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We theoretically show that strong mechanical quantum squeezing in a linear optomechanical system can
be rapidly generated through the dynamical instability reached in the far red-detuned and ultrastrong
coupling regime. We show that this mechanism, which harnesses unstable multimode quantum dynamics,
is particularly suited to levitated optomechanics, and we argue for its feasibility for the case of a levitated
nanoparticle coupled to a microcavity via coherent scattering. We predict that for submillimeter-sized
cavities the particle motion, initially thermal and well above its ground state, becomes mechanically
squeezed by tens of decibels on a microsecond timescale. Our results bring forth optical microcavities in
the unresolved sideband regime as powerful mechanical squeezers for levitated nanoparticles, and hence as
key tools for quantum-enhanced inertial and force sensing.
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A system of linearly coupled quantum harmonic oscil-
lators can be dynamically unstable, even in the absence of
dissipation (see Ref. [1] and references therein). Although
dynamically unstable regimes are often considered unde-
sirable [2], they can also be a resource. In this Letter, we
show how to engineer and harness unstable multimode
dynamics in a linear optomechanical system to induce
strong mechanical squeezing. Preparing squeezed states of
a mechanical oscillator—quantum states with position
uncertainty smaller than its zero-point motion—is a key
aim of optomechanics [3], as these states lie at the heart of
many quantum-enhanced force and inertial sensing
schemes [4]. This is evidenced by the many theoretical
and experimental efforts aimed at developing strategies to
generate mechanical squeezing, e.g., reservoir engineering
based on two-tone driving [5–11], parametric squeezing
[12–22], rapid frequency shifts [23–28], quantum meas-
urement [29–36], mechanical nonlinearities [16,26,37,38],
or quantum transfer of a squeezed state from a cavity mode
to the mechanical oscillator [39,40].
In this Letter, we propose a novel approach based on the

fast unstable quantum dynamics of a linear optomechanical
system. Our protocol requires to operate in the ultrastrong
coupling and far red-detuned regime, i.e., g > Ω=2 and
Δ ≫ Ω with Ω the mechanical frequency, Δ the laser
detuning from cavity resonance, and g their optomechan-
ical coupling rate [see Eq. (1)]. This regime is within reach
for levitated optomechanics [41,42], specifically for an
optically levitated nanoparticle coupled via coherent scat-
tering [43–47] to a microcavity [48–51] in the unresolved
sideband regime. Our results are particularly timely due to

recent experiments demonstrating ground-state cooling and
quantum control of optically levitated nanoparticles in free
space [52,53]. As opposed to the first ground-state cool-
ing experiment [44], which required a resolved-sideband
cavity—and thus squeezing protocols designed for such
regime [54], these recent free-space ground-state cooling
experiments do not need an optical cavity. Our approach
thus allows us to incorporate an independent and passive
mechanical squeezer to these state-of-the-art experiments
in the form of a properly optimized microcavity. The sole
purpose of such a cavity is the generation of strong
squeezing in the motion of the cooled levitated nano-
particle. This opens the door toward achieving quantum-
enhanced sensing with levitated micro objects [41,42,55].
We consider a mechanical oscillator of mass m and

frequency Ω coupled to an optical cavity mode of fre-
quency ωc that is being driven at frequency ωt in the
red-detuned regime Δ≡ ωc − ωt > 0. The linearized
Hamiltonian of the system in a frame rotating at the
frequency of the driving is given by

Ĥ ¼ ℏΔâ†âþ ℏΩb̂†b̂þ ℏgðâ† þ âÞðb̂† þ b̂Þ; ð1Þ
where â and b̂ are bosonic annihilation operators of the
cavity mode and the mechanical mode, respectively. In this
Letter we focus solely on the regime [56]

4g2

ΔΩ
> 1; ð2Þ

which makes the system described by Eq. (1) dynamically
unstable [57]. In the unstable regime defined by Eq. (2), the
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Hamiltonian in Eq. (1) cannot be diagonalized in terms
of bosonic modes, but it can be expressed in normal
form [1] as

