actions provide an optical realization of XY spin
Hamiltonian and geometrical frustration [2—4]. In a random
laser, the nonlinear coupling of lasing modes in a disor-
dered potential leads to the “glassy” behavior and a replica-
symmetry breaking phase transition [5-7].

A continuous tuning of modal interaction strength over a
wide range is essential to investigate many-body interac-
tion, but it is difficult to realize experimentally. Previously,
spatial modulation of pump intensity (optical gain) was
adapted for controlling the nonlinear interaction of lasing
modes in random media [8—12]. While the lasing modes
compete for optical gain, the degree of competition
depends on the spatial and spectral overlap of these modes
[13—15]. Tuning the amount of disorder can vary the spatial
distribution of random lasing modes, modifying their
overlap [16,17]. However, the lasing thresholds of these
modes are also changed, in correspondence to the changes
in their lifetimes or quality (Q) factors [18]. As the number
of lasing modes varies, their interaction through gain
saturation is affected. Therefore, it would be desirable to
tune the spatial overlap of the lasing modes without
significant modification of their thresholds.

In this Letter, we introduce transverse disorder to a self-
imaging cavity thereby inducing fragmentation of lasing
modes. By varying the spatial scale of random phase
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modulation imposed by a spatial light modulator inside
a degenerate cavity, we gradually tune the transverse size of
lasing modes over two orders of magnitude. As the lasing
modes adapt to the random phase variations and become
localized in separate domains, their spatial overlap is
reduced, and their nonlinear interaction via gain competi-
tion is suppressed. Unlike with random lasers, the Q factors
of many modes are determined mainly by the longitudinal
confinement which remains constant during the tuning of
transverse disorder, allowing these modes to lase simulta-
neously. Experimentally, the number of lasing modes
increases as the characteristic length scale of random
phase fluctuation decreases, indicating that the reduction
of nonlinear modal interaction dominates over Q factors
spoiling.

The increase in the number of lasing modes due to modal
fragmentation by disorder bears a resemblance to the
fragmentation of Bose-Einstein condensates (BEC) with
repulsive interactions in a disordered potential [19]. The
energy cost of fragmentation, proportional to the spatial
overlap of fragmented BECs [20], is suppressed as the
BECs become localized by the disordered potential, similar
to the cost of gain competition suppressed for the localized
lasing modes. The mapping between energy cost in atomic
systems and gain or loss in photonics [3] can therefore be
used to study other many-body interacting systems, in
particular the interplay between nonlinear interaction and
disorder, using photonic simulators [21,22].

Figure 1(a) schematically shows our degenerate cavity
laser (DCL) of length 1 m and transverse dimension of
0.95 cm. It is composed of a reflective spatial light
modulator (SLM), a Nd:YAG rod (length = 10.9 cm,
diameter = 0.95 cm) optically pumped to provide gain, a
pair of lenses (L1, L2) arranged in a 4f configuration, and
an output coupler (OC). The telescope formed by L1 and
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L2 images the SLM surface onto the OC and then back to
the SLM [23]. The self-imaging condition allows many
transverse field distributions to be eigenmodes of the
cavity. The typical DCL has a flat mirror in place of the
SLM, and it has many transverse modes with nearly
degenerate frequency and loss [27]. By inserting a SLM
into the degenerate cavity, the transverse mode structure
may be reconfigured easily and arbitrarily [24]. A com-
puter-generated random phase profile ¢(x, y) is displayed
on the SLM. The random phase spatial correlation function

Cy(Ax, Ay) = (p(x,y)p(x + Ax,y + Ay)),, (1)

is computed, where (...),, denotes averaging over the
spatial coordinates x and y. Its full width at half maximum
(FWHM) gives the correlation length £ of phase fluctuation
[23]. The SLM enables continuous tuning of £ from 0.1 mm
to 10 mm, providing more flexibility over a glass phase
diffuser with a constant & [25].