Ĥ ¼ ℏω1ĉ
†
1ĉ1 þ

iℏr
2

½ðĉ†2Þ2 − ĉ22�; ð3Þ
where ĉ1 and ĉ2 are bosonic annihilation operators of
the normal modes, ω2

1 ≡ ðζ2 þ Δ2 þΩ2Þ=2, r2 ≡ ðζ2−
Δ2 − Ω2Þ=2, and ζ4 ≡ ðΔ2 −Ω2Þ2 þ 16ΔΩg2. The canoni-
cal transformation between the physical modes fâ; b̂g and
the normal modes fĉ1; ĉ2g is given in the Supplemental
Material [58]. The Hamiltonian in Eq. (3) elucidates the
dynamics in the unstable regime: the normal mode ĉ1 is
described by an uncoupled harmonic oscillator term, and
the normal mode ĉ2 by a pure squeezing term with a
squeezing rate r that accounts for the unstable dynamics of
the system. A key observation is that in the far-detuned
regime Δ ≫ Ω, the squeezed hybrid mode ĉ2 is dominated
by the contribution of the mechanical mode, namely,

lim
Δ=Ω≫1

ĉ2 ¼ −i
gffiffiffiffiffiffiffiffi
ΩΔ

p
�
ðb̂† þ b̂Þ þ i

ffiffiffiffi
Ω
Δ

r
ðâ† − âÞ

�
: ð4Þ

This indicates that mechanical squeezing should be
dynamically generated if, in addition to the instability
condition defined by Eq. (2), the condition Δ ≫ Ω (far red
detuning) is fulfilled. Note that both requirements can only
be satisfied in the ultrastrong coupling regime g ≫ Ω=2
[59–62]. One can show that in the far red-detuned regime
the squeezing rate in Eq. (3) is given by r ≈ 2g

ffiffiffiffiffiffiffiffiffiffi
Ω=Δ

p
. In

the following we show how mechanical squeezing is
generated.
Let us define the generalized mechanical quadrature

X̂ðθÞ≡ ðb̂†eiθ þ b̂e−iθÞ= ffiffiffi
2

p
, with θ ∈ ½0; 2πÞ. The mini-

mal variance is obtained at a phase-space angle 2θsq ≡
arghb̂2i [see Fig. 1(a)] and is given by Δ2Xsq≡
hX̂2ðθsq þ π=2Þi ¼ 1=2þ hb̂†b̂i − jhb̂2ij. Squeezed states
are defined by a variance Δ2Xsq < 1=2 and their squeezing
is quantified in decibels (dB) by S≡ −10 log10ð2Δ2XsqÞ.
We consider the coherent dynamics generated by Eq. (1)
with an initial state given by the cavity mode in vacuum (in
the linearized regime) and the mechanical mode in a
thermal state with mean phonon number n̄b [63]. In
Fig. 1(b) we show Δ2Xsq and θsq as a function of time,
thereby demonstrating the generation of mechanical
squeezing. One can show that the variance Δ2Xsq reaches
the asymptotic value

lim
tr≫1

Δ2Xsq ¼
1

2

Ω
Δ

≪ 1: ð5Þ

Remarkably, the asymptotic value is independent of
the mean phonon number n̄b. Squeezing is achieved
at a phase-space angle given by limtr≫1 exp½2iθsq� ≈ −1þ
ΔΩ=ð2g2Þ þ i

ffiffiffiffiffiffiffiffi
ΔΩ

p
=g. Figure 1(c) shows the squeezing

timescale Δ=r throughout the stability diagram, consider-
ing the exact expression for r, which shows deviation from
the approximated expression r ≈ 2g

ffiffiffiffiffiffiffiffiffiffi
Ω=Δ

p
close to the

stability border. If the asymptotically squeezed state with
the variance given in Eq. (5) is rotated in phase space such
that the position quadrature X̂ðθ ¼ 0Þ becomes maximally
squeezed, the corresponding position fluctuations are given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mΔÞp

. These fluctuations are similar to the zero-
point motion associated with a hypothetical harmonic trap
with frequency Δ ≫ Ω. Such rotation in phase space can
be done via free evolution in the harmonic trap for a
time Ωt ¼ θsq þ π=2.
Let us now discuss how the presence of noise

and decoherence affects these results. We consider the
dynamics described by the following master equation,

FIG. 1. Squeezing induced via dynamical instability in the
absence of dissipation. (a) Wigner function of the mecha-
nical state Wðx; pÞ at different times [denoted by points in panel
(b)], for an initial state with mean phonon number n̄b ¼ 0.
(b) Minimal variance Δ2Xsq and the angle of squeezing θsq as a
function of time, for g=Δ ¼ 0.2, Ω=Δ ¼ 0.01, for various
initial thermal states with mean phonon number n̄b, and for a
cavity initially in the vacuum state. Dashed vertical and
horizontal lines show the squeezing timescale Δ=r and the
asymptotic value Ω=ð2ΔÞ, respectively. Gray shaded area in-
dicates squeezing. (c) Squeezing timescale Δ=r as a function of
the mechanical frequency Ω and the optomechanical coupling
rate g. The point denotes the configuration analyzed in panels (a)
and (b).
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_̂ρ ¼ 1

iℏ
½Ĥ; ρ̂� þ κ

�
â ρ̂ â† −

1

2
fâ†â; ρ̂g

�

−
Γ
2
½b̂† þ b̂; ½b̂† þ b̂; ρ̂��; ð6Þ

where ρ̂ is the density matrix of the cavity and the
mechanical mode. The first dissipative term models cavity
photon losses at a rate κ (i.e., dhâ†âi=dt ¼ −κhâ†âi þ � � �).
The second dissipative term accounts for white mechanical
displacement noise with a decoherence rate given by Γ (i.e.,
dhb̂†b̂i=dt ¼ Γþ � � �). This form of mechanical dissipation
models laser recoil heating, scattering of air molecules in
high vacuum, and any other type of displacement noise
(e.g., trap vibrations) for levitated nanoparticles [65]. In the
Supplemental Material [58] we provide an analogous
discussion for the standard mechanical dissipator describ-
ing the weak coupling to a thermal bath that is relevant for
clamped mechanical oscillators. By writing the master
equation (6) in terms of the normal modes, and neglecting
rapidly rotating terms (this can be done provided that
κ ≪ Δ), one can analytically obtain the asymptotic value of
the minimal variance in the far-detuned regime Δ ≫ Ω (see
the Supplemental Material [58] for further details). The
asymptotic variance is given by

lim
tr≫1

Δ2Xsq ¼
Ω
2Δ

�
1þ κ

4g

ffiffiffiffi
Δ
Ω

r
þ ΓΔ2

4g3

ffiffiffiffi
Δ
Ω

r �
: ð7Þ

The second and the third term represent the noise-induced
correction to the minimal variance. Equation (7) shows
that in the presence of noise there is an optimal detuning
Δopt for which the variance is minimized. The optimal

detuning is well approximated by Δopt ≈ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=ð3ΓÞp

. The
condition for unstable dynamics [Eq. (2)] then reads
g=Ω >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=ð48ΓÞp