Figure 1(b) shows an example of a random phase profile
displayed on the SLM with & = 1.5 mm, and Fig. 1(c)
shows the corresponding phase gradient. The contours of
large phase gradients reflect rapid phase variations, which
lead to strong optical diffraction. Figure 1(d) is the
measured lasing emission pattern at the OC plane, which
corresponds to the random phase profile at the SLM. As
evident, the emission intensity drops abruptly along the
high-phase-gradient contours, indicating that the lasing
modes avoid these regions with high diffraction loss.
Consequently, the lasing modes are segregated by the
random phase profile.

We apply a series of random phase profiles to the SLM,
with the correlation length ¢ varying from 10 mm to
0.1 mm. Figure 2(a) shows the emission intensity distri-
bution at the OC plane for £ = 10, 1, 0.1 mm at the pump
power of 2.4 times the lasing threshold for flat phase. At
£ =10 mm (equal to the transverse dimension of the
cavity), the emission is homogeneous and has a flat top
profile (Ieft column). As £ decreases, the emission pattern is
segmented into multiple domains (middle column). A
further reduction of £ to 0.1 mm breaks the emission into
many bright spots, each corresponding to a lasing mode
(right column). The neighboring lasing modes are mutually
incoherent, as they do not interfere with each other [23]. We
note that the bottom panel of Fig. 2(a) shows very few
bright spots in the near-field emission patterns that result
from local defects, as detailed in the Supplemental
Material [23].

To characterize the feature size of the emission pattern,
we compute the spatial correlation function of the inten-
sity distribution /(x,y) at the OC plane, C;(Ax,Ay) =
(I(x,y)I(x + Ax,y + Ay)),,, and its FWHM gives the
intensity correlation length # [23]. Figure 2(b) is a plot of
n versus £. At small £, i increases almost linearly with &, and
saturates when £ becomes comparable to the cavity transverse
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FIG. 1. Introducing disorder to a degenerate cavity laser.
(a) Schematic of a DCL, composed of a SLM, two lenses
(L1,L2), and an OC. The 4f configuration ensures a self-
imaging condition. (b) A computer-generated random phase
profile (/)é(x, y), with correlation length & = 1.5 mm, is written
to the phase-only SLM. (c) Calculated phase gradient of the
profile in (b). (d) Experimentally measured emission intensity
distribution on the OC at the pumping level of 2.2 times the lasing
threshold for flat phase. The intensity nearly vanishes along the
high-phase-gradient contours shown in (c), which effectively
segments the emission pattern.

dimensions. As & varies over two orders of magnitude, the
total emission power changes by merely 30% [23].

Next, we estimate the number of transverse lasing modes
as a function of the phase correlation length &. To this end,
we place a static glass diffuser outside the DCL and record
the speckle pattern produced by the laser emission pass-
ing through the diffuser. The intensity contrast C of a time-
integrated speckle pattern gives the number of independent
transverse lasing modes N = 1/C? [26,28].

Figure 2(c) shows how N evolves with £ at a constant
pump power. As the phase correlation length & decreases,
the number of independent transverse lasing modes
increases. This indicates that introducing disorder to a
degenerate cavity facilitates many-mode lasing [23]. As the
characteristic length scale of disorder decreases, the frag-
mentation of lasing modes reduces their spatial overlap and
suppresses their competition for gain. The decrease of
nonlinear modal interaction is dominant over the increase
of diffraction loss with disorder, allowing more modes to
lase simultaneously at the same pumping level.