, and the condition for far detuning
[Δopt ≫ Ω] reads g=Ω ≫

ffiffiffiffiffiffiffiffiffiffi
3Γ=κ

p
. Note that typically

κ ≫ Γ, especially when considering microcavities (see
below for further details). Figure 2 displays the asymptotic
mechanical squeezing S at optimal detuning as a function
of the rates κ=Ω and Γ=Ω for different coupling rates g=Ω.
Figure 2 shows that the generation of strong squeezing is
feasible in the presence of cavity losses and mechanical
displacement noise. Specifically, squeezing above 3 dB
is possible even at g=Ω ¼ 1, while strong squeezing
(S > 30 dB) can be achieved deep in the ultrastrong
coupling regime g=Ω≳ 100. Note that the resolved side-
band regime, namely, κ ≪ Ω, is not a requirement to obtain
strong mechanical squeezing.
Let us now show that the results discussed above and

displayed in Fig. 2 are particularly feasible in levitated
optomechanics via coherent scattering. We consider the
setup shown schematically in Fig. 3(a), in which a nano-
particle is trapped in optical tweezers and placed at a node
of an optical cavity. The scattering of laser photons into free

space and into the cavity induces the coherent and
dissipative dynamics that are well described by the master
equation (6) with the Hamiltonian given by Eq. (1) [65].
Detailed expressions for the trapping frequency Ω, the
optomechanical coupling rate g, the recoil heating rate Γ,
and the cavity photon decay rate κ are given in the
Supplemental Material [58,65]. Here we discuss only their
dependence on the most relevant quantities, that is, tweez-
ers power Pt, particle radius R, cavity length Lc, and
cavity finesse f. In particular, Ω∝P1=2

t , g ∝ P1=4
t R3=2L−1

c ,
Γ ∝ P1=2

t R3, and κ ∝ L−1
c f−1. Therefore, one obtains that

g2=ðΩΔoptÞ ∝ R3L−1=2
c f1=2. Hence, the instability condi-

tion Eq. (2) at optimal detuning is independent of the
tweezers power Pt and benefits from high-finesse cavities
with small mode volumes and large (but subwavelength)
nanoparticles.
The mechanical squeezing achievable in coherent scat-

tering is shown in Fig. 3(b). We plot the asymptotic
mechanical squeezing S as a function of the cavity length
Lc for initial mean phonon numbers nb ¼ 0, 10, and 100,
assuming a silica nanoparticle of radius R ¼ 100 nm, trap
frequency Ω=ð2πÞ ¼ 100 kHz, and a cavity finesse f ¼
105 (see caption of Fig. 3 for more details). As predicted,
the smaller the cavity length, the larger the generated
squeezing, with S reaching values well over 10 dB for
submillimeter-sized cavities [48,50,51]. The results shown
in Fig. 3(b) are obtained by numerically solving the master
equation (6), and they are compared with the analytical
expression for the asymptotic variance Eq. (5), shown by
the dashed gray line. Equation (5) is an excellent approxi-
mation away from the stable region (denoted by the shaded
area) and for initial mean phonon numbers n̄b ≲ 100.
Figure 3(c) displays the optomechanical coupling rate g
and the optimal detuning Δopt corresponding to the case
analyzed in Fig. 3(b). The solid line shows the optimal
detuning given by the approximation Δopt ≈ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=ð3ΓÞp

,
and it is nearly indistinguishable from the exact numerical

FIG. 2. Asymptotic mechanical squeezing S in the presence of
dissipation, considering optimal detuning Δ ¼ Δopt (see main
text), and an initial state with mean phonon number n̄b ¼ 0.
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value, shown by the dotted line. Note that the requirements
g;Δopt ≫ Ω ¼ 2π × 100 kHz are well satisfied.
Since squeezing occurs at a given angle θsq [see

Fig. 1(a)], the spatial extension of the position probability
distribution of the nanoparticle grows as a function of time.
The linear dynamics of the nanoparticle in a coherent
scattering setting is well described by the master equa-
tion (6) and the Hamiltonian given in Eq. (1) provided that
this spatial extension is smaller than the cavity optical
wavelength λc [65]. It is thus important to check that
significant squeezing occurs before the spatial extension is
too large. This is analyzed in Fig. 3(d), where we show the