To understand the effects of random phase fluctuations
on transverse modes, we conduct a numerical simulation of
a DCL with varying degree of disorder. The laser configu-
ration and dimensions are identical to the experimental
realization, with the exception that the simulated cavity has
a one-dimensional (1D) transverse cross section to reduce
computing time [23]. We first investigate how the trans-
verse modes in a passive cavity are modified by a random
phase fluctuation. Experimentally the DCL suffers from
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FIG. 2. Fragmented emission of DCL with random phase
fluctuations. (a) Random phase profiles displayed on the SLM
(top row), and corresponding emission intensity patterns at the
DCL output coupler (bottom row). The pump power is fixed at
twice the lasing threshold for flat-phase SLM. Left column: a flat
phase over the cross section of the cavity (6 = 10 mm) leads to a
homogeneous, flat-top emission pattern. Middle column: a
random phase profile with £ = 1 mm segments the lasing modes
into multiple domains. Right column: a random phase profile
with £ = 0.1 mm breaks the emission into many bright spots that
are spatially localized. (b) Spatial correlation length of lasing
intensity # increases with SLM phase correlation length &. The
feature size of the emission pattern follows the phase fluctuation
length, until it saturates when £ approaches the cavity transverse
dimension. (c) Number of independent transverse lasing modes N
increases as £ decreases, indicating that random phase fluctuation
facilitates many-mode lasing.

optical aberrations, misalignment, and thermal lensing
effect; thus a slight deviation from the perfect degenerate
condition is incorporated into the numerical simulation
[23]. We calculate the transverse spatial profile and quality
factor of cavity resonances. Then we study the lasing
modes using the steady-state ab-initio lasing theory [29].
While introducing random phase fluctuations in the cav-
ity’s transverse direction also modifies the longitudinal
mode profiles and affects their spatial overlap in the gain
medium, our numerical simulation reveals that changes in
the transverse overlap dominate the mode interactions over
the longitudinal overlap [23]. Hence, we ignore longi-
tudinal mode profiles when calculating modal cross-
saturation coefficients. The nonlinear modal interaction
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FIG. 3. Suppression of modal interaction and Q spoiling by

disorder (simulation). The left column in (a)-(c) shows the
calculated 1D intensity profile of transverse modes in a slightly
misaligned DCL. The center and right columns are distributions
of quality factors and cross-saturation coefficients y. The random
phase fluctuation length £ = 10 mm (a), 1 mm (b), and 0.1 mm
(c). (d) Average mode size p scales linearly with £. The solid line
is a linear fit of slope s = 0.52. (¢) Number of transverse lasing
modes as a function of &, with (blue circles) and without (purple
triangles) gain saturation, at a constant pumping level of twice the
lasing threshold with £ = 10 mm.

via gain saturation is characterized by the cross-saturation
coefficient,

o = ] [ vl opad, )

for mth and nth transverse modes, where y,,(x) and y,,(x)
denote their transverse field profiles [30].

With a flat phase on the SLM in Fig. 3(a), the transverse
modes are spatially extended over the cavity cross section.
The distribution of their quality factors exhibits a narrow
peak at the highest Q value, indicating that the majority of
transverse modes have similarly low lasing thresholds and
tend to lase together. However, the large spatial overlap of
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these modes results in their strong competition for optical
gain [23]. The cross-saturation coefficients feature a wide
distribution centered about 0.5. We compute the number of
lasing modes with gain saturation turned on and off. At the
pumping level of P = 2P, where P, is the threshold of the
first lasing mode, the number of lasing modes decreases
from 257 without modal interaction to 43 with modal
interaction. This notable reduction reflects the important
role played by nonlinear modal interaction.

In Fig. 3(b), the SLM displays a random phase profile of
correlation length £ =1 mm, and the transverse modes
shrink in size. They tend to cluster in regions with a
relatively smooth phase profile, avoiding the positions of
abrupt phase change. The Q distribution still features a
narrow peak at the highest value, but the peak height is
smaller, and more modes have lower Q and higher lasing
threshold. In contrast, the distribution of cross-saturation
coefficients is peaked at the smallest value, and has a long
tail extended to large y. The average cross-saturation
coefficient is 5 times lower than that in Fig. 3(a), as a
result of smaller spatial overlap between the transverse
modes. At the pumping level of 2P, the number of lasing
modes without interaction drops slightly to 217, while with
interaction the number of lasing modes rises significantly to
104. This behavior indicates that the reduction of gain
competition by the random phase fluctuation has a much
stronger effect than the reduction of the Q factors.

When the phase correlation length is reduced to & =
0.1 mm in Fig. 3(c), the transverse modes become tightly
confined with little overlap. This leads to a significant
suppression of modal interaction, where the distribution of
cross-saturation coefficients features a higher peak at the
smallest value and a much shorter tail than that in Fig. 3(b).
The Q distribution is further extended to lower values, due
to an increased diffraction loss of highly localized modes.
Consequently, both the number of lasing modes with and
without interaction is reduced, the former to 70 and the
latter to 98 at the same pumping level of 2P,,.

Next we quantify the relation between the transverse
mode dimension p and the phase correlation length &.
The size of mth transverse mode is estimated from the
participation ratio of its transverse intensity profile |y, (x)|?
as [31]:

I TC
" T )Py

Figure 3(d) shows the average size of transverse modes p =
(pm), @s the phase correlation length £ varies over two
orders of magnitude. The linear scaling of p with & indicates
that the transverse modes adapt to the random phase
fluctuation and become localized accordingly in qualitative
agreement with the results in Fig. 2 [23].

Finally, we compare the number of transverse lasing
modes with and without nonlinear interaction. If gain

(3)

saturation is neglected (without interaction), the number
of lasing modes depends only on their loss (Q factor). As &
gradually decreases from 10 mm, the transverse modes start
shrinking, and the diffraction loss becomes stronger. The
reduction in Q factors leads to higher lasing thresholds. As
the pumping level is fixed to 2P, the number of lasing
modes drops gradually. Once the transverse mode size is
below the diffraction limit set by the numerical aperture of
the cavity, a sharp increase of diffraction loss results in a
sudden decrease in the number of lasing modes, as seen in
Fig. 3(e). When gain saturation is included (with inter-
action), the trend is reversed: the number of lasing modes
grows as ¢ is reduced from 10 mm to 1 mm. This is
attributed to the reduced modal competition for gain, as the
transverse modes are fragmented by random phase fluc-
tuation. Once ¢ is shorter than 1 mm, the dramatic increase
of diffraction loss becomes dominant over the decrease of
nonlinear modal interaction, and the number of lasing
modes decreases accordingly [Fig. 3(e)]. However, the
decrease in the number of lasing modes with interaction is
smaller than without interaction, indicating that the sup-
pression of gain competition remains effective in allowing
more transverse modes to lase. Experimentally the drop of
the number of lasing modes at very small £ is not observed,
as a further decrease of £ below 0.1 mm would make the
lasing modes so small that their intense emission might
damage the SLM. A quantitative comparison between
experimental data and numerical results is not possible,
as the dimensions of the cavity cross section differ, and
cavity imperfections cannot be accurately measured and
adopted in the numerical simulation.

In conclusion, we demonstrate an efficient method of
tuning the nonlinear interaction of lasing modes over a
wide range. By introducing random phase fluctuation into a
DCL, the transverse modes are fragmented spatially to
avoid the lossy regions of abrupt phase variation. The
characteristic scale of phase fluctuation is varied over two
orders of magnitude, and the transverse mode size follows.
The reduction of their spatial overlap suppresses modal
competition for gain, resulting in an increase of the number
of lasing modes, despite Q spoiling. Contrary to typical
laser cavities with fixed geometry, the spatial light modu-
lator placed inside a DCL allows one to control the spatial
structures and nonlinear interactions of thousands of lasing
modes on demand. Our flexible and robust approach
provides a versatile experimental platform to study and
better understand many-body systems where disorder-
induced localization dramatically affects mode overlap
and consequently nonlinear mode interactions. For exam-
ple, in many-body localization, disorder reduces the over-
lap between the modes thus preventing the system from
thermalizing and retaining the memory of the initial state
even at infinite time [32]. In spin glasses for instance [33],
the distribution of overlap between modes, known as the
Parisi overlap function [34], serves as an order parameter
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that characterizes replica symmetry breaking. Also, in cold
atoms, the interplay between disorder and interaction can
lead to fragmentation of Bose Einstein condensates [19,20],
to disorder-induced order [35], to anomalous heating
beyond the Kubo linear response formulation [36], and
to numerous other intriguing phenomena [37].
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