extension timescale t⋆, defined as the time such that
½hX̂2ðθ ¼ 0Þℏ=ðmΩÞiðt⋆Þ�1=2 ¼ 0.1λc, as a function of
the initial mean phonon number n̄b for two values of the
cavity length (solid lines), and compare it to the squeezing
timescale 1=r (dashed lines). Figure 3(d) confirms that the
asymptotic value of S can be achieved faster than t⋆ for a
mechanical mode initially in a state given by a wide range
of thermal occupation numbers even well above the ground
state, evidencing the broad feasibility of squeezing.
We remark that the setup considered here models recent

coherent scattering experiments [43–47] that have demon-
strated ground state cooling [45] and strong coupling
[46,47]. We argue that the scheme we have presented is
attainable in similar experiments where the cavity length is
decreased, increasing the optomechanical coupling rate g at
the cost of increasing the cavity decay rate κ. Such small
cavities with high finesse are experimentally feasible and
have been realized in Refs. [48,50,51]. In this context,
motional cooling can be achieved via feedback [52,53] and
the coupling to the microcavity can be switched on and off
by controlling the detuning. In order to experimentally
demonstrate the generation of mechanical squeezing we
propose to optically measure the position of the particle
during the stable harmonic dynamics generated by setting
Δ ≫ Δopt at a time t0 (t⋆ ≫ t0 ≫ 1=r), which effectively
decouples the particle from the cavity. In particular, the
recorded trajectories on different experimental runs can be
demodulated at frequency Ω and angle ϕ≡ −θsq − π=2
[66,67] and then ensemble averaged. As we show in the
Supplemental Material [58], the variance of such a
demodulated position operator is given by the squeezed
variance Eq. (7) at t ¼ t0 plus a noise term of the order of
Γ=Ω that is much smaller than one. This method should
thus allow one to experimentally measure the squeezed
variance Eq. (7).
In summary, we have shown how a dynamical multi-

mode instability in a linear optomechanical system can be
used to rapidly generate strong mechanical squeezing. The
instability can be exploited by operating the optomechan-
ical system in the far red-detuned and ultrastrong coupling
regime. Our results show that it is worth exploring the
different types of dynamical instabilities encountered in a
multimode system [1] (e.g., three-mode dynamical insta-
bilities might be used to generate two-mode entanglement
via their separate coupling to a third mediating mode).
While our results are in principle applicable to any
optomechanical system, we have focused on an optically
levitated nanoparticle coupled to a high-finesse optical
cavity via coherent scattering. The combination of the
recent achievement of free-space quantum control of nano-
particles [52,53] with a properly designed microcavity
opens a direct pathway towards strong mechanical quantum
squeezing induced by multimode instabilities. In this sense,
our article provides a new use of optical cavities in the
field of levitodynamics [42], beyond passive cooling or

FIG. 3. Feasibility of mechanical squeezing in coherent scatter-
ing. (a) Schematic representation of the setup. A spherical nano-
particle is levitated by optical tweezers with power Pt, frequency
ωt, and waist Wt. It is placed at a node of an optical cavity with
length Lc, resonance frequency ωc, and decay rate κ. Optical
tweezers provide a trapping potential with frequency Ω, an
effective optomechanical coupling at a rate g, and particle recoil
heating at a rate Γ. (b) Asymptotic mechanical squeezing S as a
function of cavity length for a silica nanoparticle with radius
R ¼ 100 nm. The remaining parameters are Pt ¼ 29 mW,
Wt ¼ 0.7 μm, λt≡2πc=ωt¼1064 nm, λc≡2πc=ωc¼1064 nm,
f ¼ 105, and the asymmetry parameters of the tweezers Ax ¼ 0.9,
Ay ¼ 0.8 (see the Supplemental Material [58]). (c) Optomechan-
ical coupling rate g and optimal detuning Δopt as a function of
cavity length, for the same parameters as in (b). Approximate and
exact expressions for Δopt are shown by solid and dotted lines,
respectively. (d) Extension time t⋆ as a function of the initial mean
phonon number, for the same parameters as in (b).
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mediating coupling between different particles [64,68]: a
microcavity is a great mechanical quantum squeezer.
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